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Abstract

T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response
to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited
number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in
preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that
causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by
infection with the parasite show profound immunodominance, as exemplified by the Tp1214–224 epitope presented by the
common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC
complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell
clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic
ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this
feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our
understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly
immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.
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Introduction

T cells constitute a key component of the adaptive immune

system, allowing recognition of virtually any pathogen that may

infect the host. Immunity against many intracellular pathogens is

governed by CD8+ T cells and major histocompatibility complex

(MHC) class I molecules, which bind antigenic peptides within a

groove formed by their alpha 1 and alpha 2 extracellular domains

[1]. Recognition by the clonotypic T cell receptor (TCR) of the

peptide-MHC (pMHC) complex is a critical step in this process,

leading to a variety of responses aimed at elimination of the

pathogen [2]. These processes have been largely characterised in

humans and mice, and while the same immune system

components are found in cattle, an economically important

livestock species, less is known of the detailed cellular and

molecular interactions in this species.

MHC class I genes are highly polymorphic and it is this feature

that determines individual peptide binding characteristics of class I

molecules [3]. Cattle have at least 6 classical MHC class I genes

[4] (contrasting with 3 in human), and variable haplotype

structures, with usually one, 2 or 3 of the genes present and

expressed, in a variety of combinations [5]. We have previously

identified the majority of MHC class I alleles (www.ebi.ac.uk/ipd/

mhc/bola) present in the Holstein or Friesian breed (Bos taurus),

which represents by far the most abundant breed of dairy cattle

throughout Europe and North America and is increasingly being

used to improve milk production in developing countries. MHC

class I allelic diversity in the Holstein/Friesian cattle population is

relatively low in comparison to similarly large human populations,

for example Caucasian; this probably reflects a combination of

founder effect and/or recent strong selection for production traits

(Ellis, manuscript submitted).

The structural basis for peptide binding to MHC class I molecules

has been extensively investigated in humans and mice [6,7], less so

for other species [8,9]. The N and C termini of bound peptides

interact with invariant class I residues at either end of the peptide-
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binding groove. Peptides are most often between 8 and 10 residues

in length, and although longer exceptions that adopt a bulged

conformation have been reported in human [10], rat [9] and mouse

[11] these have generally been considered very unusual. The

peptide specificity exhibited by MHC molecules is dependent on the

entire sequence of binding peptides, but is dominated by several key

interactions made by so-called anchor residues. These define a

peptide binding ‘motif’ for a particular MHC allele which usually

consists of two or more anchor residues, such that in all peptides that

will bind the allele these two residues will be relatively invariant or

have conserved properties. Structural studies have revealed that the

side chains of the peptide anchors interact with polymorphic

residues in a series of pockets in the groove; these define the binding

specificity of the allele [12]. Many peptide binding motifs have been

described in human and mouse, while in cattle peptide binding

properties have been investigated for only a small number of MHC

class I alleles [13,14], and data are insufficiently detailed to allow

meaningful comparison between species.

A characteristic feature of CD8+ T cell responses to many

pathogens is that the peptide epitopes display a strong dominance

hierarchy, resulting in focusing of the response on a limited number

of the most dominant epitopes [15]. Such T cell responses may be

additionally restricted by particular MHC alleles in preference to

others. This phenomenon impacts substantially on our ability to

design and implement improved vaccines against a range of

pathogens, yet is still poorly understood. We wished to investigate

the basis for this phenomenon using the example of Theileria parva, a

complex protozoan parasite for which the cattle CD8+ T cell

response has been extensively studied and characterized.

Several CD8+ T cell epitopes in T. parva have been identified

recently [16,17,18]. Graham et al [18] investigated recognition of

synthetic peptides by antigen-specific CD8+ T cells and showed

that out of 9 epitopes derived from 6 different T. parva antigens 3

were 11 amino acids long. One of these (Tp1214–224) was shown to

be presented by the cattle MHC class I allele N*01301. This allele

is expressed alone on the haplotype designated A18, which is

common in the British Friesian breed. Although this is not the only

single gene class I MHC haplotype in cattle, it remains an unusual

phenomenon in mammals (where 2 or 3 class I genes are generally

expressed), but is commonly seen in non-mammalian vertebrates

[19]. MacHugh et al [20] showed that in T. parva-immune A18-

homozygous animals, over 75% of responding T cells are specific

for the Tp1214–224 11mer. Animals heterozygous for A18 also

consistently respond to this epitope presented by N*01301 [18,20].

Dominant CD8+ T cell responses restricted by this allele have in

addition been reported for respiratory syncytial virus [21] and foot

and mouth disease virus [22].

Determination of the structural and biophysical characteristics of

pMHC interactions can lead to a better understanding of T cell

recognition and T cell-dependent immune responses. Unique

features of the MHC in cattle [23], and the pressing requirement

for improved vaccines and other disease control measures in livestock

[24], mean that increasing our knowledge in this area will not only

shed light on evolution of the mammalian immune system but will

also be of practical benefit. Here we describe the peptide binding

properties of the common and functionally important cattle MHC

class I allele, N*01301. We also describe, at atomic resolution, the

crystal structure of N*01301 bound to an immunodominant 11mer

Theileria parva-derived peptide, Tp1214–224. This analysis provides

important clues regarding the features that determine immunodo-

minance of this pMHC structure. As far as we are aware, this is the

first description of an MHC structure from a commercially important

mammalian livestock species.

Results

Peptide Binding Characteristics of N*01301
A 9mer self-peptide (TIMPKDIQL) shown to have a high

binding affinity to N*01301 was used throughout as a positive

control in flow-based MHC stabilization assays (see Materials and

Methods for details). In order to systematically explore the relative

contribution to binding affinity made by amino acids at each

position, a sequential alanine-scan of the self-peptide was made

(Fig. 1A). Dose/FI curves were created for each peptide (using

peptides at concentrations between 0.1 nM and 1 mM) and

presented as semi-logarithmic plots as in previous studies ([25],

supporting information (SI) Fig. S1). The high binders have low

half-maximal binding level (BL50) values (high pBL50) and the low

binders have high BL50 values (low pBL50). Peptides that did not

reach 50% of the binding level of the reference peptide were

considered non-binders. The pBL50 ranges are: for low binding

,4 (BL50 .1025), for intermediate binding between 4 and 5, and

for high binding .5 (BL50 ,1025). A parallel study was performed

using the 11mer T. parva-derived epitope Tp1214–224 VGYPKV-

KEEML ([17], Fig. 1B).

N*01301 binding affinities for most of the Ala-substituted

versions of the 9mer self-peptide demonstrated only minor

differences, with three exceptions. The conversion to Ala of Leu

at the C-terminal position, Ile at position 2 (P2) or Lys at position 5

resulted in a substantial loss of binding, while a peptide with Ala

substitutions at positions 2 and 5 showed an even greater loss of

binding. Peptides substituted at positions 2 and 9 or 5 and 9 were

non-binders (or binding was ,50% of the reference peptide).

These results suggest that Ile, Lys and Leu are anchors at positions

2, 5 and 9 respectively. These findings are in partial agreement

with previous work on the N*01301 allele which identified Ile as

an auxiliary anchor at position 2, and Lys as a preferred residue at

position 5 [14].

N*01301 binding affinities for most of the Ala-substituted

versions of the 11mer Tp1214–224 peptide also demonstrated only a

few differences (Fig. 1B). Similar to the self peptide, the Ala-

substitution or removal of the C-terminal Leu resulted in the

Author Summary

CD8+ T cells are essential for host defense to many
intracellular pathogens. The CD8+ T cell receptor (TCR)
detects small peptide fragments presented at the surface
of infected cells. These peptide epitopes are bound by
major histocompatibility complex (MHC) molecules. Such T
cell responses are often inexplicably focused on a very
small number of epitopes, even in response to large and
complex pathogens. These epitopes are usually presented
by specific MHC molecules. This phenomenon is known as
immunodominance. An increased understanding of the
factors involved in immunodominance would increase our
ability to design more effective vaccines against a range of
infectious pathogens. Our study focused on an econom-
ically important protozoan parasite of cattle, Theileria
parva. We generated crystals of MHC molecules bound to
an immunodominant T. parva epitope. Analysis of the
crystal structure demonstrated that the peptide was held
in a highly unusual conformation, which was shown to
impact significantly on TCR recognition, based on studies
of specific CD8+ T cell clones. These data will aid our
understanding of the structural basis for T cell immunity
and will ultimately contribute to development of disease
control strategies.

Presentation of a Theileria parva CD8+ Epitope
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largest loss of peptide binding for a single substitution/deletion.

Ala-substitution of Lys at position 5 also resulted in a substantial

loss in binding. In contrast to the 9mer peptide, substitution at

position 2 of the 11mer, which in this case was Gly, had no effect.

A peptide with positions 5, 7 and 11 Ala-substituted was a non-

binder. Peptides were also synthesized that probed how varying

the length of Tp1214–224 would affect its ability to bind N*01301.

Removing one residue from the N terminus of this peptide resulted

in no appreciable difference in binding, which suggests this shorter

peptide binds in a similar fashion to Tp1214–224. However this

10mer was not recognized by CD8+ T cells, suggesting that

removal of residue 1 alters the conformation of the bound peptide

[18]. This is therefore only partially consistent with observations

made for HLA-A*0201 crystal structures [26], that revealed

octamer and nonamer versions of a peptide binding with the same

conformation, due to replacement of the missing N-terminal

residue with water molecules.

Additions to the N terminus, of either a Cys which is the

naturally occurring amino acid within the T. parva protein, or a

Cys and two Ala also had little effect. It is possible that an altered

N-terminal residue would occupy the same pocket as the Val

found in Tp1214–224, while additional residues are likely to extend

out of the binding groove, as reported for a mouse H-2Kb-bound

peptide [27]. These findings suggest that while the C-terminal Leu

is the most crucial residue ensuring peptide binding to the

N*01301 allele, amino acid changes at other positions can also

substantially reduce binding, even if the Leu is present. The

relative importance of these other positions is likely to differ

Figure 1. Peptide binding to N*01301. pBL50 values obtained with N*01301 using an RMA-S stabilization assay, (see Materials and Methods for
explanation), (A) for the reference peptide (TIMPKDIQL) and Ala-substituted peptides and (B) forTp1214–224 (VGYPKVKEEML) and Ala- substituted
peptides.
doi:10.1371/journal.ppat.1001149.g001
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depending on the length of the peptide and its position in the

peptide binding groove.

Overview of Cattle MHC Class I N*01301 Structure
The N*01301- Tp1214–224 complex yielded well-ordered

crystals, high resolution x-ray diffraction data were collected and

the structure determined by molecular replacement (see Materials

and Methods and Table S1 for details). The overall structure of

N*01301 resembles that of other mammalian MHC class I

molecules ([3], Fig 2A). Comparison with pMHC structures from

other species indicates that the orientation of the N*01301 a3

domain relative to the rest of the MHC class I molecule lies within

the range reported for mouse pMHCs [11,27], but is distinct

compared to the average position of human a3 domains, with a 5–

7u clockwise rotation relative to the molecular long axis. However,

the N*01301 a3 domain does not show the large (14–29u)
differences in orientation found between the human molecules and

chicken BF2*2101 [8]. This particular orientation of the a3

domain may have some effect on biophysical characteristics of the

species-specific interactions of the cattle a3 domain with other

molecules in the immunological synapse.

The N (position 1, P1) and C (PV) termini of the Tp1214–224

peptide conform to the canonical pMHC class I binding mode,

anchored in the A and F pockets respectively of the N*01301

binding groove (Fig. 2B, Fig. S2). The P1-Ca/PV-Ca distance of

22Å is typical of pMHC complexes [28] and, as reported for other

11mer peptide complexes [10], requires a substantial portion of

the peptide to bulge out of the binding groove (Fig. 3A). In the

N*01301- Tp1214–224 complex the bulged conformation is tethered

to the binding groove at P5 and P9 with residues P6-P8

prominently exposed at the pMHC surface (Fig. 3A). The peptide

conformation appears to be relatively rigid (the electron density is

well-defined for the full-length of the peptide, Fig. 3A) and is not

the result of stabilizing interactions with neighboring molecules in

the crystal (the peptide does not contribute to any major crystal-

packing contacts). This is in contrast to the flexibility in peptide

conformation observed for some of the previously determined

highly bulged pMHC structures [29,30,31].

The overall architecture of the N*01301 binding groove and the

peptide main chain conformation is typical of pMHC complexes

for positions 1–3 (P1-P3). At P2 the conformation is stabilized by

van der Waals (VDW) contacts with Tyr7 in pocket A and

hydrogen bonding with Glu63 in pocket B (Fig. S2). In the absence

of a P2 side chain (P2 is a Gly in Tp1214–224), pocket B is occupied

by three bound water molecules. Displacement of one or more of

these water molecules could provide sufficient space for pocket B

to accommodate an alanine side chain, consistent with our Ala-

substituted Tp1214–224 binding data (Fig. 1B). The P3 main chain

is tethered by an interaction with Tyr99 (Fig. S2), while the P3 side

chain (tyrosine) is anchored in pocket D by hydrophobic stacking

with Arg155 (Fig. 3C). Arg155 also interacts with the peptide

through hydrogen bonding to the main chain at P4 and the side

chain of the Glu P9 residue.

Electrostatic potential calculations show that the central region

of the N*01301 binding groove displays strong electronegative

potential (Fig. S4), augmented by Glu114 which is involved in a H-

bond network with Glu97 as well as with water molecules present

in pockets C and D. Glu97 points up from the floor of the groove

to hydrogen bond to the Lys side chain of P5 (Fig. 3B). This

interaction results in P5 extending deep into the binding groove,

the side chain conformation further stabilized by hydrophobic

stacking with Trp73. Thus, consistent with our peptide binding

data, Lys at P5 acts as a major anchor residue. The main chain

conformation of the P6-P8 bulge is stabilized by partial hydrogen

bonds of the P6 and P9 carbonyl oxygens to the Ne of Trp73 as

well as intra-peptide bonds between the same carbonyl atoms and

the main chain nitrogen atoms at P7 and P8. The bulky Trp73

residue thus appears to play a defining role in the location and

stabilization of the P6-P9 bulge conformation (Fig. 3B and C). The

peptide main chain dips back into the binding groove at P9, the

Figure 2. Overview of the structure of N*01301. (A) The heavy
chain is shown in cyan, b2m in purple, and the peptide in yellow (B) Top
view of the binding platform showing the bound peptide Tp1214–224 in
stick format with residues labeled.
doi:10.1371/journal.ppat.1001149.g002
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Glu side chain pointing back along the groove to make a hydrogen

bond to Arg155. Finally, the Leu side chain at PV is anchored in

pocket F by hydrophobic interactions with residues Tyr116,

Met147, Ala77, Leu81 and Tyr123 (Fig. S2).

Overall the binding of Tp1214–224 to N*01301 results in an

interface of 1040 Å2, one of the most extensive interface areas for

canonical pMHC complex structures reported to date (Table S2).

Most of the pMHC interfaces for human alleles average no more

than 900 Å 2 and structures for other species reveal that only mouse

MHC class I molecules engage consistently through interfaces

nearing the N*01301 value. While forming this extensive interface,

the Tp1214–224 peptide also presents a substantial number of

surface-exposed residues for T cell receptor (TCR) recognition,

namely P1 (Val), P4 (Pro), P6 (Val), P7 (Lys), P8 (Glu) and P10 (Met),

(Fig. 3A, Fig. S5).

Comparison to Other MHC Class I Structures
Least squares superpositions of the binding groove of cattle

N*01301 with all available pMHC crystal structures allowed a

comparison of key features. Figure 4 (A, B) shows a comparative

overlay of the N*01301 bound peptide Tp1214–224 with a number

of representative longer (.10mer) peptides from other pMHC

structures. Structures reported to have flexible or multiple peptide

conformations were not included [29,30,31]. All of the peptides

have standard N- and C-terminal positions within the binding

groove. The human alleles HLA-B*35 and B*57 bind longer

peptides up to 14 residues in length [29]. Examples are shown in

Figs 4A and B together with an 11mer peptide bound to chicken

BF2*2101 [8]. The canonical N- and C- terminal anchor positions

can be spanned by 8mer and 9mer peptides in relatively extended

conformations; longer peptides are accommodated by adopting

either zig-zag conformations within the groove or bulging out of

the groove (Fig. 4B). Tp1214–224 is distinctive in having the bulge,

P6–P8, located nearer the C-terminal end of the binding groove

than the other examples of bulged-type conformations.

There are many HLA-B*35 structures (*3501 and *3508)

binding both short (9mer) and longer peptides (11–14mers); the

latter for the most part bulge centrally. Only two examples of long

peptides out of fifteen available structures display C-terminal

bulging; both are bound to HLA-B*3508 (Fig. 4A and 4B: 11mer

in yellow [32]; 12mer in red [30]). Of these the 12mer bulges out

closer to the C terminal end of the B*3508 binding groove (P7–

P10) than any other human class I-bound peptide, but this bulge is

still somewhat less C-terminal than its counterpart in Tp1214–224

(PV-2 and PV-1 are surface exposed, respectively). In both the

HLA-B*3508-11mer and -12mer structures the C-terminal bulge

position results from P5 (Glu) acting as a secondary anchor,

forming salt bridges to Arg97 and Arg156. The use of P5 as an

anchor in Tp1214–224 also involves interaction with N*01301

residue 97 but in this case P5 is the positively charged residue Lys

interacting with the negatively charged Glu97; there is no

interaction with residue 156 (Phe), but there is instead an

additional interaction with Trp73. Figure 4C shows the effect of

TCR binding for a second HLA-B*3508-11mer complex [31].

The peptide in this case has adopted a ‘flattened’ conformation

that bulges more towards the C terminus of the peptide binding

groove compared to its non-TCR bound equivalent [28].

The above analysis highlights the contribution of Trp73 to two

distinctive characteristics of the N*01301 groove: the preference

for Lys as a P5 anchor residue and the main chain conformation of

Figure 3. Conformation of the bound peptide. Conformation of
the bound peptide Tp1214–224 shown from the a2 helix side of the
binding groove, unless stated otherwise. (A) The corresponding 2Fo-Fc

electron density is shown in mesh format. The peptide is in stick format
with each amino acid labeled (B) View onto the binding groove (as in
Fig. 2B) additionally showing Trp3 and Glu9 of Tp1214–224, and Arg155
of N*01301. Hydrogen bonds are denoted by dotted grey lines (C) The
peptide backbone is shown as a cartoon ribbon in gold. The Lys at

position 5 of Tp1214–224 and the Asn, Glu and Trp at positions 70, 97 and
73 respectively of N*01301 are shown in stick format.
doi:10.1371/journal.ppat.1001149.g003
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the C terminal (P6-PV) portion of the peptide. Trp73 stabilizes the

P9 (PV-2) residue on the a2 helix side of the binding groove at a

position distinct from those of PV-2 residues in human pMHC

structures (Fig. 4B and Fig. S3). Tryptophan at position 73 is

extremely uncommon. It does not occur in MHC class I sequences

of any of the species included in the immunopolymorphism

database (www.ebi.ac.uk/ipd/mhc) or in human, where this

position is occupied almost exclusively by Ala or Thr (www.ebi.

ac.uk/imgt/hla/). In cattle it occurs only in N*01301 and in 5 very

closely related alleles, all encoded at the same locus (Table 1). In

contrast Trp73 is relatively common in mouse MHC class I

molecules, occurring in ,25% of alleles including Ld, Lq, Dq and

Db. In mouse it is always accompanied by Tyr at position 156,

which together with Trp at 147 produces a hydrophobic ‘ridge’

that forces the bound peptide out of the groove [11]. A

comparable ridge, formed by Tyr152, Trp70 and Tyr9 is seen

in the rat RT1-Aa molecule [9]. Cattle N*01301 has Trp at 73 and

Met at 147, which together would be predicted to form a similar

feature, conserved in the alleles included in Table 1.

Figs 4D and E show peptides bound to several mouse MHC

class I molecules. In H-2Db, which exhibits the hydrophobic ridge,

P5 is a central anchor point as in the cattle structure. The side

chain of the P5 residue, in this case an Asn, reaches deep into the

binding groove and occupies the same position as the Tp1214–224

Lys, interacting with residues at the bottom of the groove. As a

consequence of the smaller side chain, the P5 Ca backbone is

Figure 4. Comparison of structures. Peptide Tp1214–224 bound to
N*01301 (cyan), compared to peptides in other mammalian pMHC
structures. View shows the Ca-traces of the bound peptide from the a2
helix side of the binding groove, unless stated otherwise. (A) Long
peptide comparison: 11mer peptide (green, PDB accession code 3BEV)
bound to chicken B21; 11mer (gold, PBD code 2FZ3), 12mer (red, PBD
code 3BW9) and 13mer (orange, PBD code 1ZHL) peptides bound to
HLA-B*3508; 11mer peptides (purple, PBD code 2BVQ; grey, PBD code
2BVO) bound to HLA-B*5703. (B) Long peptide comparison: view onto
the binding groove of Fig. 4A. (C) Long peptide comparison: 11mer
peptide bound to HLA-B*3508 (blue, PDB code 1ZSD), and its
conformation change upon TCR binding (pink, PDB code 2NX5).
Peptide Ca backbone positions are denoted by P1-PV for Tp1214–224. (D)
Mouse comparison: 9mer peptide (red, PBD code 1CE6) and 11mer
peptide (blue, PBD code 1JPF) bound to H-2Db; 10mer peptide (brown,
PBD code 1BII) bound to H-2Dd; 8mer peptide (green, PBD code 1FO0)
bound to H-2Kb; 9mer peptide (pink, PBD code 1VGK) bound to H-2Kd;
9mer peptide (yellow, PBD code 1ZT1) bound to H-2Kk. (E) Mouse
comparison: view onto the binding groove of Fig. 4D.
doi:10.1371/journal.ppat.1001149.g004

Table 1. Amino acid residues at positions 73 and 147 in 7
cattle MHC class I alleles.

Allele 73 147

N*01301 W M

N*01302 W M

N*01401 W W

N*01402 K1 W

N*01501 W M

N*01502 W M

N*04101 W M

1BoLA N*01402, which has Lys in place of Trp at position 73, has only been
recorded once (www.ebi.ac.uk/ipd/mhc/bola); Lys at position 73 has not been
observed in any other cattle class I allele.

doi:10.1371/journal.ppat.1001149.t001
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shifted by 1.5 Å. Furthermore, the peptide main chain interacts

with Trp73 in the same way, with its P6 and P9 carbonyl oxygens

forming similar partial hydrogen bonds to the Ne of Trp73. Thus

the characteristics of the cattle N*01301 binding groove are most

similar to those of the mouse MHC class I molecules, in particular

H-2Db.

Recognition of the N*01301-Tp1214–224 Structure by CD8+

T Cell Clones
Since the characteristics of the N*01301- Tp1214–224 structure

(i.e. highly stable, large area exposed to TCR, unusual positioning of

the peptide bulge) suggest it may have a major impact on TCR

recognition, we performed functional studies to determine the fine

specificity of T cell recognition. Twenty-two Tp1214–224-specific

CD8+ T cell clones, derived from 2 T. parva-immune animals (641

and 633), were examined for their ability to recognize a series of

Ala-substituted versions of Tp1214–224 (as detailed in Fig 1), using a

cytotoxicity assay. All clones gave near maximal levels of killing of

cells pulsed with the native peptide (ranging from 21% to 100% for

different clones) down to a concentration of 10 pg/ml (example

shown in Fig S6). The results obtained with the Ala-substituted

peptides tested at 1 ng/ml (i.e. well above the minimal concentra-

tion required to obtain maximal killing), are summarized in Fig 5.

The most striking finding was the abolition (or near abolition) of

recognition by all T cell clones of 2 or more of the peptides

substituted at positions 6–9. Based on major effects on recognition of

peptides substituted at positions 6, 7 and 8, the 22 clones fell into 4

groups each with broadly similar specificity. Nine clones were

profoundly influenced by residues 6 and 8, seven clones by residues

7 and 8, four clones by residue 7 and two clones by residue 8.

Substitution of position 9 profoundly reduced recognition by all 22

clones. Substitutions at positions 3 and 4 also had substantial effects

on recognition by some clones.

The evidence that residues 6–9 are involved in epitope

recognition by all T cell clones indicates that the CD8+ T cell

response is focused on the bulged region of the bound peptide.

Although Glu at P9 lies deep within the groove, it is predicted to

stabilize the structure, hence substitution of this residue is likely to

radically alter the surface topography of the peptide. Typing of 19

of the T cell clones for expressed TCR Vb gene subfamilies [33]

demonstrated that 2 different subfamilies (Vb1 and Vb3) were

represented in the clones from both animals (Fig 5). This is

consistent with previous data from Vb analysis of both cultured T

cell lines and ex vivo CD8+ T cells from T. parva-immune cattle,

which showed that the response to dominant epitopes, although

polyclonal, contains a small number of highly abundant clonotypes

[20,33]. However, the results obtained here with the Ala-

substituted peptides showed that the Vb1+ and Vb3+ clones each

contained different fine specificities, indicating that these clones

included different TCR rearrangements, either at the level of the

CDR3 sequence or the paired a chain. Hence focusing of the

responding T cells on the bulged region of the bound peptide

occurred irrespective of the TCR chain rearrangements.

The results shown in Fig 5, using a saturating concentration of

peptides (1 ng/ml), reveal the residues that have major effects on

Figure 5. Effects of single alanine substitutions in the Tp1214–224 epitope on recognition by specific CD8+ T cell clones. T cell
recognition was examined using a 4-hour 111Indium release cytotoxicity assay employing target cells incubated with 1 ug/ml of peptide. The
maximum level of cytotoxicity obtained with the native Tp1214–224 peptide is shown for each clone. Killing of unpulsed target cells was ,2% for all
clones. The degree of reduction in killing obtained with each of the single Ala substituted peptides (A1–A11) compared to that obtained with the
native Tp1214–224 peptide is represented as follows: 0–20% reduction (white); 21–40% reduction (pale grey); 41–60% reduction (medium grey); 61–
80% reduction (dark grey); 81–100% reduction (black). The expressed TCR Vb genes were identified using Vb subfamily-specific PCR assays. NT = not
tested.
doi:10.1371/journal.ppat.1001149.g005
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recognition by the T cell clones; individual Ala-substitutions at the

predicted anchor positions (P5 and 11) had only minor and

variable effects on T cell recognition of targets at this peptide

concentration. However, substantially reduced recognition relative

to the native peptide was observed at lower concentrations,

particularly when P11 was substituted (Fig S6). These results

indicate that peptides containing single substitutions in the anchor

residues retain some MHC-binding activity at high peptide

concentrations. Analysis of peptides with multiple Ala-substitutions

(P5 and 11, or P2, 5 and 11) demonstrated that these substitutions

abolished T cell recognition, consistent with the binding data from

MHC stabilization assays.

Discussion

The cattle pMHC class I structure described here demonstrates

that peptides presented by N*01301 are held in an unusual

conformation likely to impact significantly on TCR recognition.

Binding studies defined the putative anchor positions involved in

peptide binding to N*01301 to be P2, P5 and the C-terminal

residue. Their relative importance, however, differs depending on

length and composition of the peptide. Overall, the binding data

suggest that a hydrophobic residue at the C-terminus and an

anchor residue Lys at position 5 define the binding motif of

N*01301. Functional studies using CD8+ T cell clones comple-

ment and add to these data, and support the suggestion that the

unusual peptide conformation impacts significantly on T cell

recognition.

A number of residues within the N*01301 binding groove are

involved in the unusual positioning of the 11mer peptide. Position

97 Glu exerts a strong influence on the P5 Lys, pulling it deep into

the groove and helping to restrict the bulge in the peptide to its C-

terminal end. An anchor at P5, or anywhere in the central region

of the peptide, is unusual in human MHC and has only been

described with HLA-B *08, B*14, B*15, B*35 and B*51. Of these

only B*35 is known to bind unusually long peptides (.10 residues),

but even when central anchors are involved the peptide bulge does

not take on the conformation shown in the N*01301 structure

([31] Fig. 4A, 4B).

The Trp73 residue is most influential in positioning of the

peptide bulge, as described in detail in the Results section. While

extremely rare in other species, this feature is found in a number of

mouse MHC class I alleles, such as H-2Db, forming part of a

hydrophobic ‘ridge’ that cuts across the peptide binding groove

[11]. The Trp73 residue, which contributes to this structural

feature, is found only in a small group of closely related cattle class

I alleles (Table 1) encoded by class I gene 6 [4,5]. In the mouse the

Trp73 residue is seen in alleles encoded at more than one locus,

but Ciatto and colleagues [11] argue for the existence of a ‘related’

family of alleles having a tight evolutionary relationship, possibly

with a common progenitor. These authors go on to suggest that

the resultant structure of these alleles focuses the conformational

variability of the bound peptides in a position that allows optimal

TCR interaction, and for this reason propose that evolution has

led to conservation of this feature.

Studies of human CTL responses have shown that peptides of

between 8 and 10 residues in length constitute the majority of

epitopes presented by MHC class I molecules. Recent studies have

identified a very small number of longer epitopes that are

presented by HLA-B*35 [10,28,29]. Typically, non-canonical

peptides of .10 amino acids in length bulge from the peptide-

binding cleft and there is evidence that this feature can result in

biased selection of the TCR repertoire [30,31]. Results suggest

that a rigid bulge in the peptide can lead to selection of a specific

T-cell repertoire showing limited diversity, in some instances

including public TCR specificities with conserved Vb and CDR3

sequences. In a number of reported cases the structure is flexible

allowing the epitope to be flattened by the TCR interaction

(Fig. 4C), providing a more standard landscape; this leads to a

diverse TCR profile [31]. The peptide conformation in our

structure appears to be relatively rigid and results in an extensive

interface area with the binding groove. A likely consequence of

such an extensive association is that the strength of this interaction

could be substantial and there would be little conformational

adaptability of the peptide upon TCR docking, which might imply

a smaller energetic penalty upon complex formation with TCRs.

We predict that shorter (9 or 10mer) peptides would interact in the

same way with the peptide binding groove, with similar impact on

T cell recognition.

Data generated using CD8+ T cell clones specific for Tp1214–224

complement conclusions derived from the structural analysis, and

support the suggestion that the unusual positioning of the peptide

has a role in the immunodominance of this epitope. Recognition

by all 22 CD8+ T cell clones studied was disrupted by Ala

substitutions in those residues forming the rigid, bulged part of the

peptide (P6–P9), with additional variable effects observed with

substitutions at other positions, notably P3 and P4. P9 appears to

be a particularly critical residue affecting recognition by all T cell

clones. Typing of the T cell clones for TCR Vb gene expression

revealed that all 19 clones examined expressed gene segments

belonging to the Vb1 and Vb3 subfamilies, although the data

obtained with Ala-substituted peptides demonstrated different fine

specificities among clones expressing the same Vb gene, indicating

different TCR rearrangements. Hence focusing of recognition on

the bulged region of the peptide was apparent irrespective of the

expressed TCR gene rearrangements of the T cells. The key role

played by P9 in influencing T cell recognition is consistent with the

structural findings which show this to be the point at which the

peptide main chain dips back into the binding groove, making

several strong interactions and having a key role in positioning and

stability of the bulged section of peptide. Substitution of P9 would

therefore be predicted to disrupt both the shape and stability of

this region, thus abrogating TCR recognition. The structural data

together with the functional results reinforce the crucial nature of

peptide conformation in determining the fine specificity of the T

cell response.

It is of interest that the N*01301 allele is only found expressed in

isolation on the haplotype designated A18. Extensive analysis of

animals homozygous for this haplotype indicates that no other

classical class I genes are present or expressed [34]. A number of

other cattle MHC haplotypes have been identified that also

express a single class I gene. Unlike chickens, which have a single,

dominantly expressed class I gene [18], such a phenomenon is

unusual in mammals, where two or three classical class I genes are

usually expressed. The A18 haplotype is very common in British

Friesian cattle, which represent a sub-population of the Holstein/

Friesian breed and although these animals are subject to artificial

selection, it does suggest that this MHC haplotype does not place

them at a major immunological disadvantage. Studies of CD8+ T

cell responses to T. parva have demonstrated a hierarchy of

dominance in the MHC restriction of the response, with some

MHC haplotypes consistently being dominant in preference to

others. The dominant restriction elements on these haplotypes

include N*01301 and other related alleles shown in Table I, which

share the ‘A6’ supertypic class I serological specificity [35] and are

predicted to have the hydrophobic ridge likely to result in an

unusually positioned peptide. A recent study of CD8+ T cell

responses to foot and mouth disease virus (FMDV) in cattle also
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demonstrated that animals carrying the A18 class I haplotype

(both homozygotes and heterozygotes) gave a consistently strong

N*01301-restricted response to the virus [22]. These data support

the hypothesis that this group of alleles demonstrates a common

characteristic leading to pMHC/TCR structures that tend to

generate dominant CD8+ T cell responses.

Despite the antigenic complexity of T. parva, the genome of

which is predicted to encode .4,000 proteins [36], CD8+ T cell

responses induced by infection with the parasite show profound

immunodominance, in some cases resulting in the majority of the

response being focused on a single epitope, as observed with

Tp1214–224 [20,35]. Moreover, immunodominance of this epitope

was found to be retained in A18+ cattle immunized with Tp1 and

four additional T. parva antigens, delivered by a prime boost

protocol in separate vaccine constructs [18]. These findings imply

that Tp1214–224 presented by N*01301 is inherently highly

immunogenic. There is evidence that immunodominance can be

influenced at different levels including the generation of an

appropriate TCR repertoire, the abundance and turnover of the

proteins from which epitopes are derived and the affinity of the

peptides for the MHC [15]. Complex pathogens such as Theileria

parva are likely to generate many abundant peptides capable of

binding to a particular MHC class I allele, for which specific T

cells are present in the repertoire. Hence there must be additional

factors that determine the dominance of a particular epitope. The

results shown in the present study indicate that the very prominent

C-terminal bulge of the Tp1214–224 11mer when presented by

N*01301 and the highly stable nature of the structure, are likely to

be key factors in determining the dominance of this epitope over

other parasite peptides bound by N*01301.

Immunodominance of CD8+ T cell responses to a range of

pathogens in human and animal is well-documented and has been

shown to result in strain-specificity of responses, allowing escape

from immune recognition. Thus the results reported here are not

only of fundamental biological interest but also of practical

relevance. Defining how diverse peptides bind to different MHC

molecules leads to an improved understanding of the structural

basis for T cell dependent immune responses. This provides insight

into what determines a highly immunogenic peptide-MHC

complex and hence can be of value in prediction of antigenic

epitopes and vaccine design.

Materials and Methods

Identification of a N*01301 Self Peptide
Analysis of peptides bound to the cattle MHC class I allele

N*01301 (formerly named HD6) was described in Gaddum et al

[14], when a partial binding motif was identified. Subsequently a

complete self peptide derived from an eluted peptide pool was

sequenced and identified as TIMPKDIQL which is derived from

Histone H3.

Peptide Binding Using Stabilization Assay
RMA-S is a mouse lymphoma cell line with a deficiency in

MHC class I antigen processing which has been used extensively

to study binding of peptides to MHC class I [37]. RMA-S cells

were stably transfected with N*01301 in pcDNA6 and assays

performed as described using a mAb (IL-A88, [38]) specific for

cattle class I and that recognizes all alleles to detect stable surface

expression of N*01301. Peptides were synthesized with fluorethyl-

methoxy-carbonyl (fMOC) chemistry (Peptide Protein Research

Ltd, Southampton, UK) and purified in-house to .98%. Peptides

were used at concentrations between 0.1 nM and 1 mM in steps of

10 fold dilution. Results are expressed as fluorescence index (FI)

values. These were calculated as the test mean fluorescence

intensity (MFI) minus the no-peptide isotype control MFI divided

by the no-peptide N*01301-stained control MFI minus the no-

peptide isotype control MFI. The half-maximal binding level

(BL50), which is the peptide concentration yielding the half-

maximal FI of the reference peptide in each assay, was calculated

and presented as pBL50 (–logBL50). The N*01301 self peptide

TIMPKLIDQ, which binds with high affinity, was used as a

reference peptide.

Protein Expression, Purification and Complex Assembly
The N*01301 expression construct (amino acids 25–279 of

N*01301 plus N-terminal His-tag and C-terminal biotinylation

sequence) was generated by ligation-independent cloning (Gate-

way Technology, Invitrogen) into pOPINI [39], over-expressed in

Escherichia coli RosettaBlue (DE3) pLacI (Novagen) as inclusion

bodies (IB), dissolved in appropriate urea-containing buffers and

purified using Ni affinity chromatography. This construct was

generated following extensive high-throughput screening using the

facilities and expertise of the Oxford Protein Production Facility

(www.oppf.ox.ac.uk). Cattle b2m cDNA [40] was cloned into

pet24a(+) (Novagen), expressed as IB in BL21-CodonPlus (DE3)-

RP competent cells (Strategene), and subsequently isolated and

dissolved in urea-containing buffers. The denatured proteins were

re-natured in the presence of the Tp1214–224 peptide for 3 days,

concentrated and purified by FPLC (fast protein liquid chroma-

tography) with a HiLoad 26/60 Superdex 75 column (Pharmacia).

Crystallization and Data Collection
Renatured Tp1214–224- N*01301 was concentrated to 6.6 mg/

ml in 150 mM NaCl, 20 mM Tris (pH8.5) and crystallized in 20%

(wt/vol) PEG 8000 and 50 mM potassium di-hydrogen phosphate

using the sitting drop vapor diffusion method. Crystals were briefly

transferred to a cryoprotectant solution prior to flash-freezing at

105 K. The crystals diffracted to 1.8 Å resolution; diffraction data

were collected at the European Synchrotron Radiation Facility

(Grenoble, France) on beamline ID14.2 by using a Quantum 210

charge-coupled device detector (Area Detector Systems, Poway,

CA). The X-ray data were processed and scaled with the HKL

suite ([41]; Table S1).

Structure Determination and Analysis
The structure was determined by molecular replacement using

HLA-B*5703 (2BVO.pdb) as a search model in AMoRe [42].

Initial rigid body refinement was followed by a series of restrained

TLS refinements performed using REFMAC [43] to Rwork of

19.9% and Rfree 23.9%. Manual rebuilding was carried out in

COOT [44]. Continuous density allowed unambiguous model

building of N*01301. No density was visible for the N-terminal His

tag or the C-terminal biotinylation signal, which are presumably

flexible. Crystallographic statistics for the final models are given in

Table S1. All figures of molecular models and electron density

were generated in PyMol supplied by Delano Scientific LLC

(www.pymol.org) and electrostatic potential was calculated using

APBS [45] through the Pymol interface. The atomic coordinates

and structure factors are deposited in the Protein Data Bank

(www.pdb.org): ID code 2xfx (coordinates) r2xfxsf (structure).

Analysis of Recognition by CD8+ T Cells
CD8+ T cell clones specific for Tp1214–224 and restricted by

N*01301 were derived from 2 cattle, 641 and 633 (MHC class I

types A18/A18 and A18/A31), which had been immunized with

the Muguga strain of T. parva by infection and treatment [46]. The
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T cell lines were generated by limiting dilution in 96-well plates as

described previously [47]. They were expanded and maintained in

48 well culture plates by stimulation at 10–14 day intervals with c-

irradiated autologous parasitized cells in RPMI culture medium

containing 10 mM HEPES buffer, supplemented with 10% heat-

inactivated fetal bovine serum, 561025 M 2-mercaptoethanol,

2 mM L-glutamine, 50 mg/ml penicillin/streptomycin, and 100

units/ml human interleukin-2 (Chiron Corporation, Emeryville,

CA., USA). The specificity of the CD8+ T cell clones was analyzed

using a 4 hour Indium oxide (111In, Amersham Medical)-release

cytotoxicity assay [47]. Target cells consisted of autologous T.

annulata-transformed cell lines pulsed with peptides as described by

MacHugh et al [20]. The T cell receptor Vb genes expressed by

the T cell clones were identified by PCR analysis of cDNA using

bovine Vb subfamily-specific primers as described by Connelley et

al [33].

Supporting Information

Figure S1 Semi-logarithmic dose/FI curves. The self peptide

TIMPKDIQL was used as a reference. High binders have low

BL50 values (high pBL50, pBL50 = logBL50) and low binders have

high BL50 values (low pBL50). Peptides that did not reach 50% of

the binding level of the reference peptide were considered non-

binders.

Found at: doi:10.1371/journal.ppat.1001149.s001 (1.94 MB TIF)

Figure S2 Structural peptide comparisons. Structure compari-

son of the 11mer peptide Tp1214–224(cyan) as bound to N*01301,

with peptides bound in various mammalian class I classical MHCs.

View shows the Ca-traces of the bound peptide from the a2 helix

side of the binding groove, unless stated otherwise.(A) Human

allele comparison: HLA-A2 bound 10mer (pink, PBD code 1I4F),

HLA-B8 bound 9mer (brown, PBD code 1M05), HLA-B14 bound

9mer (purple, PBD code 3BVN), HLA-B15 bound 9mer (grey,

PBD code 3C9N), HLA-B27 bound 9mer (orange, PBD code

2BST), HLA-B35 and 10mer (red, PBD code 2AXG), HLA-B44

bound 10mer (blue, PBD code 3DX9), HLA-B51 bound 9mer

(yellow, PBD code 1E27) and HLA-B57 bound 9mer (green, PBD

code 2BVP). (B) Human allele comparison: view onto the binding

groove of panel A. (C) Species comparison: B21 Chicken bound

11mer (green, PBD code 3BEV), Macaque Mamu-A*01 bound

8mer (pink, PBD code 1ZVS), Rat RT1-A bound 9mer (red, PBD

code 1KJM), and Mouse H-2Dd bound 10mer (purple, PBD code

1BII). (D) Species comparison: view onto the binding groove of

panel C.

Found at: doi:10.1371/journal.ppat.1001149.s002 (6.33 MB TIF)

Figure S3 N*01301 binding groove - surface representation.

Surface representation of the N*0301 binding groove with the

Tp1214–224 peptide in gold as either (A) a molecular model or (B) a

molecular surface. The electrostatic potential on the N*01301

solvent accessible surface has been coloured from blue (electro-

positive) to white (neutral) to red (electronegative) with increasing

color intensity depicting stronger electrostatic potential.

Found at: doi:10.1371/journal.ppat.1001149.s003 (6.12 MB TIF)

Figure S4 N*01301 binding interactions. Figure shows the

binding interactions of the peptide Tp1214–224 with the cattle

MHC class I molecule N*01301. The classical binding pockets A–

F are labeled.

Found at: doi:10.1371/journal.ppat.1001149.s004 (5.44 MB TIF)

Figure S5 Different aspect views of the N*0301 binding groove in

complex with Tp1214–224. (A) Cartoon representation of the N*01301

presentation platform in white with the docked Tp1214–224 in stick

representation colored gold. The view looks down on the

presentation platform in the direction that incoming TCRs would

attempt docking. Residues of the six pockets have been colored as:

pocket A in red, pocket B in green, pocket C in blue, pocket D in

magenta, pocket E in brown and pocket F in cyan. (B) and (C)

molecular surface representation of the N*01301 allele with the

Tp1214–224 peptide in stick or surface representations respectively.

Different aspect views of the N*01301- Tp1214–224 complex in

cartoon and space-filling representations. Views (D) looking across

the interface from a1 (a1 foreground, a2 background), (E) looking

down the binding groove with the N-terminus of the peptide in the

foreground, (F) looking across from a2 (a2 foreground, a1

background) and (G) looking down the binding groove with the C-

terminus of the peptide in the foreground.

Found at: doi:10.1371/journal.ppat.1001149.s005 (4.50 MB

TIF)

Figure S6 CD8 recognition of Ala-substituted peptides. CD8+ T

cell recognition of Tp1214–224 peptides containing Ala substitutions

in predicted anchor sites 2, 5, 11. Data are presented for clone

641.18 tested in a 4-hour 111Indium release cytotoxicity assay,

using target cells pulsed with the native peptide (solid diamonds)

and peptides containing Ala substitutions P11 (solid squares), P5

and P11 (open triangles) and P2, 5 and 11 (open circles).

Found at: doi:10.1371/journal.ppat.1001149.s006 (0.03 MB

DOC)

Table S1 Data collection, phasing, refinement statistics and

model quality.

Found at: doi:10.1371/journal.ppat.1001149.s007 (0.55 MB TIF)

Table S2 Analysis of solvent accessible surface buried in the

interface between MHC class I and the peptide presented.

Found at: doi:10.1371/journal.ppat.1001149.s008 (0.05 MB

DOC)
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27. Achour A, Michaëlsson J, Harris RA, Odeberg J, Grufman P, et al. (2002) A

structural basis for LCMV immune evasion: subversion of H-2D(b) and H-2K(b)

presentation of gp33 revealed by comparative crystal structure analyses.

Immunity 17: 757–768.

28. Miles JJ, Elhassen D, Borg NA, Silins SL, Tynan FE, et al. (2005) CTL

recognition of a bulged viral peptide involves biased TCR selection. J Immunol

175(6): 3826–3834.

29. Probst-Kepper M, Hecht HJ, Herrmann H, Janke V, Ocklenburg F, et al. (2004)

Conformational restraints and flexibility of 14-meric peptides in complex with

HLA-B*3501. J Immunol 173: 5610–5616.

30. Wynn KK, Fulton Z, Cooper L, Silins SL, Gras S, et al. (2008) Impact of clonal

competition for peptide-MHC complexes on the CD8+ T-cell repertoire

selection in a persistent viral infection. Blood 111: 4283–4292.

31. Tynan FE, Reid HH, Kjer-Nielsen L, Miles JJ, Wilce MC, et al. (2007) A T cell

receptor flattens a bulged antigenic peptide presented by a major histocompat-

ibility complex class I molecule. Nat Immunol 8: 268–276.

32. Miles JJ, Borg NA, Brennan RM, Tynan FE, Kjer-Nielsen L, et al. (2006) TCR

alpha genes direct MHC restriction in the potent human T cell response to a

class I-bound viral epitope. J Immunol 177: 6804–6814.

33. Connelley T, MacHugh ND, Burrells A, Morrison WI (2008) Dissection of the

clonal composition of bovine alphabeta T cell responses using T cell receptor

Vbeta subfamily-specific PCR and heteroduplex analysis. J Immunol Methods

335(1–2): 28–40.

34. Ellis SA, Holmes EC, Staines KA, Smith KB, Stear MJ, et al. (1999) Variation in

the number of expressed MHC genes in different cattle class I haplotypes.

Immunogenetics 50: 319–328.

35. Morrison WI (1999) Influence of host and parasite genotypes on immunological

control of Theileria parasites. Parasitology 112 Suppl: S53–66.

36. Bishop R, Shah T, Pelle R, Hoyle D, Pearson T, et al. (2005) Analysis of the

transcriptome of the protozoan Theileria parva using MPSS reveals that the

majority of genes are transcriptionally active in the schizont stage. Nucleic Acids

Research 33: 5503–5511.

37. Schumacher TN, Heemels MT, Neefjes JJ, Kast WM, Melief CJ, Ploegh HL

(1990) Direct binding of peptide to empty MHC class I molecules on intact cells

and in vitro. Cell 62(3): 563–567.

38. Toye PG, MacHugh ND, Bensaid AM, Alberti S, Teale AJ, Morrison WI (1990)

Transfection into mouse L cells of genes encoding 2 serologically and

functionally distinct bovine class I MHC molecules. Immunology 70: 20–26.

39. Berrow NS, Alderton D, Owens RJ (2009) The precise engineering of expression

vectors using high-throughput In-Fusion PCR cloning. Methods Mol Biol 498:

75–90.

40. Ellis SA, Braem KA, Payne LK (1993) Nucleotide sequence of cattle b2-

microglobulin cDNA. Immunogenetics 38: 310.

41. Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected

in Oscillation Mode, Methods in Enzymology, 276: Macromolecular Crystal-

lography, part A, CW Carter, Jr.&, RM Sweet, eds. Academic Press: New

York. pp 307–326.

42. Navaza J (2001) Implementation of molecular replacement in AMoRe. Acta

Crystallogr D Biol Crystallogr 57(10): 1367–72.

43. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular

structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystal-

logr 53(3): 240–55.

44. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics.

Acta Crystallogr D Biol Crystallogr 60: 2126–32.

45. Nina M, Im W, Roux B (1997) Optimized atomic radii for protein continuum

electrostatics solvation forces. Biophys Chem 78(1-2): 89–96.

46. Radley DE, Brown CGD, Burridge MJ, Cunningham MP, Kirimi IM, et al.

(1975) East Coast Fever. 1. Chemoprophylactic immunisation of cattle against

Theileria parva (Muguga) and five Theileria strains. Vet Parasitol 1: 35–41.

47. Goddeeris BM, Morrison WI (1988) Techniques for the generation, cloning and

characterization of bovine cytotoxic T cells specific for the protozoan Theileria

parva. J Tiss Cult Methods 11: 101–110.

Presentation of a Theileria parva CD8+ Epitope

PLoS Pathogens | www.plospathogens.org 11 October 2010 | Volume 6 | Issue 10 | e1001149


