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The Ref/Aly proteins are dispensable for mRNA export
and development in Caenorhabditis elegans
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1MRC Human Genetics Unit, Edinburgh EH4 2XU, Scotland, UK
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ABSTRACT

The mRNA export pathway is highly conserved throughout evolution. We have used RNA interference (RNAi) to functionally
characterize bona fide RNA export factors and components of the exon–exon junction complex (EJC) in Caenorhabditis elegans.
RNAi of CeNXT1/p15, the binding partner of CeNXF1/TAP, caused early embryonic lethality, demonstrating an essential
function of this gene during C. elegans development. Moreover, depletion of this protein resulted in nuclear accumulation of
poly(A)+ RNAs, supporting a direct role of NXT1/p15 in mRNA export in C. elegans. Previously, we have shown that RNAi of
CeSRm160, a protein of the EJC complex, resulted in wild-type phenotype; in the present study, we demonstrate that RNAi of
CeY14, another component of this complex, results in embryonic lethality. In contrast, depletion of the EJC component
CeRNPS1 results in no discernible phenotype. Proteins of the REF/Aly family act as adaptor proteins mediating the recruitment
of the mRNA export factor, NXF1/TAP, to mRNAs. The C. elegans genome encodes three members of the REF/Aly family. RNAi
of individual Ref genes, or codepletion of two Ref genes in different combinations, resulted in wild-type phenotype. Simulta-
neous suppression of all three Ref genes did not compromise viability or progression through developmental stages in the
affected progeny, and only caused a minor defect in larval mobility. Furthermore, no defects in mRNA export were observed
upon simultaneous depletion of all three REF proteins. These results suggest the existence of multiple adaptor proteins that
mediate mRNA export in C. elegans.
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INTRODUCTION

The different classes of RNAs are exported as ribonucleo-

protein complexes (RNPs) via distinct pathways that de-

pend on different export receptors (for review, see Stutz and

Rosbash 1998). Whereas transport of noncoding RNAs,

such as tRNAs, rRNAs, and U snRNAs, is dependent on

Ran-GTP and is mediated by members of the karyopherin

family of nucleocytoplasmic transport receptors, bulk mes-

senger RNA (mRNA) export is not dependent on Ran (for

review, see Cullen 2003).

Progress in the characterization of yeast and mammalian

mRNA export factors has been reviewed recently (Zenklu-

sen and Stutz 2001; Lei and Silver 2002). Different experi-

mental approaches such as genetic screens in yeast and bio-

chemistry in higher eukaryotes have been used to identify

mRNA export factors. For instance, Mex67p was identified

through its genetic interaction with the nucleoporin

Nup85p, and was shown to be essential for poly(A)+ RNA

export (Segref et al. 1997) and able to mediate nuclear ex-

port of a variety of RNA polymerase II transcripts (Hurt et

al. 2000). Other protein factors that are essential for mRNA

export include the nuclear pore-associated proteins Gle1p

and Gle2p (Murphy et al. 1996; Watkins et al. 1998), and

Dbp5p, an RNA helicase of the DEAD-box family (Snay-

Hodge et al. 1998; Tseng et al. 1998). A variety of mRNA-

binding proteins, such as nucleocytoplasmic shuttling

hnRNP proteins may also have a role in mRNA export. For

instance, in yeast, export of poly(A)+ RNA is blocked in a

temperature-sensitive mutant of the hnRNP protein Npl3p

(Lee et al. 1996). More recently, two shuttling SR proteins,

SRp20 and 9G8, have been found to promote the export of

intronless mRNAs and to function as mRNA export adap-

tors (Huang and Steitz 2001; Huang et al. 2003). Nuclear

retention sequences have been identified in the nonshut-

tling proteins, hnRNP C and SC35 (Nakielny and Dreyfuss

1996; Cazalla et al. 2002), and removal of these nonshut-

tling RNA-binding proteins may constitute a requisite for

mRNA export.
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In simian type-D retroviruses, nuclear export of incom-

pletely spliced mRNAs is mediated by a cis-acting RNA

sequence, the constitutive transport element (CTE), that is

sufficient to induce nuclear export in the absence of any

viral gene product (Bray et al. 1994). An excess of CTE RNA

blocks cellular mRNA export in Xenopus oocytes, indicating

that a cellular factor that binds the CTE sequence and pro-

motes nuclear export of viral transcripts also mediates

mRNA export (Pasquinelli et al. 1997; Saavedra et al. 1997).

This factor was identified and proved to be the human

homolog of Mex67, termed TAP or NXF1 (for nuclear ex-

port factor one; Gruter et al. 1998). NXF1/TAP is a nucleo-

cytoplasmic shuttling protein that can be cross-linked to

poly(A)+ RNA and interacts with FG-containing nucleopor-

ins (Bear et al. 1999; Kang and Cullen 1999; Bachi et al.

2000). NXF1 is member of a family of related proteins in

higher eukaryotes consisting of two members in C. elegans,

four members in Drosophila, and at least five members in

humans (Herold et al. 2000). NXF1/TAP heterodimerizes

with NXT1/p15, a small protein related to the Ran-GDP-

binding nuclear transport factor NTF2, and this het-

erodimer subsequently binds to the nucleoporins and fa-

cilitates export of poly(A)+ RNA (Katahira et al. 1999; Fri-

bourg et al. 2001; Wiegand et al. 2002). There are two

NXT/p15 proteins (NXT1/p15-1 and NXT2/p15-2) in hu-

mans, both of which bind multiple NXF proteins, and a

single protein, Mtr2p, in Saccharomyces cerevisae (Herold et

al. 2000). Although Mtr2p is not related to p15 protein in

sequence, it heterodimerizes with Mex67p, and is therefore

a functional homolog of p15 (Santos-Rosa et al. 1998). The

mRNA export pathway is evolutionarily conserved, and hu-

man TAP can rescue mRNA export in Mex67/Mtr2p

double-mutant deficient cells when coexpressed with its co-

factor p15 (Katahira et al. 1999). Furthermore, overexpres-

sion of TAP/p15 heterodimers stimulates export of RNAs

that are otherwise inefficiently exported in cultured cells

and in Xenopus oocytes (Braun et al. 2001; Guzik et al.

2001).

Although NXF1/TAP interacts directly with the CTE el-

ement to promote RNA export of retroviral RNAs, adaptor

proteins are required to facilitate its interaction with cellular

mRNAs (for review, see Izaurralde 2002; Reed and Hurt

2002). It was found that Mex67p interacts with Yra1p, an

essential yeast hnRNP-like protein, which belongs to an

evolutionary conserved family of hnRNP-like proteins

termed REFs (for RNA and export factor-binding proteins;

Strasser and Hurt 2000; Stutz et al. 2000). The REF proteins

(also known as Aly) are characterized by the presence of one

RNP-motif RNA-binding domain. Yra1p was originally iso-

lated in a screen for yeast genes that cause overexpression-

mediated growth arrest (Espinet et al. 1995), and was also

shown to possess RNA–RNA annealing activity (Portman et

al. 1997). The level of Yra1p is tightly regulated by a nega-

tive feedback mechanism that involves splicing of its un-

usual intron (Preker et al. 2002). Depletion of Yra1p results

in nuclear accumulation of poly(A)+ RNA, supporting its

direct role in mRNA export in yeast (Strasser and Hurt

2000; Stutz et al. 2000). Furthermore, anti-REF antibodies

inhibit mRNA export in Xenopus oocytes, whether or not

the mRNAs are generated by splicing, and also recombinant

REF proteins stimulate the export of mRNAs (Koffa et al.

2001; Rodrigues et al. 2001).

It has been suggested that pre-mRNA splicing stimulates

mRNA export as a result of a coupling between the splicing

and the mRNA export machineries, perhaps by removing

nuclear retention factors and/or actively recruiting mRNA

export factors (Luo and Reed 1999; Cullen 2000a). How-

ever, pre-mRNA splicing is not essential for mRNA export,

as naturally occurring vertebrate mRNAs that lack introns

are efficiently exported. In addition, in yeast in which only

a small percentage of genes contain introns, mRNA export

proceeds efficiently (for review, see Cullen 2000b; Izaur-

ralde 2002). Two recent studies showed that mRNA splicing

enhances gene expression, but its stimulatory effect is not

related mainly to facilitating mRNA export; rather, pre-

mRNA splicing stimulates 3�end processing, and can also

markedly enhance the cytoplasmic translation of an mRNA

(Lu and Cullen 2003; Nott et al. 2003). The coupling be-

tween splicing and mRNA export is proposed to be medi-

ated by a multicomponent complex, the exon-junction

complex (EJC), which is deposited on the mRNA as a con-

sequence of the splicing reaction in a sequence-indepen-

dent, position-dependent manner. The presence of REF/

Aly, a bona fide component of the splicing-dependent EJC

complex, promotes recruitment of the heterodimer TAP/

p15 to cellular mRNPs (Le Hir et al. 2000, 2001b; Zhou et

al. 2000). It was proposed that the conserved DEAD-box

helicase UAP56, which functions during spliceosome as-

sembly, facilitates REF/Aly recruitment to the spliced

mRNP complex (Luo et al. 2001; Strasser and Hurt 2001).

Together, these observations have led to a model in which

REF/Aly provides the molecular link between pre-mRNA

splicing and mRNA export (Zhou et al. 2000). However, it

has been shown recently that, whereas HEL/UAP56 is es-

sential for mRNA export in Drosophila cells, REF proteins

are dispensable, suggesting that additional adaptor proteins

can recruit NXF1/p15 to cellular mRNPs in Drosophila

(Gatfield et al. 2001; Gatfield and Izaurralde 2002).

In this study, we have investigated the mRNA export

pathway in C. elegans. The expression of mRNA export

factors and components of the EJC complex has been in-

hibited by dsRNA interference. We show that CeNXT1/p15,

the binding partner of CeNXF1/TAP, has an essential func-

tion during C. elegans development, and is required for

the export of mRNA. Depletion of the EJC component

CeRNPS1 results in no discernible phenotype; in contrast,

RNAi of the EJC Y14 protein results in embryonic lethality,

although this protein is not directly involved in mRNA

export. We also show that the three members of the REF/

Aly family of adaptor proteins in C. elegans are neither

Longman et al.
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essential for C. elegans development, nor do they affect

mRNA export. Our findings strongly suggest the existence

of multiple adaptor proteins that mediate mRNA export in

C. elegans.

RESULTS

The mRNA export pathway is highly conserved throughout

evolution. We have used RNA interference (RNAi) in the

nematode C. elegans to ask whether selectively interfering

with the expression of genes encoding the homologs of

different bona fide export factors and EJC components af-

fects the development of this organism. This technique has

now been established as a rapid and convenient method for

selectively interfering with gene expression, not only in C.

elegans, but also in other organisms and in cultured mam-

malian cells (for review, see McManus and Sharp 2002). For

instance, RNAi has been used in a systematic functional

analysis of the C. elegans genome, whereby the function of

∼86% of the predicted genes was inhibited (Kamath et al.

2003). Introduction of double-stranded RNA results in a

drastic reduction in the level of mRNA of the corresponding

endogenous gene in a highly sequence-specific manner, and

has been shown to phenocopy strong loss of function or

null alleles of the targeted gene (Fire et al. 1998). To elicit

RNA interference in C. elegans, we resorted to microinjec-

tion of dsRNA into the gonads or the gut of young adult

hermaphrodites, because this method has been proven to be

more effective than feeding worms with dsRNA or simply

soaking the worms in dsRNA (Tabara et al. 1998; Timmons

and Fire 1998). Injected animals (Bristol strain N2) were left

to recover and to lay any eggs present in utero prior to

injection, for 16 h, and were then transferred onto indi-

vidual plates and allowed to egg lay. The effect of RNAi was

observed in the F1 progeny on days 3–5 after injection.

The TAP/p15 heterodimer

Two homologs of human NXF1/TAP were identified pre-

viously in the C. elegans genome (Herold et al. 2000; Tan et

al. 2000). Analysis of the C. elegans genome revealed one

predicted homolog of NXT1/p15, termed Cenxt-1. Interest-

ingly, proteins of the NXF/TAP family, as well as NXT/p15,

share a domain of high homology to the human nuclear

transport factor 2 (NTF2), a cytosolic factor for nuclear

import that interacts with the nuclear pore complex (Pas-

chal and Gerace 1995; Fribourg et al. 2001). The C. elegans

genome also encodes a candidate homolog of NTF2, termed

ceran-4. The CeNXT1/p15 ORF (Cenxt-1) displays 43.3%

similarity and 29.9% identity to the human p15 protein

sequence (Fig. 1A). This homology is almost entirely attrib-

uted to the NTF2-like domain present in the p15 sequence

in both species. RNA interference of CeNXF1/TAP resulted

in lethality for both embryos and adult nematodes, and in

nuclear accumulation of poly(A)+ RNA as it was described

previously by the Felber laboratory (Tan et al. 2000; data

not shown). In addition, we show that RNAi depletion of

CeNXT1/p15 mRNA results in early embryonic lethality,

with development of affected embryos arrested probably

around gastrulation (Fig. 1B). Efficiency of the RNAi treat-

ment was confirmed by RT–PCR analysis, showing that

levels of CeNXT1/p15 mRNA were greatly depleted in in-

jected animals (Fig. 1C, cf. lanes 2 and 4). In contrast, a

control mRNA was present at levels comparable with wild-

type animals (Fig. 1C, cf. lanes 1 and 3). In addition, we

found that RNAi of CeNTF2-like gene (Ceran-4) also re-

sults in embryonic lethality, most likely due to defects in

RanGDP import into the nucleus (data not shown).

Because CeNXT1/p15 has been identified as a homolog

of the human mRNA export factor, we examined the effect

of its depletion on poly(A)+ RNA localization in C. ele-

gans. Following RNAi with dsRNA homologous to

CeNXT1/p15, adult nematodes were fixed and subjected to

RNA in situ hybridization with a Cy3-labeled oligo(dT)

probe. Depletion of CeNXT1/p15 resulted in nuclear accu-

mulation of poly(A)-containing RNAs as shown on an ex-

ample of an adult intestinal tissue (Fig. 2b,d). In contrast,

poly(A)-containing RNAs were distributed uniformly in the

nuclei and cytoplasm of intestinal tissue of control N2

nematodes (Fig. 2f,h). These results clearly demonstrate a

direct role of CeNXT1/p15 in mRNA export in C. elegans.

UAP56 is an essential protein in C. elegans and is
required for mRNA export

The DEAD-box helicase UAP56 is involved in pre-mRNA

splicing (Fleckner et al. 1997; Libri et al. 2001), and has also

been shown to facilitate REF/Aly recruitment to the spliced

mRNP complex (Jensen et al. 2001; Luo et al. 2001; Strasser

and Hurt 2001). Interestingly, UAP56 (known as HEL in

insects) is recruited cotranscriptionally to the Balbiani ring

mRNP particles in Chironomus tentans in an intron-inde-

pendent manner, suggesting that its recruitment to mRNAs

does not necessarily require pre-mRNA splicing (Kiesler et

al. 2002). RNAi of UAP56 in Drosophila cells results in

growth inhibition and accumulation of polyadenylated

RNAs within the nucleus, demonstrating that it is essential

for mRNA export in Drosophila (Gatfield et al. 2001). Here,

we show that RNAi of CeUAP56 (Cehel-1) resulted in em-

bryonic lethality and in nuclear accumulation of poly(A)-

containing RNAs, demonstrating that this protein has an

essential role in nematodes and is directly involved in

mRNA export (Table 1; MacMorris et al. 2003).

The exon–exon junction complex

The known components of the exon–exon junction com-

plex (EJC) include the splicing-associated factors SRm160,

DEK, and RNPS1, the mRNA export adaptor REF/Aly, Y14

and its binding partner mago, and Upf3 (Blencowe et al.

mRNA export factors in C. elegans
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1998; Mayeda et al. 1999; Kataoka et al. 2000; Le Hir et al.

2000; McGarvey et al. 2000; for review, see Dreyfuss et al.

2002). The EJC complex serves as a binding platform for

factors involved in mRNA export, and also in nonsense-

mediated decay (NMD), thus providing a link between sev-

eral steps of messenger RNA processing (Le Hir et al. 2001b;

Lykke-Andersen et al. 2001). We have shown previously

that RNAi of SRm160 results in no obvious phenotype

(Longman et al. 2000). In contrast, RNAi of CeSRm160 in

combination with individual CeSR family proteins resulted

in a distinct phenotype, demonstrating that interactions be-

tween SRm160 and multiple SR family proteins are impor-

tant for proper development in C. elegans (Longman et al.

2001).

In this study, we analyzed the effect of depleting indi-

vidual components of this complex in a whole organism

(summarized in Table 1). The C. elegans genome contains

one candidate homolog of Y14, Cernp-4, an RNA-binding

protein that is preferentially recruited to mRNAs generated

by splicing (Kataoka et al. 2000; Zhao et al. 2000). The Y14

protein associates with another protein, termed Mago

(Zhao et al. 2000) and Y14/Mago heterodimers are essential

in cultured Drosophila cells (Le Hir et al. 2001a), and have

also been implicated in mRNA localization in Drosophila

(Newmark et al. 1997; Hachet and Ephrussi 2001). The C.

elegans homolog of Mago, Cemag-1, functions in the regu-

lation of hermaphrodite germ-line sex determination, and

its depletion causes lethality in the F1 progeny (Li et al.

2000).

The predicted CeY14 protein is highly homologous

throughout its length to the human protein (68.6% simi-

larity, 57.9% identity; Fig. 3A). When CeY14 (Cernp-4) was

FIGURE 1. RNA interference with the CeNXT1/p15 gene results in embryonic lethality. (A) Sequence comparison between human and C. elegans
NXT1 proteins, and between human and C. elegans NTF-2 proteins. Sequences were compared using the GAP program (GCG10 software), and
output was produced using PRETTYBOX (GCG10 software). Identical residues are highlighted in black. The dsRNA fragments used for RNAi
correspond to the regions marked by the arrows below and above the sequences, respectively. (B) RNA interference with the CeNXT1/p15 gene
leads to early embryonic lethality (a–c). Wild-type embryo developmental stages (d) gastrulated, (e) beginning of morphogenesis, (f) comma are
shown for comparison. Each embryo is ∼50 µm in length. (C) The effectiveness of RNAi was determined by examining the level of the residual
transcripts following dsRNA injections by RT–PCR with specific primers, as described previously (Longman et al. 2000). CeNXT1/p15 mRNA is
specifically depleted in RNAi-treated animals (lane 4) compared with wild-type animals (lane 2); whereas the level of a control mRNA,
corresponding to CeNXF1/Tap1, is unaffected (lanes 1,3). The figure shows a negative of an ethidium bromide-stained agarose gel. (M) 100-bp
ladder DNA size marker.

Longman et al.
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depleted by dsRNA interference, a late embryonic lethal

phenotype was observed in the F1 progeny. Although or-

ganogenesis had occurred as indicated by the presence of

major tissue types, the embryos were morphogenically de-

fective (Fig. 3B). This clearly demonstrates that CeY14 is an

essential protein in C. elegans, being required for at least one

nonredundant function. The RNAi effect was specific and

extensive; whereas CeY14 mRNA was greatly depleted in the

treated animals as shown by RT–PCR analysis, a control

mRNA was present at levels comparable with wild-type ani-

mals (Fig. 3C, cf. lanes 2 and 4 and lanes 1 and 3). Depletion

of CeY14 by RNA interference did not cause nuclear accu-

mulation of poly(A)+ RNAs, suggesting that although

CeY14 has an essential role in C. elegans

development, it is not directly associated

with mRNA export (Fig. 3D). The C.

elegans genome also has a single homo-

log of human RNPS1, Cernp-5. The

worm protein displays high homology

(55.8% similarity and 47.4% identity)

with its human counterpart (Mayeda et

al. 1999). Interestingly, depletion of

CeRNPS1 resulted in no discernible

phenotype (Table 1).

The REF family of mRNA export
adaptor proteins

The C. elegans genome contains three

homologs of human REF/Aly (Stutz et

al. 2000). The CeREF proteins display

high homology to the human protein

sequences. This high degree of conser-

vation is evident throughout the differ-

ent motifs of the protein (Stutz et al.

2000). RNAi of individual Ref genes

(Cealy-1, Cealy-2, and Cealy-3), or com-

binations of two Ref genes, showed no

obvious phenotype, which suggested the

existence of functional redundancy for

this family of proteins in C. elegans. Surprisingly, simulta-

neous suppression of three Ref genes did not compromise

viability and only caused a slight decrease in larval mobility,

implying that the REF proteins do not fulfill an essential

function in C. elegans (Table 2). The effectiveness of the

RNAi treatment was assessed by analyzing the level of re-

sidual mRNAs corresponding to the targeted genes follow-

ing dsRNA injections by RT–PCR, as described previously

(Longman et al. 2000). Total RNA was prepared from ani-

mals injected with dsRNA corresponding to all three C.

elegans Ref genes. RT–PCR analysis showed that all three

Ref mRNAs were greatly depleted in the treated animals

(Fig. 4, cf. lanes 6–8 with lanes 2–4), whereas mRNA for a

TABLE 1. Characterization of C. elegans homologs of mRNA export factors, EJC, and EJC-related proteins

Protein Gene RNAI phenotype

poly(A) mRNA

accumulation Reference

TAP1/NXF-1 C15H11.3; Cenxf-1 Embryonic and adult lethality + Tan et al. 2000; this paper

TAP2/NXF-2 C15H11.6; Cenxf-2 Wild-type phenotype nd Tan et al. 2000

NXT-1/p15 Y71F9AM.5; Cenxt-1 Early embryonic lethality + This paper

Y14 R07E5.14; Cernp-4 Late embryonic lethality − This paper

MAGO R09B3; Cemag-1 Embryonic lethality, sterility nd Li et al. 2000

SRm160 F28D9.1; Cersr-1 Wild-type phenotype nd Longman et al. 2000

RNPS1 K02F3.11; Cernp-5 Wild-type phenotype nd This paper

UAP56 C26D10.2; Cehel-1 Late embryonic lethality + This paper; MacMorris et al. (this issue)

UPF3 F46B6.3; Cesmg-4 Wild-type phenotype nd Kamath et al. 2003

Note: The REF adaptor proteins which are part of the EJC are discussed in Table 2.

FIGURE 2. Depletion of CeNXT1/p15 causes accumulation of poly(A)+ mRNA in the nuclei.
Injected animals and control N2 worms were fixed and subjected to RNA in situ hybridization
as described. In each panel the intestine is the predominant tissue characterized by the presence
of large nuclei. Accumulation of poly(A)-containing RNAs was observed in intestinal nuclei of
RNAi-treated animals (indicated by arrows in b and d) and corresponding DAPI-stained nuclei
as shown in a and c. Poly(A)+ RNA distribution in intestines of wild-type, untreated worms are
shown in f and h (nuclei are indicated by arrowheads), and corresponding DAPI- stained nuclei
are shown in e and g. Bar, 25 µm.

mRNA export factors in C. elegans
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control gene was present at levels comparable with wild-

type animals (Fig. 4, cf. lanes 1 and 5). Interestingly, simul-

taneous suppression of all three C. elegans Ref genes did not

result in accumulation of poly(A)+ mRNA in the nucleus

(Fig. 5b,d). Therefore, CeREF proteins are not essential fac-

tors for export of bulk mRNA from the nucleus, suggesting

the existence of additional mRNA export adaptors.

Interestingly, two human nucleoctyoplasmic shuttling SR

proteins, 9G8 and SRp20, promote mRNA export, suggest-

ing a role for SR proteins as mRNA export adaptors (Huang

and Steitz 2001; Huang et al. 2003). However, here we show

that RNAi of all three C. elegans Ref genes in combination

with individual SR proteins, or with the SR-related protein

SRm160, failed to give a phenotype distinct from the phe-

notype caused by simultaneous depletion of all three Ref

genes alone, indicating that REF proteins are not function-

ally interacting with individual SR proteins or with SRm160

(Table 2). It remains possible that CeSR proteins contribute

FIGURE 3. RNA interference with the CeY14 gene results in embryonic lethality but does not cause accumulation of poly(A)+ mRNA in the
nuclei. (A) CeY14 predicted protein and human Y14 protein sequences were compared using the GAP program (GCG10 software), and the
alignment was generated using PRETTYBOX (GCG10 software). Identical residues are highlighted in black, and the dsRNA fragment used for
RNAi corresponds to the solid line above the sequence. (B) RNA interference with the CeY14 gene results in late embryonic lethality (a,b).
Wild-type embryonic developmental stages are shown for comparison (c) comma, (d) 1.5-fold, (e) twofold. Each embryo is ∼50 µm in length.
(C) The effectiveness of RNAi was determined by examining the level of the residual transcripts following dsRNA injections by RT–PCR with
specific primers, as described previously (Longman et al. 2000). CeY14 mRNA is specifically depleted in RNAi-treated animals (lane 4) compared
with wild-type animals (lane 2); whereas the level of a control mRNA, corresponding to CeNXF1/Tap1, is unaffected (lanes 1,3). The figure shows
a negative of an ethidium bromide-stained agarose gel. (M) 100-bp ladder DNA size marker. (D) Depletion of CeY14 does not result in nuclear
accumulation of poly(A)+ mRNA. Injected animals and control N2 animals were fixed and subjected to RNA in situ hybridization as described.
In each panel, the intestine is the predominant tissue characterized by the presence of large nuclei. No accumulation of poly(A)-containing RNAs
was observed in nuclei of intestines of RNAi-treated animals (indicated by arrows in b). (a) The corresponding DAPI-stained nuclei. Poly(A)+

RNA distribution in intestines of wild-type, untreated worms are shown in d (nuclei are indicated by arrowheads), and corresponding DAPI-
stained nuclei are shown in c. Bar, 25 µm.

Longman et al.

886 RNA, Vol. 9, No. 7



toward mRNA export with a degree of functional redun-

dancy (see Discussion).

Altogether, these results strongly suggest the existence of

adaptors, other than the REF/Aly proteins, that facilitate the

recruitment of the mRNA export factor NXF1/TAP to dif-

ferent mRNAs.

DISCUSSION

We have used C. elegans as a model system to functionally

characterize genes involved in mRNA export, as well as

components of the exon–exon junction complex that links

pre-mRNA splicing with mRNA export and NMD.

The requirement for the TAP/p15 heterodimer for

mRNA export has been clearly established in Drosophila.

Small bristles, the Drosophila ortholog of NXF1, is essential

for mRNA export throughout development (Wilkie et al.

2001). Furthermore, RNAi of NXF1/TAP and NXT1/p15 in

Drosophila cultured cells leads to nuclear accumulation of

poly(A)+ RNA (Herold et al. 2001; Wiegand et al. 2002). By

RNAi, we have demonstrated that CeNXT1/p15 is an es-

sential protein that is required early in development of C.

elegans, and has a direct role in mRNA export.

We also show here that Y14, a component of the exon–

exon junction complex, is essential for C. elegans viability,

yet it does not affect bulk mRNA export. A role for Y14 in

NMD was suggested upon the fact that hUpf3, a key factor

in NMD, interacts with Y14 and is enriched in Y14-con-

taining mRNP complexes (Kim et al. 2001). The strict re-

quirement of Y14 for normal development in C. elegans is

most likely unrelated to NMD, as this is a nonessential

process in yeast and worms (Hodgkin et al. 1989; Culbert-

son 1999). Therefore, Y14 is likely to be involved in some

other essential process that is neither related to mRNA ex-

port or NMD.

Whereas the cellular export factor NXF/TAP interacts

with the CTE element to promote export of retroviral

RNAs, adaptor proteins are required to promote its recruit-

ment to cellular mRNAs (for review, see Izaurralde 2002;

Reed and Hurt 2002). Several lines of evidence suggest the

role of members of the REF/Aly family of proteins in me-

diating this task both in yeast and in higher eukaryotes,

linking pre-mRNA splicing with mRNA export. However,

recent results in Drosophila cultured cells showed that REF/

Aly and also protein components of the EJC complex were

dispensable for mRNA export. Only when REF and RNPS1

were codepleted or when all EJC proteins were depleted

simultaneously, partial nuclear accumulation of poly(A)+

RNA was observed (Gatfield and Izaurralde 2002). In this

study, we show that simultaneous depletion of all three C.

elegans REF proteins does not compromise viability and

only causes a minor phenotype. Moreover, depletion of all

three REF proteins does not affect the nuclear export of

bulk mRNAs from the nucleus. The fact that UAP56 is an

essential protein required for mRNA export in C. elegans,

whereas the REF proteins are dispensable, strongly suggests

that UAP56 must perform some other additional function/s

apart from recruiting REF/Aly to mRNAs.

Our results suggest the existence of alternative strategies

to promote mRNA export, some of which may be REF

independent. Interestingly, two nucleocytoplasmic shuttling

SR proteins, SRp20 and 9G8, act to promote the export of

intronless RNAs and also function as adaptors for TAP-

dependent mRNA export (Huang and Steitz 2001; Huang et

FIGURE 4. RNAi depletion of C. elegans Ref/Aly genes mRNAs is
efficient and specific. The level of the residual transcripts following
dsRNA injections was examined by RT–PCR with specific primers, as
described previously (Longman et al. 2000) CeRef 1, 2, and 3 mRNAs
are specifically depleted in RNAi treated animals (lanes 6,7,8, respec-
tively) compared with wild-type animals (lanes 2,3,4, respectively),
whereas the level of a control mRNA corresponding to CeNXF1/Tap1
gene is unaffected (lanes 1,5). The figure shows a negative of an
ethidium bromide-stained agarose gel. (M) 100-bp ladder DNA size
marker.

TABLE 2. RNAi phenotypes for C. elegans Ref/Aly genes and their
codepletion with SR and SR-related genes

Protein Gene RNAi phenotype

REF-1 C01F6.5; Cealy-1 Wild-type phenotype

REF-2 F23B2.6; Cealy-2 Wild-type phenotype

REF-3 M18.7; Cealy-3 Wild-type phenotype

REF-1 + REF-2 Wild-type phenotype

REF-1 + REF-3 Wild-type phenotype

REF-2 + REF-3 Wild-type phenotype

REF-1 + REF-2 + REF-3 Reduced mobility

REF-1 + REF-2 + REF-3

+ SRp20

Reduced mobility

REF-1 + REF-2 + REF-3

+ SC35

Reduced mobility

REF-1 + REF-2 + REF-3

+ SRm160

Reduced mobility
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al. 2003). However, we observed that simultaneous deple-

tion of all three Ref/Aly genes, together with individual SR

proteins, did not affect the phenotype observed when de-

pleting the three Ref/Aly genes alone. This suggests the ex-

istence of additional mRNA export adaptors other than

CeRef/Aly and CeSR proteins. Alternatively, CeSR proteins

may be acting as mRNA export adaptors with a degree of

functional redundancy. In agreement, we have shown pre-

viously that depletion of individual SR proteins (with the

exception of CeSF2) or certain combinations of SR proteins

does not lead to any discernible phenotype in C. elegans,

which is indicative of functional redundancy for this family

of proteins in nematodes (Longman et al. 2000).

Together with the evidence described in Drosophila cells,

our results strongly suggest that additional adaptor protein/s,

with a certain degree of functional redundancy, may con-

tribute to TAP-dependent mRNA export.

MATERIALS AND METHODS

dsRNA preparation and microinjection

Templates for RNA synthesis were generated by PCR from C.

elegans genomic DNA using gene-specific primers with T3 and T7

promoter sequences added on to forward (F) and reverse (R)

primers, respectively. Where possible, the region amplified corre-

sponds to a large exon or an exon-rich part of the gene. Oligo-

nucleotide primers were purchased from Genosys (Cambridge).

PCR conditions using Vent DNA polymerase

(New England Biolabs) were as follows: (1)

98°C, 5 min, 1×, (2) 98°C, 30 sec, 58°C, 50

sec, 72°C, 1 min, 30×, (3) 72°C, 10 min, 1×.

Primers used were as follows: T3 sequence:

attaaccctcactaaagggaag; T7 sequence: taatac

gactcactatagg; p15F1: tcagctatgcaacgagtcg;

p15R1: attttccgtcttcaacgcc; not p15F: tgaac

gagctacgagaagc; not p15R: atgaggaaggccaga

atcc; Tap1F: ttctcatgcacgacaccac; Tap1R: cat

tccactgaactggcac; ran-4F: acgaaagtgttgcaaaggc;

ran-4R: gtgcaagtcaagtcggaag; Y14F: aacgcc

gagagatcaagag; Y14R: tgacgaagcaccaatcgac;

UAP56F: actgaaggaagccgagaag; UAP56R:

atcgaagcggtcttgaacg; RNPS1F: atgcgaccatcac

catcac; RNPS1R: tggagaacttctacgctgg; Ref1F:

aacttgtcaaacttggccc; Ref1R: gcatccaactcttcgagtg;

Ref2F: caaatgtcggaactccacg; Ref2R: aagggcaa

ctccagcaaac; Ref3F: agctcgacgaggaaatacg;

Ref3R: cgacaccgctaaacttctg.

PCR products were gel purified and used

as templates for in vitro RNA synthesis with

T3 and T7 RNA polymerase (Boehringer

Mannheim) following instructions from the

manufacturers. RNA was dissolved in sterile

water with 0.4 U/µL RNase Inhibitor

(Boehringer Mannheim) to reach a final

concentration of 0.5µg/µL. Double-stranded

RNA was assembled by mixing equal

amounts of sense and antisense RNA fol-

lowed by incubation at 68°C for 10 min, and then 37°C for 30 min.

For each gene, 10–15 young adult hermaphrodites (Bristol strain

N2) were injected with dsRNA into the gut or gonad. RNAi in-

terferes with maternal mRNA, but it will not deplete maternal

protein present in the mother at the time of RNAi. To minimize

the contribution of maternal protein in RNAi-treated embryos,

injected worms were left to recover and egg lay for 16 h. Then,

injected animals were transferred onto individual plates and the

phenotype was observed in the F1 progeny on days 3, 4, and 5 after

injection. F1 progeny were scored for embryonic lethality, slow

progression through larval stages, size of adults, abnormal organ

development in adults, abnormalities in feeding and movements,

and sterility. The affected progeny were examined using DIC mi-

croscopy.

RT–PCR

Total RNA from embryos was prepared as follows. Approximately

20 gravid hermaphrodites, either wild type or injected previously

with dsRNA, were dissolved in 1:10 solution of bleach in 1 M

NaOH. Embryos were collected and washed twice in 1 mL of PBS,

pelleted, and resuspended in 200 µL 0.5% SDS, 5% �-mercapto-

ethanol, 10 mM EDTA, 10 mM Tris-HCl (pH 7.5), and 0.5 mg/mL

proteinase K. Samples were incubated at 55°C for 1 h, and further

processed using Total RNA Isolation Reagent (Advanced Biotech-

nologies Ltd.) following manufacturer’s instructions. Total RNA

from whole worms or larvae was prepared as described above with

exception of the bleaching step. RT–PCR was performed using

SuperScript One-Step RT–PCR System (GIBCO BRL) following

the manufacturer’s instructions. To test the efficiency of RNAi

FIGURE 5. Simultaneous suppression of all three C. elegans Ref/Aly genes does not result in
nuclear accumulation of poly(A)+ mRNA. Injected animals and control N2 animals were fixed
and subjected to RNA in situ hybridization as described. In each panel, the intestine is the
predominant tissue characterized by the presence of large nuclei. No accumulation of poly(A)-
containing RNAs was observed in nuclei of intestines of RNAi-treated animals (indicated by
arrows in b and d). (a,c) The corresponding DAPI-stained nuclei. Poly(A)+ RNA distribution
in intestines of wild-type, untreated worms are shown in f and h (nuclei are indicated by
arrowheads), and corresponding DAPI- stained nuclei are shown in e and g. Bar, 25 µm.
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treatment by RT–PCR, 100 µL (200 µL for CeRefs RNAi RNA)

reactions were prepared for wild-type and RNAi-treated samples.

These reactions were split into identical fractions and RT–PCR

analysis was performed to compare RNA levels corresponding to

either a control gene or the gene(s) targeted in the RNAi experi-

ment. After 23–28 cycles of amplification, RT–PCR products were

loaded on ethidium bromide-stained agarose gel. Primers used for

RT–PCR analysis were the same as the ones used for preparation

of dsRNA fragments without the T3 and T7 sequences.

RNA in situ hybridization

On day 3, after dsRNA injection-treated worms or control wild-

type worms were placed on polylysine-coated slides in 4 µL PBS

with 0.25 mM levamisole, and cut at midsection with a needle. A

total of 4 µL of fix solution [3.7% formaldehyde, 100 mM HEPES

(pH6.9), 2 mM MgSO4, 1 mM EGTA in PBS] were added, cov-

erslips were placed on a sample with a gentle pressure, and slides

were put on a metal rack on dry ice. After 10 min, coverslips were

cracked off, and slides were immediately placed in ice-cold metha-

nol for 10 min. Slides were air dried briefly, fixed at room tem-

perature for 30 min, then incubated in methanol for 5 min and in

ethanol 2× for 5 min. At this point, the slides could be stored at

−20°C for a few days. Slides were then incubated in 50% xylene/

50% ethanol for 5 min, in xylene for 1 h, and in 50% xylene/50%

ethanol for 5 min. Subsequently, slides were washed 3× in ethanol

for 5 min, in methanol for 5 min, briefly air dried, post-fixed for

20 min, and washed 4× in PBS. Slides were then washed 2× in

hybridization buffer without glycogen or salmon sperm DNA, and

then prehybridized in 50 µL of hybridization buffer under a para-

film strip at 55°C for 1 h (hybridization buffer: 50% deionized

formamide, 5× SSC, 1 mg/mL glycogen, 100 µg/mL salmon sperm

DNA, 0.1% Tween-20). Slides were hybridized in 50 µL of hybrid-

ization buffer with 1 µL of cy3-labeled oligo(dT)30 probe (100

ng/µL stock) under a parafilm strip in a humidified sealed cham-

ber at 55°C for 20 h. Then, slides were washed 5× for 20 min in

hybridization buffer at 55°C and 4× for 10 min in PBS at room

temperature. Slides were mounted in 0.5 µg/mL DAPI in Vecta-

shield mounting medium (Vector Laboratories). DAPI and Cy3

signals were observed using Zeiss Axioplan2 fluorescence micro-

scope under 63× magnification objective. Slide preparation was as

follows: slides were wiped clean and dipped for a few seconds in

the solution of 0.2% gelatine, 1mg/mL polylysine. Slides were

drained, dried overnight, and used immediately, or stored at 4°C

for several days.
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