
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

New indole trimers as precursors for molecular electronic
materials

Citation for published version:
Valentine, RA, Whyte, A, Awaga, K & Robertson, N 2012, 'New indole trimers as precursors for molecular
electronic materials' Tetrahedron Letters, vol. 53, no. 6, pp. 657-660. DOI: 10.1016/j.tetlet.2011.11.124

Digital Object Identifier (DOI):
10.1016/j.tetlet.2011.11.124

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Tetrahedron Letters

Publisher Rights Statement:
Copyright © 2011 Elsevier Ltd. All rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28966757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.tetlet.2011.11.124
https://www.research.ed.ac.uk/portal/en/publications/new-indole-trimers-as-precursors-for-molecular-electronic-materials(582101f7-5567-4b6e-bd51-8f93bdf87c3d).html


 

New indole trimers as precursors for molecular electronic materials** 

Robert A. Valentine,
1
 Alexander Whyte,

1
 Kunio Awaga

2
 and Neil Robertson

1,
* 

 

[1]
EaStCHEM,

 
School of Chemistry, Joseph Black Building, University of Edinburgh, West Mains Road, 

Edinburgh, EH9 3JJ, UK. 

[2]
Department of Chemistry and Research Center of Materials Science, Nagoya University, Chikusa-ku, 

Nagoya 464-8602, Japan. 

[
*

]
Corresponding author; e-mail: neil.robertson@ed.ac.uk, fax: +44 (0) 131 650 6453 

[
**

]
We thank the University of Edinburgh for funding and the EPSRC and JST for support of the UK-Japan 

collaboration. 

Supporting information: 
Supplementary data associated with this article can be found, in the online version, at 

http://dx.doi.org/10.1016/j.tetlet.2011.11.124 

Graphical abstract: 

 

Keywords: 

Triazatruxene; DFT; Electrochemistry; Fluorescence; Transistor; FET   

This is the peer-reviewed author’s version of a work that was accepted for publication in 

Tetrahedron Letters. Changes resulting from the publishing process, such as editing, corrections, 

structural formatting, and other quality control mechanisms may not be reflected in this document. 

Changes may have been made to this work since it was submitted for publication. A definitive 

version is available at: http://dx.doi.org/10.1016/j.tetlet.2011.11.124 

 

Cite as: 

Valentine, R. A., Whyte, A., Awaga, K., & Robertson, N. (2012). New indole trimers as precursors 

for molecular electronic materials. Tetrahedron Letters, 53(6), 657-660. 

 

Manuscript received: 26/09/2011; Accepted: 25/11/2011; Article published: 02/12/2011 

neil.robertson@ed.ac.uk
http://dx.doi.org/10.1016/j.tetlet.2011.11.124
http://dx.doi.org/10.1016/j.tetlet.2011.11.124


Page 1 of 10 

Abstract 

We have prepared two new C3-symmetric, substituted-triazatruxene molecules using a facile one-pot 

trimerisation of 5-carboxyindole and 6-bromoindole in acetic acid using Br2, giving 2a and 3a respectively. 

These were subsequently modified by the addition of 6 alkyl chains to the N- and carboxyl-positions of 2a 

giving 2b and 3 alkyl chains to the N-positions of 3a giving 3b. The new molecules were characterised using 

cyclic voltammetry, UV/Vis and emission spectroscopy, DFT calculations and in the case of 3b, field-effect 

transistor measurements showing gate-modulated source-drain current. These represent a straightforward 

route to large polyaromatic molecules with easily-modified side groups and are suitable as building blocks for 

synthesis of functional molecules for materials. 

 

Main text 

Conjugated organic molecules with a large π-system have been intensely studied in the area of organic 

electronics and optoelectronics. In recent years, much work has used aromatic fragments such as thiophenes, 

stilbenes, perylenes, porphyrins and others as the basis for larger conjugated systems through well-established 

coupling reactions. In addition, the nature of any side groups can also play a significant role in the intrinsic 

properties of the system, offering unusual functionality
1
 or the potential for cheaper more readily available 

solution processing techniques.
2
 Introduction of side-groups may cause an increase in solubility

1,3
 and one of 

the most commonly used moieties is the long-chain alkyl group. Addition of such chains may also benefit the 

engineering of subsequent devices through the formation of discotic liquid crystalline materials. Fused 

polyaromatic systems such as pentacene have led to high-mobility field-effect transistors (FET), with for 

example the hexabenzocoronene derivative HBC-C14 showing a charge mobility of up to 1.13 cm
2
V

-1
s

-1
.
4
 It 

can remain challenging however, to develop new polyaromatic molecules that are both rapidly synthesized 

and also where further side-group substitutions can be readily and selectively made. 

In this context, we previously reported the formation of 2,3,7,8,12,13-hexabromo-5,10,15-trihydroindolo[3,2-

a,3’,2’-c]carbazole (1) (Figure 1, also called hexabromotriazatruxene) by the simple reaction of three 

equivalents of Br2 with indole.
5
 This represents a straightforward route to a large, conjugated π-system 

containing readily-substituted Br and N-H groups and has stimulated much subsequent work to prepare a large 

number of derivatives (Figure 1),
6-20

 studied for their photophysical, liquid crystal and/or charge-transport 

properties. In particular, such trigonal aromatic molecules offer enhanced opportunities in the formation of 

dendritic molecules
18,20

 or discotic liquid crystalline systems
9
 in comparison with linear analogues. 

To date however, published work has been limited to the modification of 1, and new trimerisation reactions to 

give analogues of 1 have not been pursued. In this work, we further develop the trimerisation of indoles to 

produce conveniently new C3-symmetric triindole species, along with further synthesis to modify their side 
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chains. These materials were studied through a combination of cyclic voltammetry, absorption and emission 

spectroscopy, DFT calculations and, in one case, FET measurements to demonstrate the potential for use in 

organic electronics. 

 

 

Figure 1. (a) hexabromotriazatruxene (1) and (b) examples of derivatives prepared from 1
16 

 

We have used the reaction of substituted indole molecules with Br2 to prepare 2a and 3a successfully (Scheme 

1). In contrast to the synthesis of 1 in CH3CN, we used acetic acid as the solvent in this work; the excess acid 

appears to catalyse the triindole formation also reducing the need for extensive purification of the trimer 

species. 

 

 

Scheme 1. Synthesis of 2a and 3a. 

 

Products 2a and 3a were obtained in acceptable purity, as shown by 
1
H NMR spectroscopy, directly by 

precipitation from the reaction mixture. We attempted to extend the trimerisation reaction to other substituted 
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indoles, however reaction of 5-cyano-, 5-methoxy- and 5-carboxaldehyde-indole resulted in mixtures of 

species, with no observable trriindole product, possibly due to reaction of Br2 with the added functional group. 

The reaction of 5-bromindole gave a mixture of products that proved too difficult to separate. The reaction of 

5-nitroindole with three equivalents of Br2 gave a single pure product, however this proved to be a monomeric 

indole with 2,3-dibromo-substitution. The 2,3-dibromoindole species have long been sought as synthetic 

intermediates to a range of species.
21

 While the one-step synthesis of a 2,3-dibrominated indole has been 

achieved for a number of N-alkylated species,
22,23

 it has never previously been successfully achieved in one-

step for indoles where the nitrogen is protonated. Polybrominated indole monomers are of interest in a 

biological context due to their apparent antibacterial and anti-fungal activity, however their material properties 

make them unsuitable for organic electronic applications and they are not discussed further here.  

Alkylation of both 2a and 3a was achieved to give 2b and 3b. For 2b, both the acid protons and the NH 

protons were replaced to give a hexa-alkylated species, whereas 3b contains only three alkyl chains (Figure 

2).  

 

 

Figure 2. Alkylated compounds 2b and 3b. 

 

For all the new compounds, we were unable to obtain crystals of sufficient quality for structure solution, 

possibly due to disorder within the orientation of the trimeric rings and attached alkyl chains. 

Cyclic voltammetry was carried out for 2a, 2b, 3a and 3b (Table 1). All the compounds showed a chemically-

irreversible reduction, with that of the tribrominated species less negative than that of the acid/ester-containing 

compounds. The oxidation processes for 2a and 3a were chemically irreversible which is expected due to 

deprotonation of the NH group and possible N-N bond formation upon oxidation.
24

 Alkylation of the NH 

position leads to greater chemical reversibility of the oxidation process for 2b and 3b, although 2b still shows 

slight chemical irreversibility.  

Comparison of 2a and 2b or 3a and 3b indicates that addition of the octyl chains has resulted in little 

alteration of the oxidation potential. Direct comparison of these systems is problematic however as different 
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solvents were required due to solubility differences and peak potentials of irreversible processes cannot be 

directly compared with E1/2 values of reversible couples. 

 

Table 1. Electrochemical data for 2a, 2b, 3a and 4a. 

Compound Reduction 1
st
 oxidation 2

nd
 oxidation 

2a
c 

-1.084
a 

0.959
a 

 

2b
c 

-1.035
a 

1.054
a 

 

3a
c 

-0.728
a 

1.010
a 

 

3b
d 

-0.847
a 

1.107
b 

1.631
a 

a
peak potential of chemically-irreversible process 

b
E1/2 value of chemically-reversible process 

c
Dimethylformamide solvent, 0.1 M TBABF4 electrolyte 

d
Dichloromethane solvent, 0.3 M TBABF4 electrolyte 

 

Perhaps surprising is the smaller than expected separation between the first oxidation and the first reduction 

potentials given the HOMO-LUMO gap indicated by DFT calculations and the optical gap indicated by 

spectroscopy (vide infra). No simple explanation for this can be given other than to note that the irreversible 

nature of the reductions means these do not necessarily reflect accurately the thermodynamic characteristics of 

the molecules. 

Previous work by Huang et al established that a simple N-alkyl substituted triazatruxene, displays two 

characteristic absorption peaks at 316 nm and 256 nm,
7
 with a number of poorly defined shoulder peaks. In 

the case of 2a, 2b, 3a and 3b, these shoulder peaks become much more clearly defined and a number of new 

transitions appear (Table 2). 

 

Table 2. Absorption peaks of 2a, 2b, 3a and 3b. 

Compound    λmax /nm (ε/M
-1

cm
-1

 x 10
3
) 

2a
 269 (13.7)

a 
288    (18.7)

a 
322    (21.8)

a 
339   (8.9)

a 
354   (7.3)

a 

2b
 281 (79.3) 299    (99.8) 332  (117.0) 351 (42.2) 365 (33.4) 

3a
  279 (24.9) 317    (80.3) 331    (44.6) 349 (17.9) 

3b
  287 (40.2) 324   (112.0) 341    (54.2) 359 (21.7) 

a
Molar extinction coefficients not reliable due to poor solubility. 

 

It is notable that the presence of alkyl chains on the indole nitrogen atoms causes an inductive effect leading to 

a red-shift observed from 2a and 2b to 3a and 3b. The observed extinction coefficients for 2a were 
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significantly lower than expected based on the results for 2b. This has been attributed to poor solubility of 2a 

and difficulty in determining an accurate value. Observed values are given in Table 2 but should be treated 

with caution. 

Compounds 2b and 3b were found to be emissive in EtOH at 293 K, both showing relatively featureless 

emission spectra with peaks at 450 nm and 401 nm respectively, typical of fluorescent polyaromatic 

molecules. This contrasts with 1,
5
 which was found to be non-emissive at room temperature, due to the large 

number of bromine atoms in the hexabrominated species, causing an increase in the heavy-atom effect, hence 

a greater proportion of intersystem crossing into the triplet excited state. In the case of 3b the rate of inter-

system crossing caused by the heavy atom effect is sufficiently slow that the system is still fluorescent at room 

temperature. The emission and excitation spectra observed for 3b at 77 K are closely related to those observed 

for a frozen EtOH solution of 1 and show phosphorescence peaks at 453 and 477 nm, much more intense than 

the small fluorescence peak which is still visible (Figure 3). 

 

 

 

 

Figure 3. Emission spectra of 2b at RT (left) and 3b at 77 K (right) the latter showing strong phosphorescence 

and also weak fluorescence signals. 

 

DFT calculations based on a B3LYP functional and 6-31G* basis set have been carried out for all triindole 

species (Table 3, Figure 4, Figure S1 (see supporting data)). 
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Figure 4. LUMO (left) and HOMO (right) of 3a 

 

Table 3. Calculated energies in eV of the frontier orbitals of 2a, 2b, 3b and 3b 

 HOMO-1 HOMO LUMO LUMO+1 

2a
 -5.602 -5.601 -1.504 -1.504 

2b
 -5.196 -5.193 -1.206 -1.188 

3a
 -5.466 -5.465 -1.046 -1.045 

3b
 -5.230 -5.213 -0.979 -0.953 

 

Apparent from Table 3 is the degeneracy of the HOMO-1 and HOMO levels as well as the LUMO and 

LUMO+1 levels for each molecule. Given the inherent symmetry of the triazatruxene system it might be 

expected that this degeneracy would extend to the HOMO-2 and LUMO+2 as well. This is not the case 

however, with HOMO-2 energies of -6.499 eV, -5.985 eV, -6.440 eV and -6.099 eV and LUMO+2 energies 

of -1.354 eV, -0.614 eV, -1.019 eV and -0.535 eV for 2a, 2b, 3a and 3b respectively. The calculated HOMO-

LUMO gap decreases from non-alkylated to alkylated systems from 4.10 eV for 2a to 3.99 eV for 2b and 

from 4.42 eV for 3a to 4.23 eV for 3b. This broadly agrees with the UV/Vis spectroscopy results. 

The presence of the acid and ester groups results in a significant change in the unoccupied frontier molecular 

orbitals, with 28% of the LUMO and LUMO+1 character residing specifically on the acid groups of 2a and 

38% of the LUMO and LUMO+1 on the ester groups of 2b. This is in stark contrast to the 15% Br character 

in the LUMO and LUMO+1 of both 3a and 3b.  
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As discussed above, the family of triazatruxenes has shown excellent potential for application as 

semiconducting materials and to confirm the potential of the new molecules in this regard, FET measurements 

were carried out using 3b. The material was spin coated onto an FET substrate with gold source and drain 

electrodes with a gap and width of 2 μm and annealed at 120 °C for 15 minutes under a stream of nitrogen. 

Although the performance was not exceptional, a distinct positive channel field effect was observed leading to 

threshold voltage estimated as -31 V, the on/off ratio as 2.1 x10
4
 and the hole mobility as 1.43 x10

-6
 cm

2 
V

-1 
s

-1
 

(Figures S2-3). 

We have achieved the facile synthesis of large polyaromatic systems with easily-functionalised groups from 

commercial precursors in one pot. These present versatile new intermediates in the pursuit of both novel 

organic electronic materials and discotic liquid crystals. 

General synthetic procedure for 2a and 3a: The substituted indole (0.5 mmol) was dissolved in AcOH (30 ml) 

and Br2 (1.1mmol) in AcOH (20 ml) was added dropwise over 5 mins. The solution was left to stir overnight, 

filtered and the solid product washed with CH3CN. 

2a – Yield 44%; C27H15O6N3.2H2O – Calcd C 63.15, H 3.70, N 8.19, Found C 63.47, H 4.63, N 7.38 – 
1
H-

NMR (DMSO-d6) 12.76 (3H, s), 9.42 (3H, s), 8.14 (3H, d J = 14 Hz), 7.87 (3H, s)  

3a – Yield 61%; C24H12N3Br3.H2O – Calcd C 48.00, H 2.33, N 7.00, Found C 48.03, H 1.93, N 6.96 – 
1
H-

NMR (DMSO-d6) 12.35 (3H, s), 8.81 (3H, d J = 14 Hz), 8.06 (3H, s), 7.75 (3H, d J = 14 Hz) – FAB-MS: m/z 

580(M
+
) 

2b – Compound 2a, (238 mg, 0.5 mmol), KOH (560 mg, 0.01mol), [CH3(CH2)3]4N(HSO4) (12 mg, 0.025 

mmol) and 1-iodooctane (2.2 ml, 12 mmol) were dissolved in acetone (50 ml) and heated under reflux for 24 

h. Once cool the solvent was removed and the residue dissolved in CH2Cl2 and washed with 10% aqueous 

HCl (3.5 equiv). The solution was dried over MgSO4 and the solvent evaporated. The remaining solid was 

triturated with CH3CN to give a pale yellow solid – Yield 2.09%; C75H111O6N3 – Calcd C 78.28, H 9.67, N 

3.66, Found C 78.03, H 9.59, N 3.54 – 
1
H-NMR (DMSO-d6) 9.01 (3H,s), 8.13 (3H,d J = 14 Hz), 7.59 (3H,d 

JH-H 0.035), 4.93 (6H, t JH-H 0.035), 4.37(6H, t JH-H 0.035), 1.91 (6H, m), 1.79 (6H, m), 1.49-1.06 (60H, m), 

0.84 (9H, m), 0.71 (9H, m) – FAB-MS: m/z 1148(M
+
) 

3b – Compound 3a (582 mg, 1.02 mmol), KOH (1.12 g,0.02 mol), [CH3(CH2)3]4N(HSO4) (24 mg, 0.05 mmol) 

and 1-iodooctane (2.2 ml, 12 mmol) were dissolved in acetone (50 ml) and heated under reflux for 24 h. Once 

cool the solvent was removed and the residue dissolved in CH2Cl2 and washed with 10% aqueous HCl (3.5 

equiv). The solution was dried over MgSO4 and the solvent evaporated. The remaining solid was triturated 

with CH3CN to give a pale yellow solid – Yield 14%; C48H60N3Br3 – Calcd C 62.75, H 6.59, N 4.61, Found C 

62.72, H 6.49, N 4.42 – 
1
H-NMR (DMSO-d6) 7.94 (3H, d JH-H 0.035), 7.63 (3H, s), 7.34 (3H, d JH-H 0.035), 

1.93(6H, m), 1.04(36H, m), 0.87(9H, m) – FAB-MS: m/z 917(M
+
)  
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