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Article

Gene density and transcription influence the
localization of chromatin outside of chromosome
territories detectable by FISH

Nicola L. Mahy, Paul E. Perry, and Wendy A. Bickmore

MRC Human Genetics Unit, Edinburgh EH4 2XU, UK

enes can be transcribed from within chromosome
‘ ;territories; however, the major histocompatibilty
complex locus has been reported extending away
from chromosome territories, and the incidence of this
correlates with transcription from the region. A similar result
has been seen for the epidermal differentiation complex
region of chromosome 1. These data suggested that chromatin
decondensation away from the surface of chromosome
territories may result from, and/or may facilitate, transcription
of densely packed genes subject to coordinate regulation.
To investigate whether localization outside of the visible
confines of chromosome territories can also occur for regions
that are not coordinately regulated, we have examined the

spatial organization of human 11p15.5 and the syntenic
region on mouse chromosome 7. This region is gene rich
but its genes are not coordinately expressed, rather overall
high levels of transcription occur in several cell types. We
found that chromatin from 11p15.5 frequently extends
away from the chromosome 11 territory. Localization outside
of territories was also detected for other regions of high
gene density and high levels of transcription. This is shown
to be partly dependent on ongoing transcription. We suggest
that local gene density and transcription, rather than the
activity of individual genes, influences the organization of
chromosomes in the nucleus.

Introduction

Human nuclei have a radial organization. Chromosomes
with the highest gene density are preferentially disposed toward
the nuclear interior, and gene-poor chromosomes locate
towards the nuclear periphery (Croft et al., 1999; Boyle et
al., 2001; Cremer et al., 2001). This organization is conserved
in other vertebrates (Habermann et al., 2001; Tanabe et al.,
2002), suggesting that the nuclear interior may facilitate, or
create a permissive environment for, transcription. However,
many human chromosomes are a patchwork of domains
with varying gene density and so some very gene-rich regions of
the human genome are contained on chromosomes located
close to the nuclear periphery.

We have previously shown that individual human genes
can be transcribed from within the interior of chromosome
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territories that are not located in the nuclear center (Mahy et
al., 2002). This showed that genes do not need to be either
at the visible surface of interphase chromosome territories,
or at the centre of the nucleus, in order to be transcribed.
These genes were located in regions of moderate gene-density
(the R-band 11p13). In contrast, the gene-dense major histo-
compatibilty complex (MHC)* locus is frequently observed
on loops of chromatin that extend away from the human
chromosome 6 territory that is detected by FISH with a
chromosome paint, particularly when transcription of genes
from this region is induced (Volpi et al., 2000). Similarly,
the epidermal differentiation complex (EDC) at 1q21 is
frequently located outside of the chromosome 1 territory in
keratinocytes, cells in which the genes of the EDC are highly
expressed (Williams et al., 2002). It was not clear whether
localization outside of chromosome territories was a particular
feature of regions of the genome that contain genes with
related functions, and that are coordinately expressed, or
whether it might represent a more general facet of genome
organization wherever genes are particularly clustered together,
or where the overall levels of transcription from a large
number of genes across a region is high.

To address this, we have used FISH to examine territory
organization of regions of the human genome with high
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gene densities and generally high levels of transcription. The
T-band 11p15.5 contains at least 47 known genes within
the most distal 4.5 megabase (Mb) of DNA. We found that
many megabases of this chromatin is frequently found out-
side of the visible confines of the 11p territory. By extending
this observation to other gene-dense parts of the human ge-
nome including; 11q13 and 16p13.3 and gene-dense re-
gions of chromosomes 21 and 22, we suggest that there is a
correlation between domains of high gene density and local-

ization outside of chromosome territories. We show that the
frequency of extraterritory localization decreases, but is not
eliminated, when transcription is inhibited. This level of
higher-order genome organization is conserved in the
mouse, indicating that it likely has functional significance.
We suggest that the propagation of a decondensed chroma-
tin fibre outside of the confines of chromosome territories
creates an environment that is permissive to transcription in-
creasing the overall transcriptional potential of the domain
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11pter

Visualizing the spatial organization of 11p15 relative to the 11p chromosome territory. FISH of selected probes from 11p15.3,

11p15.4, or 11p15.5 (red) together with an HSA11p paint (green) to MAA-fixed lymphoblast (a) or primary fibroblast (b) nuclei. Known
genes are italicized. (c) Maximal intensity projection of image stacks after three-dimensional FISH with probes from 11p15.5 (red) and a
paint for 11p (green) on pFa-fixed fibroblast nuclei. Cells were counterstained with DAPI (blue). (d and e) Views of MAPaint reconstructions
of pFa fixed fibroblast nuclei after three-dimensional FISH with probes (red) for IGF2 (d) and 80N22 (e) together with paints (green) for

11p (d) and 11q (e). Bars, 5 pm.

(Tumbar et al., 1999), and that the structure of chromo-
some territories is, in part, driven by transcription.

Results
Distal 11p15.5 can locate outside of
the chromosome 11 territory

It has been suggested that genes are positioned at the surface
of chromosome territories (Kurz et al., 1996; for review

see Cremer and Cremer, 2001). However, we recently re-
ported that actively transcribing genes from the moderately
gene-rich band Homo sapiens chromosome 11 p arm
(HSA11p)13, or the region of conserved synteny on mouse
chromosome (MMU)2 are located within the interior of the
chromosome territory (Mahy et al., 2002). Conversely, the
very gene-dense MHC locus is frequently observed on chro-
matin loops that extend away from the HSA6 chromosome
territory (Volpi et al., 2000). These data suggest that the hu-
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Table I. The proportion of signals external to chromosome territories

Gene/locus (cytogenetic location)

Percentage of signals outside of chromosome territory

Two-dimensional (MAA-fixed)

Three-dimensional (pFa-fixed)

WAGR (11p13)

Wt1 (MMU2)

D11S12 (11p15.4)

D11S679 (11p15.5)

IGF2 (11p15.5)

D115483 (11p15.5)

11p tel (11pter)

245N5 (MMU?)

80N2 (11g13)

MHC Class Il (6p21.3) fibroblasts
MHC Class Il (6p21.3) fibroblasts + IFN-y
MHC Class Il (6p21.3) keratinocytes
MHC Class Il (6p21.3) lymphoblasts
EDC (1g21) keratinocytes

EDC (1g21) lymphoblasts

11 1

3 ND
43 30
68 31

72 28
88 43
87 58
40 ND
69 57
13 12
26 19
19 12
34 36
25 22
8 6

The proportion (%) of signals scored as outside of chromosome territories in two-dimensional FISH (MAA-fixed) and three-dimensional FISH (fixed in pFa).
All human chromosome 11 loci were analysed in fibroblasts. Mouse loci (MMU) were examined in embryonic stem cells. The analysis of the human MHC
Class Il (6p21.3) and EDC (1g21) of Volpi et al. (2000) and Williams et al. (2002) in fibroblasts, keratinocytes, and lymphoblasts is shown for comparison.

For two-dimensional analysis, n = 100; for three-dimensional analysis, n = 35.

man genome is subject to different constraints of spatial or-
ganization, and that gene density or density of transcribed
genes, rather than the activity of individual genes may influ-
ence chromosome organization.

To address this, we have analyzed the organization of
distal 11p15, including the very gene-rich, subtelomeric
T-band 11p15.5. The most distal 4.5 Mb of HSA11p is well
characterized due to its association with Beckwith-Wiede-
mann Syndrome, and because of the cluster of imprinted
genes located there. The region contains at least 47 known
genes (Redeker et al., 1994; Alders et al.,, 1997; Hu et al,,
1997; Reid et al., 1997; Lee et al., 1999; Engemann et al.,
2000; Onyango et al., 2000; Paulsen et al., 2000; Fig. 1). In
addition, it has a density of CpG islands that is much higher
than that of 11p13 (Craig and Bickmore, 1994).

Cosmids encompassing the most distal part of 11p
(11p15.3—p15.5), and a PAC to the 11p telomere itself,
were first cohybridized with an 11p paint to methanol:acetic
acid (MAA; 3:1 vol/vol)-fixed nuclei from lymphoblasts
(Fig. 2 a) and primary fibroblasts (Fig. 2 b). For each probe,
the mean distance (um) between the probe signal and the
nearest chromosome territory edge was calculated as de-
scribed previously (Mahy et al., 2002). In contrast to the ex-
pressed RCN gene in 11p13, for which 76% of signals were
well within (=0.2 pm from the territory edge) the 11p terri-
tory (Mahy et al., 2002), all 11p15 loci were closer to the
territory surface (Fig. 3 a). Only 48% of signals from probe
¢q26 in 11p15.3 were well within the 11p territory, decreas-
ing to 32% of D11S12 (11p15.4) signals, 25% of signals
from the /GF2 gene in 11p15.5, and only 11% of signals
from the 11p telomere. Moreover, for the more distal loci,
an increasing proportion of signals from these probes was
found outside of the limits of the territory detectable by
FISH with a chromosome paint. 53% of /GF2 signals were
located >0.2 pm beyond the 11p territory in this experi-

ment rising to 80% of signals from 11pter (Fig. 3 a). The
null hypothesis that the location of a distal 11p15.5 probe
(e.g., cI-11p15-25) was the same as cq26 in 11p15.3, was re-
jected using a 2 sample #test, P < 0.000, but cI-11p15-25
has the same location as an adjacent probe cI-11p15-46,
P = 0.43. Volpi et al. (2000) similarly observed a high pro-
portion of signals (up to 36%) from the MHC locus located
outside of the painted human chromosome 6 territory in
MAA-fixed lymphoblastoid nuclei, though the distance
from the territory edge was not established in that case. The
mean distance of 11p15 probes from the territory edge con-
firmed this trend (Fig. 3 b). All 11p15.4 probes analyzed lie
within the territory but close to the edge, whereas the mean
positions of 11p15.5 probes are outside of the chromosome
territory. The mean location of 11p15.5 distal markers is
>1 wm beyond the chromosome territory (Fig. 3 b).

MHC class II genes are more frequently observed outside
of chromosome 6 territories in expressing cells (lymphoblas-
toid) than in cells that do not express class II genes (e.g., ke-
ratinocytes). Conversely, the localization of the EDC com-
plex outside of chromosome 1 territories is more frequent in
keratinocytes than lymphoblasts (Table I) (Williams et al.,
2002). This suggested that localization outside of chromo-
some territories may relate to the levels of transcription ema-
nating from these regions. Unlike the MHC or EDC, the
genes in distal 11p15.5 are not functionally related nor is
there any evidence that they are coordinately regulated.
Analysis of the organization of this region in MAA-fixed pri-
mary fibroblasts gave a similar result to that seen in lympho-
blast nuclei (Fig. 3 b). Hence, localization of distal 11p15.5
outside of the chromosome territory is not specific to any
one cell type with a specific pattern of gene expression.

Our previous analyses of intraterritory organization of
11p13 gave similar results whether the analysis was carried
out on flattened specimens fixed in MAA or on three-
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Figure 3.

Quantifying the spatial organization of 11p15. (a) Histogram showing the distribution of signals from 11p15 probes relative to

the 11p territory edge (wm) after FISH to MAA fixed lymphoblast nuclei. An 11p13 probe is shown for comparison. Negative distances
indicate probe signals located beyond the visible limits of the detectable chromosome territory. The localization of cl-11p15-25 is
significantly different from that of cq26 (P < 0.000). (b) Mean distance (=95% confidence interval/Cl) of 11p15 probes from the edge of
the 11p territory of MAA-fixed lymphoblast (@) and fibroblast (A) nuclei. The number of territories analyzed (n) =100. The mean position
of a probe for the PAX6 gene in 11p13 (Mahy et al., 2002) and the chromosome 11 centromere (11pcen) are shown for comparison.
cl-11p15.25 and cl-11p15-46 have the same location outside of the 11p territory (P = 0.43); however, cl-11p15-25 is significantly more
distant from the territory than cq26 (P < 0.000). (c) Mean distance (=95% Cl) in wm of probes from the edge of the 11p territory of

pFa-fixed fibroblast nuclei (n = 35).
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dimensional preserved nuclei fixed with para-Formaldehyde
(pFa; Mahy et al., 2002). However, Volpi et al. (2000)
noted that the proportion of MHC FISH signals scored as
external to the chromosome territory was higher in cells
fixed in MAA than in three-dimensional preserved pFa-fixed
cells (Table I). This suggests that MAA fixation may prefer-
entially loosen or decondense chromatin located at the sur-
face of chromosome territories, or that pFA fixation con-
denses these chromatin regions. Three-dimensional FISH
analysis of 11p15.5 on pFa fixed primary fibroblasts con-
firms this. Signals from distal 11p15 could still be seen out-
side of chromosome 11 territories (Figs. 2, c and d, and 3 ¢)
in three-dimensional preserved nuclei; however, this was
seen less frequently than with MAA-fixed samples (Table I).

It was possible that distal loci appeared outside of the
chromosome territory because the HSA11p paint did not in-
clude sequences near the end of the chromosome. However,
examination of metaphase chromosomes showed that chro-
mosome paint FISH signal extended right to the end of the
chromosome arm, ending at a point coincident with a probe
to the 11p telomere (unpublished data). Furthermore, the
most proximal sequence on HSA11p, the centromere, was
positioned at the visible edge (but inside of) the HSA11p
territory (Fig. 3 b).

Location of chromatin outside of chromosome territories
is not common to telomeric or imprinted regions
11p15.5 may locate outside of the chromosome territory be-
cause of its distal position close to the 11p telomere. There is
some evidence for associations between different telomeres
and gene-rich subtelomeric regions in human nuclei (Stout
et al., 1999; Nagele et al., 2001). However, other telomeric
sequences that we examined (e.g., 18pter and 18qter) were
located at the edge of, but not outside of, their respective
chromosome territories (unpublished data).

11p15 contains clusters of imprinted genes. The mecha-
nistic basis of imprinting is yet to be fully defined, but as-
pects of higher-order chromatin structure have been impli-
cated, and homologous loci of human and mouse genes

subject to imprinting have been reported to be transiently
associated during late S-phase (LaSalle and Lalande, 1996).
We considered it unlikely that the nuclear organization of
11p15.5 was linked to the imprinted state of genes in this re-
gion, as both alleles were found outside of chromosome ter-
ritories in many nuclei. However, we wished to determine
whether other imprinted regions of the human genome were
also located outside of chromosome territories. There is a
large cluster of imprinted genes, associated with Prader-Willi
and Angelmann syndromes, located at 15q11-13. We found
that loci from the imprinted region of 15q11-13 are posi-
tioned within the HSA15q territory (Fig. 4) indicating that
localization outside of chromosome territories is not a com-
mon feature of imprinted regions.

Localization outside of a chromosome territory is
common to gene-rich regions of the human genome
The relative intraterritory position of loci from 15q12 was
intermediate to that of 11p13 (Mahy et al., 2002) and
11p15.5 loci (Fig. 4). Interestingly, the estimated gene den-
sities of these regions follow the same trend. 14 genes have
been mapped to a 2.5-Mb region within 15q11-13, equiva-
lent to 5.6 genes/Mb (Gabriel et al., 1998), whereas there
are only four genes per Mb in distal 11p13 (Mahy et al.,
2002), and >10 genes per Mb in 11p15.5 (Fig. 1). These
data suggest that gene density may be a determining factor
in whether chromatin fibres extend outside of chromosome
territories. In support of this, hybridization signals from
BAC 80N22, located in the interstitial very gene-rich region
11q13 (htep://www.chori.org/bacpac) were frequently seen
outside of 11q chromosome territories in both two-dimen-
sional and three-dimensional specimens (Figs. 2 e and 4; Ta-
ble I). Localization outside of chromosome territories was
also seen for a locus just proximal of the a-globin cluster at
16p13.3 (Flint et al., 1997; Fig. 4).

To assess the long-range effects of gene density on intrater-
ritory position, we used the published sequences of HSA21
and HSA22 (The chromosome 21 mapping and sequencing
consortium, 2000; Dunham et al., 1999; Saccone et al.,
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Figure 5. Influence of transcription inhibitors on
localization outside of chromosome territories.
(a—c) Histograms showing the distribution of
signals relative to the 11p (a and c¢), or 11q (b)
territory edge (wm) after FISH with probes
cl-11p15-46 in 11p15.5 (a), 8ON22 (b), and
B-globin (c), to MAA fixed lymphoblast nuclei
from untreated cells (open bars), and from cells
treated with DRB (filled bars) or ActD (hatched
bars). n = 75. (d) The proportion of territories in
untreated cells (open bars), or ActD treated cells
with both IGF2 and cl-11p15-25 loci contained
within the 11p territory (in—in), both loci outside of
the territory (out-out), or with one locus in and one
locus out.

2001) to identify gene-rich (and GC-rich) and gene-poor 1
Mb regions across the long arms of both chromosomes. In
two-dimensional FISH to lymphoblast nuclei, the localiza-

tion of each probe relative to the edge of the chromosome 21
or 22 territories corresponded well to the local estimated
gene-density (Fig. 4), except for the gene-rich probe 154H4,
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which is close to the centromere of chromosome 22. In three-
dimensional analysis the borders of the chromosome 21 and
22 territories were too indistinct to be able to reliably measure
locus position. Linear regression of the data in Fig. 4 confirms
the correlation between gene density and localization relative
to the edge of chromosome territories (r* = 67%).

Transcription has a role in localizing chromatin outside
of chromosome territories

Localization of chromatin outside of territories could reflect
an “open” chromatin structure across large regions poised
for transcription, and/or could be due to the process of tran-
scription itself. Not only are 11p15.5, 11q13, and 16p13 re-
gions of high gene- and CpG island density but they are also
domains where there is a high density of transcribed genes
and where the levels of expression from many genes is high
in many cell types (Caron et al., 2001).

To investigate this we analysed the nuclear organization of
11p15 and 11q13 loci after transcription had been inhibited
with Actinomycin D (ActD) or 5,6-dichloro-b-ribofurano-
sylbenzimidazole (DRB; Chodosh et al., 1989; Croft et al.,
1999). The proportion of signals from probe cI-11p15-46
(11p15.5) located >0.2 wm beyond the territory edge de-
creased from 42% in control cells to 35 and 28% in ActD or
DRB-treated cells, respectively (Fig. 5 a). The 72% of sig-
nals from 80N22 in 11q13 observed outside of the 11q ter-
ritory dropped to 60% in ActD treated cells (Fig. 5 b). Even
the modest 20% of signals from the B-globin locus
(11p15.4) that could bee seen outside of the 11p territory in
control cells was decreased to 15% of treated cells (Fig. 5 ).
Hence ongoing transcription likely contributes to localiza-
tion outside of chromosome territories, but gene dense do-
mains can still locate outside of chromosome territories in
the absence of transcription.

We did not find any locus in our studies that always lo-
cated outside of its chromosome territory. In each case there
were two peaks of localization, one within the territory, and
the other some distance (>1 m) beyond the detectable ter-
ritory edge. Hence, the histograms in Figs. 3 and 5 are bimo-
dal. This suggests a dynamic organization, with stochastic
looping of very large domains of chromatin outside of the
chromosome territory, rather than the presence of many
smaller loops of chromatin emanating independently from
each region. To investigate this further, we asked whether the
extraterritory localization of two loci from the same chromo-

somal region was concerted. We compared the localization of
the 11p15.5 IGF2 gene with cI-11p15-25 located 1 Mb
more distally (Fig. 1). There was a high concordance in the
behavior of the two loci. In 60% of chromosomes examined
(n = 100), both loci were observed outside of the 11p terri-
tory, and in 23% of cases both of the loci were contained
within the territory. In only 17% of cases could one probe be
found within the territory with the other probed located out-
side of the territory (Fig. 5 d). It was this category of organi-
zation that proportionately was most affected by ActD treat-
ment, their incidence being halved in treated cells.

Conservation of chromatin organization in the mouse
We have previously shown that the relative position of loci
within chromosome territories is conserved between mouse
and human (Mahy et al., 2002). To determine whether con-
servation of spatial organization extends to include loci that
locate outside of chromosome territories, we examined the
organization of loci from the region of the mouse chromo-
some 7 (MMUY7) that is in conserved synteny with the
BWS-associated region on HSA11pl5.5 (Fig. 1). BACs
300P2 (Paulsen et al., 2000) and 245N5 (Engemann et al.,
2000) were used in combination with an MMU?7 chromo-
some paint (Jentsch et al., 2001) in two-dimensional FISH
to MAA-fixed ES cell nuclei. 40% of 245N5 signals and
29% of 300P2 signals were outside of the MMUY7 territory
(Table I; Fig. 6). This contrasts with only 3% of signals
from the Wzl gene on MMU?2, the region of conserved syn-
teny to human 11p13 (Mahy et al., 2002). We conclude
that the localization of gene-rich chromatin external to chro-
mosome territories is conserved between human and mouse
cells and that this indicates its functional importance.

Discussion

Gene density correlates with localization outside of
chromosome territories

It has been suggested that genes are positioned at the surface
of chromosome territories, so as to be accessible to transcrip-
tion factors and the transcription machinery residing within
an interchromosome compartment (Zirbel et al., 1993;
Kurz et al., 1996; for review see Cremer and Cremer,
2001). However, poly(A) RNA, nascent RNA, and tran-

scription factors are not excluded from chromatin territories

(Abranches et al., 1998; Verschure et al., 1999), and we have

Figure 6. Conservation of intranuclear
organization in mouse cells. FISH of BACs (red)
and MMU2 and 7chromosome paints (green)
hybridized to MAA-fixed ES cell nuclei and
counterstained with DAPI. Murine Ren is in
conserved synteny with human 11p13. (Mahy etal.,
2002). BAC 245N5 contains the genes from
ObphT to Tssc5 in conserved synteny with human
11p15.5 (Fig. 1). Bar, 5 pm.




recently shown that both housekeeping and tissue-specific
genes can be transcribed from within the territory interior
(Mahy et al., 2002). In contrast, the MHC and EDC loci
have been observed on chromatin loops extending away from
the surface of their chromosome territories (Volpi et al.,
2000; Williams et al., 2002). Because the MHC and EDC
are regions where genes with related function and with coor-
dinated patterns of expression are clustered, localization out-
side of territories might reflect their specialized regulation.
Alternatively, there may be many other regions of the human
genome that also locate outside of chromosome territories.

To establish if localization outside of territories is not un-
common, we have analysed the organization of several gene-
dense regions of the human genome. Here we show that one
of the sites of highest gene density on chromosome 11p
(11p15.5), but where the genes are functionally unrelated
and have different patterns of gene expression, can also be
found outside of the HSA11p chromosome territory (Table
I; Figs. 2 and 3). We saw similar “extra-territory” localiza-
tions for two other gene-rich T-bands of the human genome
(11q13 and 16p13; Figs. 2 e and 4). A strong correlation
(r* = 67%) between gene-density and chromosome territory
organization was confirmed by a systematic analysis along
the long arms of chromosomes 21 and 22 (Fig. 4). It is inter-
esting to note that even though the cell types that we exam-
ined do not express globin genes, the localization of the
B-globin locus close to the surface of, but within, the chro-
mosome 11 territory (Fig. 2 a; Kurz et al., 1996) contrasts
with the localization of the a-globin region outside of the
chromosome 16 territory (Fig. 4). This adds to the growing
list of differences in chromatin structure and nuclear organi-
zation that have been described for o-and B globin genes
(Brown et al., 2001).

Transcriptional activity can influence localization
outside of territories

Localization of chromatin outside of the confines of chro-
mosome territories could result from the process of tran-
scription itself, or could reflect the structure of the chroma-
tin fibre (e.g., histone modifications) in domains poised for
transcription. Extrusion of the MHC and EDC loci from
their chromosome territories is clearly related to the levels of
transcription from these complexes (Volpi et al., 2000; Wil-
liams et al., 2002). Even though the loci that we have identi-
fied here as being frequently located outside of territories do
not contain genes whose expression is coordinately switched
on in the cell types that we studied, there are high levels of
gene expression emanating from these regions. Genome-
wide expression profiling using human ESTs highlighted the
distal part of 11p, and regions likely corresponding to 11q13
and 16p13.3, as large regions of increased gene expression in
many different cell and tissue types, including primary fibro-
blasts used in our study (Caron et al., 2001). Many of the
genes in 16pl13 are also known to be widely expressed
(Daniels et al., 2001). Together with the results of Volpi et
al. (2000) and Williams et al. (2002) this suggests that it
may indeed be high levels of gene expression over a large ge-
nomic region, rather than just the density of genes per se,
that determines whether chromatin domains will locate out-
side of chromosome territories.
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To investigate this we examined the localization of loci
outside of territories after treatment of cells with agents
(ActD and DRB) that inhibit transcription. We did observe
a decrease in the number of signals seen outside of chromo-
some territories in treated cells compared to controls and a
concomitant increase in the signals located within the bulk
chromosome territory (Fig. 5). Retraction of gene-dense do-
mains into the confines of condensed chromosome territo-
ries in the absence of transcription is consistent with the
compaction of the territory of (gene-dense) human chromo-
some 19 after treatment with ActD or DRB (Croft et al.,
1999), and with the failure of an mouse mammary tumor vi-
rus promoter array to decondense upon steroid hormone ad-
dition in DRB-treated cells (Miiller et al., 2001).

However, even in DRB or ActD-treated cells most signals
from 11p15.5 and 11q13 loci are still outside of territories.
ActD had most effect on territories in which the loops of
chromatin extending beyond the territory edge contain only
some of the loci from the region (Fig. 5 d) i.e., they may not
be fully extended. The role of transcription may be during
formation of the loops, whereas other factors, e.g., chroma-
tin structure, may maintain them. The visible decondensa-
tion of a 90-Mb lacO array can be induced by a transcrip-
tional activator, even in the absence of transcription itself,
and is accompanied by increased levels of histone acetylation
(Tumbar et al., 1999). 11p15.5, 11q13, and 16p13 are all
regions of the human genome with hyperacetylated histones
(Jeppesen, 1997), and are identified here as regions that fre-

quently locate outside of chromosome territories.

Reconsidering the concept of chromosome territories
Volpi et al. (2000) suggested that FISH signals located out-
side of chromosome territories are the visual manifestation
of chromatin decondensation over large regions. Here we
have shown that this phenomenon is quite widespread, and
not limited to clusters of coordinately regulated genes. Previ-
ous studies of long-range chromatin decondensation as the
result of transcriptional activator binding (Tumbar et al.,
1999) or steroid hormone recruitment and transcription
(Miiller et al., 2001) on artificial reporter arrays have tried to
quantify the level of chromatin compaction. In our study of
endogenous loci in human cells we observe a maximal dis-
tance between an extended 11p15.5 locus and the 11p terri-
tory of 2 pm in pFa-fixed cells, the mean distances being
~1 pwm (Fig. 3 ¢). Based on the human genome sequence,
the genomic distance between 11ptel and /GF2 is ~1.5 Mb
(Fig. 1). This represents a fourfold higher level of compac-
tion than that seen in the presence of transcription from a
reporter array (2 Mb extending over an average of 6 pm;
Miiller et al., 2001). However, it is a similar level of decon-
densation to that reported by Tumbar et al. (1999; 90 Mb
extended across a 30 pm fiber). Hence, there is still a large
degree of higher-order structure, beyond a 30-nm fiber, in
regions that extend out from chromosome territories

The data presented here, and previously published (Volpi
etal., 2000; Williams et al., 2002) lead us to suggest that the
organization of chromosomes within the nucleus is probably
somewhere in between the complete decondensation of
chromatin fibres like spaghetti on a plate suggested >30 y
ago and the model of a discrete territorial organization fa-
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vored recently (for review see Cremer and Cremer, 2001).
Although the chromosome territory is a useful term to de-
scribe the appearance of hybridization signals from complex
chromosome paints at the light microscope level, does it
have any biological significance if there are many genomic
regions contained outside of these domains and “invisible”
by chromosome painting?

To answer this question it will be important to determine
whether extended chromatin fibers are located in a “space”
between chromosome territories, or whether they are em-
bedded with the territories of other chromosomes. A light
microscopy study of in vivo labelled chromatin has demon-
strated that, although in general the borders between chro-
mosome territories are well defined, fiber-like structures can
be observed embedded in other chromosome territories

(Visser and Aten, 1999).

Materials and methods

Cell culture and FISH

All cells were grown and prepared for FISH as previously described (Mahy
et al., 2002). Treatment of cells with ActD or DRB to inhibit transcription
was as previously described (Croft et al., 1999). Paints for human chromo-
somes 11p (HSA11p), HSAT1q, HSA15q, HSA16p, gifts of Michael Bittner
(National Institutes of Health, Bethesda, MD), were labelled with biotin-
16-dUTP by PCR amplification (Guan et al., 1996; Croft et al., 1999).
Paints for HSA21q and HSA22q and MMU? (Jentsch et al., 2001) were
amplified by PCR, and then biotin labelled by nick translation. Human
cosmids from 11p15 (Alders et al., 1997), PAC 44h16 (Genome Systems)
mapping to the 11p telomere, BACs from 1113 (80N22), and 15q (80H14
and 88P10; BACPAC Resources, http:/www/chori.org/bacpac/), cos 12
from 16p13 (Flint et al., 1997), BACs from HSA21 (The chromosome 21
mapping and sequencing consortium, 2000), and HSA22 (Sanger Centre,
http://www .sanger.ac.uk/HGP/Cytogenetics/Bacset.shtml) were labelled
with digoxigenin by nick translation. Mouse BACs 245N5 (Engemann et
al., 2000) and 300P2 (Paulsen et al., 2000) were also digoxigenin labelled.
This labelling scheme was adopted because chromosome territories de-
tectable with biotin-labelled paint were brighter and more reproducible
than those seen using digoxigenin-labeled paints (Mahy et al., 2002).
~200 ng of paint and 50 ng cosmid or 100 ng BAC/PAC were used per
slide, together with 6 pg human Cotl, or 14 ng mouse Cotl DNA (GIBCO
BRL) as competitor.

FISH performed on MAA-fixed cells (two-dimensional analysis) or on
three-dimensional preserved cells fixed with 4% pFa buffered in PBS,
probe detection, examination of slides, and image capture, were as previ-
ously described (Mahy et al., 2002).

Image analysis

Analysis of probes located within chromosome territories in two-dimen-
sional samples was as previously described (Mahy et al., 2002). Where
probe signals appeared outside of the chromosome territory, the following
script was used. Nuclear area was calculated from the segmented DAPI
image. Locus-specific hybridization signals were segmented and a region
of interest was manually defined around them. Hybridization signal from
the chromosome territory was then segmented by thresholding, without
knowledge of the locus signal, and a region of interest manually defined
around the detectable territory. The area of the territory was calculated. A
segmentation disc was dilated out from the locus signal centroid, and then
eroded until a pixel containing territory signal was found. This was taken
to be the nearest edge of the territory to the locus, and the radius of the
disc was calculated, representing the distance (wm) from the centre of the
locus to the nearest edge of the territory. A similar procedure was used to
determine the distance between the territory centroid and territory edge.
To verify the reproducibility of this analysis, the localization of 11p15
probes cl-11p15-46 and B-globin LCR, as well as an 11q13 probe were as-
sessed in lymphoblastoid cells in separate experiments by independent in-
vestigators. For the 11p15.5 probe cl-11p15-46, both investigators scored
the mean position of the locus as outside of the chromosome 11p territory
and >0.7 um away from the territory edge (—1.0 = 0.34; —0.70 = 0.2).
B-Globin was measured within the 11p territory and close to the chromo-
some territory edge (0.29 * 0.1; 0.1 £ 0.2).

Because actual territory size varied between chromosomes, between
cell types, and between species, the locus to territory edge distance was
normalized by dividing it by the radius of a circle of equal area to that of
the territory. Thus, a value of 0 denotes a locus at the edge of a territory
and negative values describe loci that locate outside of the detectable lim-
its of the chromosome territory. A value of 1.0 denotes a locus at the theo-
retical territory center, but in practice values of 1.0 are not seen because
territories are not circular. On this scale, the actual mean territory cen-
troids were at 0.64°%% and 0.63°%% (HSA11p and q, respectively),
0.597%% (HSA16p), and 0.66™°% (MMU?7).

Three-dimensional images were analyzed as previously described
(Mahy et al., 2002), using the program MAPaint (Mouse Atlas Project, http:
//genex.hgu.mrc.ac.uk/).

Statistical analyses of data by linear regression, and by Students ¢ test,
were carried out using Microsoft Excel.
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