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     Hybridization may have several evolutionary consequences 
including the origin and transfer of genetic adaptations, the ori-
gin of new ecotypes or species, and the reinforcement or break-
down of reproductive barriers ( Rieseberg and Gerber ,  1995 ; 
 Arnold, 1997 ;  Rieseberg, 1997 ;  Rieseberg and Carney, 1998 ; 
 Soltis and Soltis, 2009 ). However, for rare species, it can also 
bring about extinction through genetic swamping ( Levin et al., 
1996 ;  Rhymer and Simberloff, 1996 ;  Vil à  et al., 2000 ;  Wolf 
et al., 2001 ). Therefore, for rare species that occur sympatri-
cally with interfertile congeners, barriers to hybridization and 
interspecifi c gene fl ow may be vital to their persistence. Fur-
thermore, because anthropogenic disturbance can promote hy-
bridization ( Anderson, 1948 ;  Levin et al., 1996 ;  Rieseberg and 
Carney, 1998 ), the threat from hybridization may be increasing 

for some rare species, but very few studies have sought to quan-
tify or evaluate this threat. 

 The genus  Rhododendron  L. contains about 1025 species, 
including many narrow endemics that are sympatric with inter-
fertile congeners throughout their ranges. Within  Rhododen-
dron , subgenus  Hymenanthes  appears to have undergone rapid 
radiation within the Himalaya region ( Milne, 2004 ), with nearly 
200 species endemic to China and adjacent regions, many of 
them with extremely limited ranges ( Chamberlain, 1982 ;  Fang 
and Min, 1995 ;  Chamberlain et al., 1996 ;  Wu et al., 2005 ). All 
 Hymenanthes  species are diploids (2 n  = 26), and hybridization 
even between distantly related species is common ( Chamberlain, 
1982 ;  Milne et al., 1999 ,  2003 ;  Zhang et al., 2007 ;  Zha 
et al., 2008 ,  2010 ). Even remote habitats in China have mostly 
been subject to some level of habitat disturbance, but although 
hybrids involving narrow endemic species have occasionally 
been reported ( Chamberlain, 1982 ), there has not yet been a 
systematic examination of how commonly any such species 
forms natural hybrids or what follows when hybridization 
occurs. Furthermore, hybrid zones within  Rhododendron  some-
times contain only F 1  ’ s, removing any possibility of introgression 
( Milne et al., 2003 ;  Zha et al., 2010 ), and progression of hybrid-
ization beyond the F 1  stage can also be promoted by disturbance 
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   •     Premise of the study : One potential threat to rare species is genetic swamping caused by hybridization, but few studies have 
quantifi ed this threat.  Rhododendron cyanocarpum  is a narrow endemic species that occurs sympatrically with potentially in-
terfertile congeners throughout its range within Yunnan, China. We searched the entire distribution of  R. cyanocarpum  for 
hybrids and examined the patterns of hybridization to assess potential threat from hybridization. 

  •     Methods : In a comprehensive fi eld survey, we detected only one instance of hybridization involving  R. cyanocarpum , with  
R. delavayi , at Huadianba near Dali. Material of both species and putative hybrids was examined using morphology, chloro-
plast DNA, nuclear ribosomal DNA, and Bayesian analysis of AFLP profi les. 

  •     Key results : Of 10 putative hybrids, two were F 1   ’  s and at least seven were F 2   ’  s. Four backcrosses to  R. delavayi  were detected 
among material with  R. delavayi -like morphology within the hybrid zone. Backcrosses to  R. cyanocarpum  were not detected. 
Therefore F 2   ’  s outnumbered all other classes within the hybrid zone, a situation not previously confi rmed for plants and ex-
tremely rare generally. Hybridization was asymmetrical, with  R. delavayi  as the maternal parent in all but one of the hybrids 
detected. 

  •     Conclusions : Although natural hybridization is common in  Rhododendron , it is rare in  R. cyanocarpum  and is apparently not 
accompanied by backcrossing toward  R. cyanocarpum . Hence, there is no immediate risk of genetic swamping, unless habitat 
disturbance increases and changes the patterns of hybridization. Our study is the fi rst to report a plant hybrid zone dominated 
by F 2  hybrids. This pattern might contribute to species barrier maintenance.  

  Key words:    Ericaceae; habitat disturbance; hybrid zone; narrow endemic species;  Rhododendron cyanocarpum ;  Rhododen-
dron delavayi.  
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identifi ed in this hybrid zone, despite careful searching and inspection of every 
 Hymenanthes  plant detected. 

 Collection of plant material   —     A 40   ×   40 m area was marked out in May 
2009, and all healthy  Rhododendron  accessions from within this area were 
mapped and collected ( Fig. 2 ). These comprised 10 putative hybrids, 10  R. cy-
anocarpum -like accessions and 21  R. delavayi- like accessions. In addition, a 
further 17  R. cyanocarpum , and 10  R. delavayi  accessions were collected from 
the same site but outside this marked area, to provide indicators of morphology 
and molecular profi les of the pure parental species. From all collected acces-
sions, leaves were desiccated using silica gel and self-sealing polythene bags. 
Voucher specimens for all putative hybrids and some of the parental accessions 
were deposited in the herbarium of the Kunming Institute of Botany, Chinese 
Academy of Sciences (KUN) (Appendix 1). 

 DNA extraction, PCR amplifi cation, and sequencing   —     Genomic DNA was 
extracted from all collected leaves using a modifi ed CTAB protocol ( Doyle and 
Doyle, 1987 ). The nrDNA ITS region from 68 accessions was amplifi ed using 
primers ITS4 and ITS5 ( White et al., 1990 ). The chloroplast  trnC-trnF  and 
 trnH-psbA  spacer of 37 accessions, comprising 10 putative hybrids and 27 pure 
parental species, were amplifi ed and sequenced ( Taberlet et al., 1991 ;  Kress 
et al., 2005 ) to determine the direction of hybridization,. The reaction mix con-
tained 0.625 U AmpliTaq DNA polymerase, 1  ×   PCR buffer, 1.5 mmol/L 
MgCl 2 , 0.2 mmol/L dNTP, 0.3 umol/L primer, and 20 – 60 ng genomic DNA. 
PCR reactions were performed in a GeneAmp 9600 thermal cycler (Perkin 
Elmer, Norfolk, Connecticut, USA). The PCR conditions were as follows: ini-
tial denaturation at 94  °  C for 4 min; followed by 30 cycles of 1 min at 94  °  C for 
template denaturation, 1 min at 50  °  C for primer annealing, 1.5 min at 72  °  C for 
extension; and fi nally an extension step of 10 min at 72  °  C. The PCR products 
were purifi ed using a Sangon Purifi cation kit according to the manufacturer ’ s 
protocol. DNA sequences were obtained using an ABI 3700 automated se-
quencer (Perkin Elmer). 

 Purifi ed PCR products of ITS were cloned into Promega ’ s pGEM - T System 
I vector according to the manufacturer ’ s protocol. Thirty-one clones of ITS se-
quence from 10 putative hybrids were obtained, and plasmids were prepared 
using Sangon ’ s protocols. Contiguous DNA sequences were edited using the 
program SeqMan (DNASTAR package, Madison, Wisconsin, USA) and se-
quences aligned using Clustal_X ( Thompson et al., 1997 ). Primers ITS4 and 
ITS5 were used for accessions to double-check nucleotide site polymorphisms 
and the accuracy of the sequence. 

 AFLP marker generation   —     We used AFLP markers to examine the 10 
putative hybrids, plus fi ve accessions each of  R. cyanocarpum  and 

( Kyhos et al., 1981 ;  Milne et al., 2003 ). So to determine the 
likely consequences of hybridization, the class structure of any 
hybrid population detected must be determined. 

  Rhododendron cyanocarpum  (Franch.) W.W.Smith (sub-
section  Thomsonii  Sleumer) is a narrow endemic, confi ned to 
mountain slopes above 3000 m a.s.l. in the Cangshan moun-
tains around Dali, Yunnan Province ( Chamberlain, 1982 ; 
 Wu, 1986 ;  Fig. 1 ). It occurs sympatrically with other  Hyme-
nanthes  species throughout its range, notably the widespread  
R. delavayi  Franch. (subsection  Arborea  Sleumer), but has 
not previously been known to form natural hybrids. The pre-
sent study was therefore designed to fi rst extensively survey 
extant  R. cyanocarpum  populations and seek evidence of hy-
bridization. Should hybrids be detected, we then aimed to 
examine the hybrid zone to determine population structure 
and direction of crossing and any threat of genetic swamping 
to  R. cyanocarpum . 

 MATERIALS AND METHODS 

 Location and identifi cation of hybrids involving Rhododendron cyanocar-
pum   —     Between 2007 and 2008, we examined all known populations of  R. cy-
anocarpum,  covering both the east and west slopes of the Cangshan mountains, 
i.e., Ganchaiqing, (25  °  52  ′  N, 99  °  58E), Huadianba (25  °  52  ′    , 99  °  59  ′  E), Guogais-
han, (25  °  51  ′    , 100  °  02  ′  E), Xiaohuadian, (25  °  51 , 100  °  02  ′  E), Yangbi, (25  °  42  ′  N, 
100  °  05  ′  E) and Dianshitai, (25  °  40  ′    , 100  °  06  ′  E). At each site, the species forms a 
single, often broad population. 

 Hybrids were found only at a single locality at Huadianba, 3200 m a.s.l. At 
this locality were two other members of subgenus  Hymenanthes , i.e.,  R. dela-
vayi  and  R .  alutaceum  Balf. f. et W.W.Smith. Based on morphology ( Table 1 ), 
the hybrids appeared to be intermediate between  R. cyanocarpum  and  R. dela-
vayi , whose fl owering periods (April to May) overlapped. By contrast,  R. aluta-
ceum  differs from  R. cyanocarpum ,  R. delavayi , and the putative hybrids at this 
site in its white to pale pink corolla and much later fl owering time (June to 
July); it was therefore eliminated as a putative parent.  Rhododendron delavayi  
is a very widespread species, which contrasts sharply with the restricted range 
of  R. cyanocarpum  ( Fig. 1 ). Based on examination of the putative parent spe-
cies,  R. cyanocarpum  and  R. delavayi , in the fi eld, nine morphological charac-
ters were identifi ed that consistently distinguished them from the putative 
hybrids ( Table 1 ). Using these characters, only 10 putative hybrids were 

 Fig. 1.   Distributions of  R. delavayi  and  R. cyanocarpum  in and around southwest China.   
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polymerase chain reactions were run in a reaction volume of 25   μ  L. PCR pa-
rameters were chosen as follows: 2 min at 94  °  C; 25 cycles of denaturing at 
94  °  C for 20 s, annealing at 56  °  C for 30 s, and extension at 72  °  C for 2 min; fol-
lowed by 2 min at 72  °  C and ending with 30 min at 60  °  C. Diluted 20  ×   preselec-
tive products underwent selective PCR with the following three primer 
combinations: E-AAC/M-CTG, E-ACT/M-CAG, E-AAC/M-CAA. Selective 
amplifi cations were run in a 25-  μ  L volume, and PCR reactions were performed 
with the following touchdown profi le: 2 min at 94  °  C; 10 cycles of denaturing at 

 R. delavayi.  We were unable to examine a larger set of accessions because re-
sources were limited. 

 The AFLP procedure was carried out according to the Beckman Coulter 
protocol with only minor modifi cations as described by  Reisch (2007) . Double 
digestion of genomic DNA was performed for 2 h at 37  °  C in a 20-  μ  L mix using 
2 units (U) of MseI and 10U of EcoRI. Following this, adapters were ligated to 
DNA in a 21-  μ  L volume for 2 h at 37  °  C using 2 U of T4 DNA Ligase (Shanghai 
Sangon Biological Engineering Technology, Shanghai, China). Preselective 

  Table  1. Morphological characters of  R. delavayi ,  R.cyanocarpum  and the putative hybrids. 

Morphological character  R. delavayi  R. cyanocarpum Putative hybrid

Leaf shape long-lanceolate suborbicular oblong-elliptical
Leaf length/width ratio 2.61 – 3.56 1.08 – 1.53 1.64 – 2.23
Ventral leaf surface indumentum dense glabrous thin
Calyx length (mm) 1.1 – 1.6 4.0 – 7.1 4.2 – 6.9
Calyx persistence in mature capsule No Yes Yes
Corolla color deep red pink red
Flowers per infl orescence 17 – 21 5 – 8 7 – 12
Fruit indumentum dense sparse sparse
Carpel number 10 5 – 6 6 – 9

 Fig. 2.   Map of the hybrid zone at Huadianba between  R. delavayi  and  R. cyanocarpum , showing positions of hybrid individuals and those of the parent 
species and the putative hybrids.   



1752 American Journal of Botany [Vol. 97

 RESULTS 

 Morphological characters   —      Of the nine morphological 
characters by which  R. cyanocarpum  and  R. delavayi  may be 
distinguished, the 10 putative hybrids were intermediate be-
tween these species for six ( Table 1 ), but for the three other 
characters they matched  R. cyanocarpum , i.e., mature capsule 
indumentum, calyx persistence, and calyx length ( Table 1 ). 
Therefore, morphological evidence strongly supports hybrid 
status for these 10 accessions. 

 Chloroplast DNA trnC-trnF and trnH-psbA sequences   —      
Among 10 accessions of  R. delavayi  and of 17  R. cyanocarpum , 
eight and nine variable sites were found in the  trnC-trnF  and 
 trnH-psbA  chloroplast regions, respectively. These sites all dis-
tinguished the haplotype of  R. delavayi  from that of  R. cyano-
carpum  ( Table 2 ). No variation was detected between accessions 
within either species. Among the 10 putative hybrids, the se-
quences of nine hybrids were identical to that of  R. delavayi  
(GenBank accessions HM636523 and HM636525); however, a 
single accession (P6) had sequences identical to  R. cyanocar-
pum  (GenBank accessions HM636522 and HM636524;  Table 
3 ). Therefore, hybridization between these species is bidirec-
tional but strongly asymmetrical. 

 Nuclear ribosomal DNA ITS sequences and clones of the 
hybrids   —      Within the nrDNA ITS region, seven sites were poly-
morphic. All accessions had either the  R. cyanocarpum  ITS 
type, or the  R. delavayi  ITS type, or were additive at all variable 
sites (GenBank accessions HM636518 and HM636521;  Table 
4 ). The  R. cyanocarpum  ITS type was present in all accessions 
of this species examined, both within and outside the hybrid 
zone. The  R. delavayi  ITS type was present in all accessions of 
this species outside the hybrid zone and in 15 accessions from 
within the hybrid zone. Of the remaining six  R. delavayi  acces-
sions within the hybrid zone, two could not be sequenced but 
the other four were additive at all variable ITS sites. Similarly, 
all 10 putative hybrids were additive at all variable ITS sites. 
Based on this, there is evidence of backcrossing and putative 
introgression toward  R. delavayi  within but not outside the hy-
brid zone, but no such evidence for  R. cyanocarpum.  

 Using multiple clones per individual, we found that six of the 
10 putative hybrids contained the ITS types of both species. Of 
the other four, P6 and P9 had only a single clone, so only one 
ITS sequence type could be recovered (in both cases,  R. cyano-
carpum,   Table 3 ), whereas for P3, both of the two clones cre-
ated had the  R. delavayi  ITS type. However, the detection of 
seven  R. delavayi -like clones from accession P8 (a putative F 1 , 
see below) might indicate that the cloning process was biased 
against incorporating  R. cyanocarpum  DNA for this one indi-
vidual. No other ITS types except those of  R. delavayi  or  R. 
cyanocarpum  were detected from cloned hybrid ITS. 

94  °  C for 20 s, annealing for 30 s at 66  °  C and then reduced by 1  °  C for the next 
10 cycles, elongation at 72  °  C for 2 min, followed by 25 cycles for denaturing at 
94  °  C for 20 s, annealing at 56  °  C for 30 s, and 2 min elongation at 72  °  C; ending 
with a fi nal extension for 30 min at 60  °  C. Finally, the PCR products were added 
to a mixture of Sample Loading Solution (Beckman CoulteR, Fullerton, Cali-
fornia, USA) and CEQ Size Standard 400 (Beckman Coulter). The fl uores-
cence-labeled selective amplifi cation products were separated by capillary gel 
electrophoresis on an automated sequencer (CEQ 8000, Beckman Coulter). 

 Raw data were collected and analyzed with the CEQ Size Standard 400 
using the CEQ 8000 software (Beckman Coulter). Individuals were scored for 
the presence or absence of each fragment in binary mode (1/0) in crv-fi les. Bins 
were built using the AutoBin option with a peak height of 800 and a bin width 
of 2. Fragments were then assigned to bins with a selective height and checked 
manually. When ambiguous electropherograms were detected, the AFLP pro-
cedures were repeated to test for reproducibility. In the AFLP data matrix, the 
presence of a band was scored as 1, whereas the absence of the band was coded 
as 0. From this was produced a binomial (0/1) data matrix, representing the 
scores for AFLP markers across all examined accessions. 

 Bayesian analysis of AFLP data   —     Many recent papers (e.g.,  H ä nfl ing et 
al., 2005 ;  Llopart et al., 2005 ;  Gow et al., 2006 ;  Mercure and Bruneau, 2008 ; 
 Milne and Abbott, 2008 ;  Smulders et al., 2008 ;  Zha et al., 2008 ,  2010 ) have 
used the program NewHybrids version 1.1, which employs a Bayesian analy-
sis to identify hybrids within natural hybrid zones ( Anderson and Thompson, 
2002 ) and to determine their classes. This method can be used with dominant 
data such as AFLP markers and is capable of identifying hybrids even when 
the markers are not completely species-specifi c. Using this program requires 
certain assumptions about the markers used: that they are unlinked, not sub-
ject to selection, and were at linkage equilibrium in the parent species before 
hybridization. 

 The default settings of this program assign posterior probabilities for six 
possible classes (parents, F 1 , F 2 , backcross 1 each way), assuming that only 
two generations of crossing have occurred, which can rarely be verifi ed, but 
this setting is nonetheless commonly used. This problematic assumption is 
avoided by using the modifi ed settings of  Milne and Abbott (2008) , which 
allow four generations of crossing and group hybrids into six categories (par-
ents, F 1 -like, F 2 -like, backcrosses each way). Because it allows for more pos-
sibilities, the latter is far more conservative in class assignment. For the 
present paper, the number of generations is uncertain, so we analyzed the 
AFLP data using both settings. In each case, posterior probabilities were eval-
uated after 100   000 iterations of Markov chain Monte Carlo (MCMCs), after 
a burn-in of 10   000 iterations, without using any prior information of individ-
ual or allele frequency. 

 To provide an indication of the proportion of each parent ’ s germplasm in 
each hybrid, the same data matrix was also analyzed using the program Struc-
ture version 2.3.1 ( Hubisz et al., 2009 ), following the methods of  Falush et al. 
(2007) . We adopted the admixture model with correlated allele frequencies 
( Lepais et al., 2009 ;  Salvini et al., 2009 ;  Zalapa et al., 2009 ). No prior knowl-
edge of the species was included in the analyzed data set. To determine the 
optimal number of groups ( K ), we ran Structure with  K  varying from 1 to 10, 
with fi ve runs for each  K  value. Previous studies have found that, in many cases, 
the posterior probability for a given  K  increases slightly, even after the real  K  is 
reached ( Dan et al., 2009 ). Therefore, we used  Evanno et al. ’ s (2005)  ad hoc 
statistic,   Δ   K , to determine the true value of  K . Our parameters were 10   000 
burn-in periods and 10   000 MCMC repetitions after burn-in. For the most likely 
number of clusters ( K  = 2), we used the ANCESTDIST command in Structure 
to generate 90% credible intervals for the admixture coeffi cients for each acces-
sion. The analysis was independently run 10 times, and the average values 
across all runs were taken for each of the best estimate, lower limit, and upper 
limit for admixture coeffi cients for each accession. 

  Table  2. Chloroplast haplotypes present in material of  R. delavayi ,  R. cyanocarpum , and putative hybrids, and the codon positions at which they differ. 

Sequence region and codon position

 trnC-F    trnH-psbA   

Haplotype  a 289 308 310 – 311 313 – 315 827 78 90 103 109 126 132 162 167 243

D T T TT TTT T A C C C A A T T C
C G A AA AAA C T A A A T C A C G

 a  All accessions of  R. delavayi  examined had haplotype D; all accessions of  R. cyanocarpum  had haplotype C.
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  Table  3. Summary of molecular results for all accessions examined. 

Number of 
accessions  a  

ITS sequence 
type

Number of clones with ITS 
type of species

Morphological Accession code AFLP results cpDNA haplotype  R. cyanocarpum  R. delavayi 

Outside hybrid zone
    R. cyanocarpum RC1,4,8,9,20,23,26,29,31,32,33,34 12  – C C  –  – 
    R. cyanocarpum RC3,13,22,27,30 5  R. c. C C  –  – 
    R. delavayi RD1,2,3,6,7 5  R. d. D D  – 
    R. delavayi RD4,5,8,9,10 5  – D D  –  – 
Within hybrid zone
   Putative hybrid P1 1 F 2 D C+D 1 1
   Putative hybrid P2 1 F 2 /Bc D D C+D 3 2
   Putative hybrid P3 1 F 2 D C+D 0 2
   Putative hybrid P4 1 F 2 D C+D 1 2
   Putative hybrid P5 1 F 2 D C+D 2 1
   Putative hybrid P6 1 F 2 C C+D 1 0
   Putative hybrid P7 1 F 1 D C+D 4 1
   Putative hybrid P8 1 F 1 D C+D 0 7
   Putative hybrid P9 1 F 2 D C+D 1 0
   Putative hybrid P10 1 F 2 D C+D 1 1
    R. cyanocarpum RC35-44 10  –  – C  –  – 
    R. delavayi RD11,23,26,30 4  –  – C+D  –  – 
    R. delavayi RD24,25 2  –  –  –  –  – 
    R. delavayi RD12-22,27-29,31 15  –  – D  –  – 

 a  See  Table 5  for details. F 2 /Bc D  indicates an accession identifi ed as F 2  by NewHybrids but which might have been an F 2  or a backcross to  R. delavayi  
according to Structure.

 AFLP analysis   —      We generated 90 polymorphic AFLP mark-
ers, of which 47 were present in all accessions of one parent 
species and absent from all accessions of the other, and a fur-
ther 15 were present in one parent species only, though not in 
all accessions thereof. 

 Analysis of AFLP data using NewHybrids confi rmed the 
identity of the  R. delavayi  and  R. cyanocarpum  accessions 
examined, when either setting was used. Using the default 
NewHybrids settings, eight hybrids were identifi ed as F 2  ’ s with 
posterior probabilities of 98% or more, whereas the other two 
(P7 and P8) were classifi ed as F 1  ’ s with 96 – 98% probability 
( Table 5 ). When the highly conservative 45-class setting was 
used, the probabilities dropped, to between 63 and 91% for the 
putative F 2  ’ s and 86 – 87% for the putative F 1 s. On this setting, 
for putative F 2  ’ s the next most likely class was always back-
cross to  R. delavayi , with 5 – 24% probability, whereas for puta-
tive F 1  ’ s the only other class with  > 1% probability was F 2  
( Table 5 ). It should be noted that accessions identifi ed as F 2  ’ s 
by this method could potentially be F 3  ’ s or another complex 
class containing roughly equal proportions of parental germ-
plasm; they are henceforth referred to as F 2 s ’  for simplicity. 

 In the Structure analysis of AFLP data, the value of   Δ   K  
was 80.91 for  K  = 2, 13.32 and 18.38 for  K  = 3 and  K  = 4, 
respectively, and  < 2.21 for all values of  K  higher than 4 (Ap-
pendix S1; see Supplemental Data at http://www.amjbot.org/

cgi/content/full/ajb.1000018/DC1). Therefore  K  = 2 best represents 
the data. Following 10 independent Structure runs with  K  = 2, in-
dividuals morphologically identifi ed as  R. delavayi  were assigned 
to one cluster with high probability ( q  = 0.987   ±   0.022), whereas 
those morphologically identifi ed as  R. cyanocarpum  were assigned 
to the other cluster with similarly high probability ( q  = 0.997 
  ±   0.001). Therefore these clusters were determined to respresent 
 R. delavayi  and  R. cyanocarpum , respectively. Among individ-
uals morphologically identifi ed as hybrids, the lowest estimated 
proportion of  R. cyanocarpum  germplasm was (0.235 – )0.329
( – 0.458) in accession P2, whereas the highest was in (0.494 – )
0.575( – 0.655) accession P4. A backcross to  R. delavayi  would 
have ~25%  R. cyanocarpum  germplasm, and accession P2 
was the only one whose credible interval overlapped this value 
( Table 5 ). A backcross to  R. cyanocarpum  would have ~75% 
 R. cyanocarpum  germplasm, but no accession ’ s credible inter-
val overapped this value, and the upper limit for no accession 
was higher than 0.678. The expected proportion of  R. cyano-
carpum  germplasm in F 2  ’ s would be (with some variation) 
50%, a value that fell within the credible intervals for all hybrid 
accessions except P2, P7, and P8. However, accessions P7 and 
P8 were identifi ed as F 1  ’ s by Newhybrids, and if this is the case, 
then the proportions of  R. cyanocarpum  germplasm estimated 
by Structure for these, and possibly all, hybrid accessions might 
be a slight underestimate. 

  Table  4. ITS sequence types present in material of  R. delavayi ,  R. cyanocarpum , and putative hybrids, and the codon positions at which they differ. 

Species ITS type

Codon position

255 266 557 560 650 663 670

 R. delavayi DD A G A C A G G
 R. cyanocarpum CC G A G A C C A
Putative hybrids  a C+D R(A/G) R(A/G) R(A/G) M(A/C) M(A/C) S(G/C) R(A/G)

 a  This additive pattern was seen for all 10 putative hybrids and for four accessions with  R. delavayi -like morphology from the hybrid zone.
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the future, and hybridization, not presently a threat, might be-
come so. However, it is also possible that this hybrid zone is 
long-lived and stable. 

 Population structure in the R. delavayi   ×   R. cyanocarpum   
hybrid zone   —      Among the 10 hybrids examined, two appeared 
to be F 1  ’ s, whereas eight were most likely of the F 2  class. If we 
assume that all hybrids are fi rst or second generation, then these 
determinations become more certain ( > 95% posterior probabil-
ity in each case), and no accession has  > 1% probability of being 
a backcross. Without this assumption, the probabilities drop to 
~80 – 90% in most cases, with four accessions having 20 – 25% 
chance of being backcrosses to  R. delavayi , four a 0.05 – 0.11 
probability, and the others  < 1%. 

 The Structure analysis, using 90% credible intervals, also re-
jected the possibility of being backcrosses for all but one of 
these accessions. The exception, accession P2, had a (0.235 – )
0.329( – 0.458) proportion of  R. cyanocarpum  germplasm, which 
appears to favor the hypothesis that it is a backcross to 
 R. delavayi  over its being an F 2 . However, if accessions P7 and 
P8 are indeed F 1  ’ s then their credible intervals of 0.309 – 0.464 
and 0.331 – 0.492, respectively, indicate that the proportion of 
 R. cyanocarpum  germplasm might be underestimated by Struc-
ture in some or all accessions. Based on this, the hypotheses of 
either an F 2  or a backcross to  R. delavayi  for accession P2 can-
not be separated based on the Structure results. However, even 
allowing for this underestimation, none of the hybrid accessions 
had a high enough proportion of  R. cyanocarpum  germplasm to 
be backcrosses to this species ( Table 5 ). Based on these analy-
ses together, the 10 hybrids appeared to comprise two F 1  ’ s, 
seven F 2  ’ s, and one accession that was either F 2  or a backcross 
to  R. delavayi.  

 Backcrosses to  R. delavayi  were certainly present, however, 
among the individuals of  R. delavayi -like morphology within 
the hybrid zone. Of 21 such individuals, four were back-
crosses based on ITS data; however, there was no evidence of 

 DISCUSSION 

 Hybrids between the narrow endemic species  R. cyanocar-
pum  and the much more widespread species  R. delavayi  were 
found at Huadianba, near Dali, Yunnan, but at no other site. 
There, 10 accessions were found to be hybrids by the cpDNA, 
ITS, and AFLP data. Remarkably, at least seven of the 10 hy-
brids appeared to be of the F 2  class. These are the only natural 
hybrids involving  R. cyanocarpum  known to science; despite 
our searches, we did not fi nd hybrids involving  R. cyanocarpum  
at any other site within its limited range. Given the well-known 
weakness of species barriers within  Rhododendron  subgenus 
 Hymenanthes  ( Chamberlain, 1982 ;  Milne et al., 1999 ,  2003 ; 
 Zha et al., 2008 ,  2010 ), this rarity of natural hybrids is remark-
able. It contrasts with the situations involving other hybrids of 
 R. delavayi  ( Zhang et al., 2007 ;  Zha et al., 2008 ,  2010 ), and 
other  Hymenanthes  species in NE Turkey ( Milne et al., 1999 , 
 2003 ), in which hybrids are produced commonly and often in 
quantity. This rarity of  R. cyanocarpum  hybrids might refl ect a 
relative lack of disturbance to its natural habitats and/or more 
effective prezygotic isolating mechanisms than exist in many 
other  Hymenanthes  species. 

 With this in mind, the single hybrid zone detected might ei-
ther be a stable, long-term phenomenon or a relatively recent 
occurrence, initiated or at least facilitated by habitat distur-
bance. The most signifi cant period of disturbance to the locality 
containing the hybrid zone was during 1957 – 1958, when many 
trees were felled to aid factory construction (Y. L. Yang, Hua-
dianba Medical Factory, personal communication). From mo-
lecular data, we know that hybrids beyond the fi rst generation 
are present, so if this disturbance did initiate hybridization and 
the minimum generation time of 12 yr for  R. ponticum  applies 
here ( Cross, 1975 ), then we may be witnessing the early stages 
of hybrid zone formation, because no more than four genera-
tions could have been completed since 1957 and 1958. If so, 
more hybrids involving  R. cyanocarpum  would be expected in 

  Table  5. Assignments to genotype classes made by the programs NewHybrids and Structure based on AFLP data. 

Accession

Most likely class 
 (NewHybrids, both 

methods)

Probability of most likely 
class (NewHybrids, 6-class 

method)

Probability of most likely 
class (NewHybrids, 45-class 

method)

Second most likely class and its 
probability 

(45-class method)  a   

Proportion of  R. 
cyanocarpum  germplasm 

(Structure)  b 

RD1  R. delavayi 1 1 None (0 – ) 0.056 ( − 0.110)
RD2  R. delavayi 1 1 None (0 – ) 0.003 ( − 0.013)
RD3  R. delavayi 1 1 None (0 – ) 0.002 ( − 0.012)
RD6  R. delavayi 1 1 None (0 – ) 0.002 ( − 0.011)
RD7  R. delavayi 1 1 None (0 – ) 0.002 ( − 0.012)
RC3  R. cyancarpum 1 1 None (0.988 – ) 0.998 ( − 1)
RC13  R. cyancarpum 1 1 None (0.988 – ) 0.998 ( − 1)
RC22  R. cyancarpum 1 1 None (0.985 – ) 0.997 ( − 1)
RC27  R. cyancarpum 1 1 None (0.979 – ) 0.996 ( − 1)
RC30  R. cyancarpum 1 1 None (0.984 – ) 0.997 ( − 1)
P1 F 2 0.99 0.88 BC- delayavi  (0.11) (0.444 – ) 0.526 ( − 0.607)
P2 F 2 1 0.90 BC- delayavi  (0.05) (0.235 – ) 0.329 ( − 0.458)
P3 F 2 0.99 0.78 BC- delayavi  (0.22) (0.492 – ) 0.573 ( − 0.654)
P4 F 2 1 0.77 BC- delayavi  (0.23) (0.494 – ) 0.575 ( − 0.655)
P5 F 2 1 0.78 BC- delayavi  (0.22) (0.485 – ) 0.567 ( − 0.647)
P6 F 2 1 0.63 BC- delayavi  (0.24) (0.440 – ) 0.546 ( − 0.678)
P7 F 1 0.98 0.87 F 2  (0.12) (0.309 – ) 0.386 ( − 0.464)
P8 F 1 0.96 0.86 F 2  (0.13) (0.331 – ) 0.410 ( − 0.492)
P9 F 2 1 0.90 BC- delayavi  (0.09) (0.410 – ) 0.491 ( − 0.573)
P10 F 2 1 0.91 BC- delayavi  (0.08) (0.335 – ) 0.416 ( − 0.501)

 a  The second most likely class is given only when the posterior probability for it is at least 5%.
 b  Numbers in parentheses indicate 90% confi dence intervals generated using the ANCESTDIST function in Structure. All data in this column are means 

across 10 runs.
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for this in the rarer member of a hybridizing pair of species 
( Zhou et al., 2008 ). Our study fi ts this pattern. Conversely, most 
known instances where a species faces a threat from genetic 
swamping involve human interference of some kind ( Levin 
et al., 1996 ;  Rhymer and Simberloff, 1996 ;  Vil à  et al., 2000 ). 
Even if the detected  R. cyanocarpum  hybrid zone results from 
human |disturbance, it currently poses no threat of genetic 
assimilation. Such a threat is only likely to arise if habitat 
disturbance increases substantially, for example, as a result of 
climate change. 
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backcrossing toward  R. cyanocarpum . These backcrosses all 
occurred close together, indicating that they might share a com-
mon maternal parent ( Fig. 2 ). Furthermore, among 10 individ-
uals of hybrid morphology, nine had  R. delavayi  as their 
maternal parent. Hence, the directions of both crossing and 
backcrossing are strongly biased toward  R. delavayi . Because 
 R. delavayi  fl owers earlier than hybrids or  R. cyanocarpum , it 
would be the more likely maternal parent because  Rhododen-
drons  are protandrous; however, for the same reason, hybrid 
stigmas are more likely to receive pollen from the later fl ower-
ing parent (see  Milne and Abbott, 2008 ). Possibly, therefore, 
some other mechanism restricts backcross formation toward  R. 
cyanocarpum , and perhaps hybridization in this species overall; 
one such mechanism might be selection toward reinforcement 
among rare species ( Zhou et al., 2008 ). 

 The detection of a hybrid zone in which F 2  ’ s outnumber both 
F 1  ’ s and backcrosses combined is extremely unusual. The most 
common pattern for hybrids to be fertile is for most hybrid de-
rivatives to be backcrosses ( Barton and Hewitt, 1985 ;  Cruzan 
and Arnold, 1993 ;  Arnold, 1997 ;  Rieseberg and Carney, 1998 ; 
 Chung et al., 2005 ;  Lexer et al., 2005 ;  Van Droogenbroeck 
et al., 2006 ;  Minder et al., 2007 ). Another pattern, in which F 1  ’ s 
can be the most numerous class, despite their own fertility and 
the viability of other classes, is fairly common in  Rhododen-
dron  ( Milne et al., 2003 ;  Milne and Abbott, 2008 ;  Zha et al., 
2010 ), but very rare in other genera (e.g.,  Kyhos et al., 1981 ; 
 Kameyama et al., 2008 ). In certain cases, hybrid zones may 
contain many F 1  ’ s and backcrosses but very few F 2  ’ s ( Milne 
and Abbott, 2008 ;  Zha et al., 2008 ). 

 The pattern seen in the current study, in which F 2  ’ s are the 
most abundant class, has to the our knowledge only been de-
tected for stickleback fi sh ( Gow et al., 2006 ). Among plants, 
one example exists in which F 2  ’ s occur in similar numbers to 
backcrosses ( Smulders et al., 2008 ), but  R. cyanocarpum    ×    R. 
delavayi  is the only plant example that we know in which F 2  ’ s 
certainly outnumber all other classes in a hybrid zone. Further-
more, both of the aforementioned studies assigned hybrid class 
using only the less conservative default settings of NewHybrids 
( Gow et al., 2006 ;  Smulders et al., 2008 ) and did not expressedly 
test the hypothesis that the F 2  ’ s not only occurred, but they also 
outnumbered all other classes, meaning the methods in the pre-
sent study are more stringent. 

 The simplest explanation for the unusual precedence of F 2  ’ s 
is that much seed produced by F 1  ’ s is set by geitonogamy, 
which is common in  Rhododendron  ( Stout, 2007 ) including  R. 
cyanocarpum  (Ma et al., personal observation). This would 
only lead to F 2  ’ s being recruited in any quantity if some F 2  ’ s 
had high fi tness, because selective pressures among  Rhododen-
dron  seedlings is likely to be extreme ( Milne et al., 2003 ), and 
numerous seeds of the parents and possibly other hybrid classes 
would also be falling within the hybrid zone. Therefore, this 
putatively high fi tness of the F 2  ’ s might prove to be a special 
case of the mosaic ( Harrison and Rand, 1989 ) and/or bounded 
hybrid superiority ( Moore, 1977 ;  Arnold, 1997 ) models of hy-
brid zone dynamics, in both of which hybrids can have superior 
fi tness in certain conditions. More research is required to deter-
mine whether this highly unusual hybrid zone structure is a 
contributing factor to the absence of backcrossing toward  R. 
cyanocarpum  and hence to maintaining the genetic purity of 
this narrow endemic species. 

 When a naturally rare species is sympatric and interfertile 
with a more common one, barriers to crossing in the rare 
species tend to be stronger, possibly from stronger selection 
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  Appendix  1. Voucher information for accessions used in this study. The voucher specimens were deposited in the herbarium of the Kunming Institute of Botany, 
Chinese Academy of Sciences (KUN). 

Accession Taxon Voucher number Latitude, longitude Collection locality

RD1  R. delavayi MYP-2009-5-12-1 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD2  R. delavayi MYP-2009-5-12-2 25  °  52 ’ N, 99  °  59 ’ E ’ Huadianba, Dali, Yunnan, China
RD3  R. delavayi MYP-2009-5-12-3 25  °  52 ’ N, 99  °  59 ’ E ’ Huadianba, Dali, Yunnan, China
RD4  R. delavayi MYP-2009-5-12-4 25  °  52 ’ N, 99  °  59 ’ E ’ Huadianba, Dali, Yunnan, China
RD5  R. delavayi MYP-2009-5-12-5 25  °  52 ’ N, 99  °  59 ’ E ’ Huadianba, Dali, Yunnan, China
RD6  R. delavayi MYP-2009-5-12-6 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD7  R. delavayi MYP-2009-5-12-7 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD8  R. delavayi MYP-2009-5-12-8 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD9  R. delavayi MYP-2009-5-12-9 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD10  R. delavayi MYP-2009-5-12-10 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD11  R. delavayi MYP-2009-5-12-11 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD12  R. delavayi MYP-2009-5-12-12 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD13  R. delavayi MYP-2009-5-12-13 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD14  R. delavayi MYP-2009-5-12-14 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD15  R. delavayi MYP-2009-5-12-15 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD16  R. delavayi MYP-2009-5-12-16 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD17  R. delavayi MYP-2009-5-12-17 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD18  R. delavayi MYP-2009-5-12-18 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD19  R. delavayi MYP-2009-5-12-19 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD20  R. delavayi MYP-2009-5-12-20 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD21  R. delavayi MYP-2009-5-12-21 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD22  R. delavayi MYP-2009-5-12-22 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD23  R. delavayi MYP-2009-5-12-23 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD24  R. delavayi MYP-2009-5-12-24 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD25  R. delavayi MYP-2009-5-12-25 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD26  R. delavayi MYP-2009-5-12-26 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD27  R. delavayi MYP-2009-5-12-27 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD28  R. delavayi MYP-2009-5-12-28 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD29  R. delavayi MYP-2009-5-12-29 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RD30  R. delavayi MYP-2009-5-12-30 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC1  R. cyancarpum MYP, 2009-5-13-1 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC3  R. cyancarpum MYP, 2009-5-13-3 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC4  R. cyancarpum MYP, 2009-5-13-4 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC8  R. cyancarpum MYP, 2009-5-13-8 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC9  R. cyancarpum MYP, 2009-5-13-9 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC13  R. cyancarpum MYP, 2009-5-13-13 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC20  R. cyancarpum MYP, 2009-5-13-20 25  °  52 ’ N, 99  °  59 ’ E ’ Huadianba, Dali, Yunnan, China
RC22  R. cyancarpum MYP, 2009-5-13-23 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC23  R. cyancarpum MYP, 2009-5-13-22 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC26  R. cyancarpum MYP, 2009-5-13-26 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC27  R. cyancarpum MYP, 2009-5-13-27 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC29  R. cyancarpum MYP, 2009-5-13-29 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC30  R. cyancarpum MYP, 2009-5-13-30 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC31  R. cyancarpum MYP, 2009-5-13-31 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC32  R. cyancarpum MYP, 2009-5-13-32 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC33  R. cyancarpum MYP, 2009-5-13-33 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC34  R. cyancarpum MYP, 2009-5-13-34 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC35  R. cyancarpum MYP, 2009-5-13-35 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC36  R. cyancarpum MYP, 2009-5-13-36 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC37  R. cyancarpum MYP, 2009-5-13-37 25  °  52 ’ N, 99  °  59 ’ E ’ Huadianba, Dali, Yunnan, China
RC38  R. cyancarpum MYP, 2009-5-13-38 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC39  R. cyancarpum MYP, 2009-5-13-39 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC40  R. cyancarpum MYP, 2009-5-13-40 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC41  R. cyancarpum MYP, 2009-5-13-41 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC42  R. cyancarpum MYP, 2009-5-13-42 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC43  R. cyancarpum MYP, 2009-5-13-43 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
RC44  R. cyancarpum MYP, 2009-5-13-44 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
P1 Putative hybrid MYP, 2009-5-14-1 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
P2 Putative hybrid MYP, 2009-5-14-2 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
P3 Putative hybrid MYP, 2009-5-14-3 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
P4 Putative hybrid MYP, 2009-5-14-4 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
P5 Putative hybrid MYP, 2009-5-14-5 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
P6 Putative hybrid MYP, 2009-5-14-6 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
P7 Putative hybrid MYP, 2009-5-14-7 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
P8 Putative hybrid MYP, 2009-5-14-8 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
P9 Putative hybrid MYP, 2009-5-14-9 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China
P10 Putative hybrid MYP, 2009-5-14-10 25  °  52 ’ N, 99  °  59 ’ E Huadianba, Dali, Yunnan, China


