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ABSTRACT: Many plants flower in response to a change in the environment. Since one of the main goals for a plant is
to complete a growth cycle in order to produce seed, flowering is a key stage in plant development. We have developed a
statistical procedure for explaining the variations in flowering date, which is based on a well-accepted phenological model
(growing degree-days). Our approach has several advantages over previous methods based around multiple-regression
procedures, the main one being that we have a direct interpretation in terms of just two meaningful phenological parameters
(thermal requirement and thermal threshold) per species. The model is used to classify 79 flowering plants. By using a
statistical approach based on empirical p-values, we can decide which species can be regarded as sensitive to temperature.
Our model, while a simplification of the real system, is easy to work with and enables the consequences of future
temperature change to be predicted. By adopting a simple (linear), but realistic, approximation to the rise in temperature
each spring, we derive a simple expression for the change in expected flowering dates under global warming. We use
the expression to examine changes under three different climate change scenarios involving increasing warmth, oceanicity
and continentality. Variations in flowering from species to species and year to year are explained in a straightforward
manner by variations in our two parameters and the linear temperature functions, respectively. We find that the sensitivity
of spring flowering dates to temperature is strongly governed by the continentality of the climate. We make predictions
that will allow the assumptions used in constructing our model to be validated or repudiated. Our formulae can be used
for any global warming scenario of the type we consider, whenever our basic assumptions hold. In particular, we predict
the likely change in world-wide spring flowering dates under the likely climatic conditions in the 2080s as predicted under
the Intergovernmental Panel on Climate Change scenario A1FI. Copyright  2009 Royal Meteorological Society
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1. Introduction

The growth and development of most plants is highly
regulated by the march of the seasons (Battey, 2000).
In order to maximise fitness, plants in temperate regions
regulate the timing of bud burst and flowering in spring,
and the timing of the onset of dormancy in autumn,
by adapting to their local annual climatic variations
(Häkkinen et al., 1998; Saxe et al., 2001; Tanja et al.,
2003). The flowering of a temperate plant is a cen-
tral event in its yearly cycle. Although the initiation
of flowering is typically mediated through the synthesis
of flowering hormone by changes in day-length (Salis-
bury, 1963), the time required for flowers to open and
develop to maturity is often strongly dependent upon
temperature. Phenological time series of past events pro-
vides one means of assessing the sensitivity of plants to
various environmental cues (Menzel and Fabian, 1999;

* Correspondence to: Robert Malcolm Clark, School of Mathematical
Sciences, Monash University, Clayton, PO Box No. 28M, Victoria
3800, Australia. E-mail: malcolm.clark@sci.monash.edu.au

Sparks and Carey, 1995; Penuelas and Filella, 2001; Fit-
ter and Fitter, 2002; Hudson et al., 2005). The role of
temperature, in temperate regions, is often dominant in
phenological studies (Fitter et al., 1995; Grierson 1995;
Oliveira, 1998), as temperature is a fundamental factor
that affects the rates of most biological and chemical
reactions (Arora et al., 2003). Accumulated degree-days,
calculated as the sum of the ambient temperatures above
a base temperature, provide a measure of biological or
thermal time. The concept of growing degree-days is well
established having been used for over 200 years (Wang,
1960).

The great Swedish naturalist Carl Linnaeus
(1707–1778) initiated the first systematic phenological
studies. Phenological observation flourished in the 19th
century but then largely fell into neglect until the evi-
dence of climate change, and the desire to understand
ecological mechanisms has recently led to a renewed
interest (Häkkinen et al., 1995; Sparks et al., 1997;
Chuine et al., 1999; Cayan et al., 2001). Century-scale
instrumental records have demonstrated the occurrence of
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the modern global warming on Earth (Jones and Thomp-
son, 2003). Climate models, ever since the pioneering
studies of Manabe (Manabe and Wetherald 1967; Man-
abe 1970), have consistently pointed to increased global
warming with a build-up of CO2 (IPCC 2007). Obser-
vational evidence indicates that regional changes in cli-
mate, particularly increases in temperature, have already
affected a diverse set of physical and biological systems
in many parts of the world (Root et al., 2003). Examples
of observed changes include shrinkage of glaciers, thaw-
ing of permafrost, earlier break-up of ice on rivers and
lakes, lengthening of growing seasons, and earlier flow-
ering of plants, emergence of insects, and egg-laying in
birds (Parmesan and Yohe, 2003).

We develop a technique to model phenological records
of first flowering using the growing degree-days concept.
The method is very general. It allows us to predict
the effect of global warming on flowering date and
generate statistical confidence limits on the projected
changes. We use old phenological records from the Royal
Botanic Garden Edinburgh (RBGE) to investigate the
responsiveness of 79 taxa to mean air-temperature, and
to forecast likely changes in their flowering under three
global warming scenarios.

2. Materials and methods

2.1. Flowering records

In 1850 McNab started noting the first flowering dates
(FFDs) of about 100 spring flowering plants, thus ini-
tiating the RBGE tradition of phenological monitoring.
Sadler continued recording 40 taxa after McNab’s death
(1878). Then in the 1900s a new, more extensive, pro-
gramme saw the monitoring of hundreds of RBGE plants.
The bulk of the early 1900s archival material consists of
weekly lists of taxa in flower. These observations were
made, typically on Thursdays, by the RBGE horticul-
tural staff. From January through to the late summer, the
lists are, in general, weekly. In later years the autumn
records are only monthly. The main body of data spans
the years 1908 through 1938. No observations were made
during the First World War (1913–1918). In certain years,
the flowering of individual species was not recorded.
We attach no particular phenological significance to such
minor data gaps. We primarily picked out genera from
the archives for which a reasonable number of species
had been monitored, e.g. Saxifraxa (25), Prunus (21),
Geranium (16), and Anemone (13). We further selected
16 species that were in common with taxa studied by
Fitter et al. (1995). To date, only a selection of the thou-
sands of records of plants monitored at the RBGE have
been collated.

Preliminary studies (authors’ unpublished calculations)
showed an association between FFD and climate. How-
ever linkages between last flowering date and climate
were otherwise found to be poor. In the ensuing text, we
have chosen to concentrate on analysing the relationship
between climate and first flowering.

2.1.1. Editing of data

To begin with, data for all the species in our chosen gen-
era were digitised from the archives. However, it was
soon found that certain taxa had only been monitored for
a small number of years. Of the 152 species originally
chosen for analysis, 73 were discarded as being unsuit-
able for statistical analyses, either because there were too
few observations or too many FFDs fell outside the range
from early spring to early summer for which the linear
temperature model was applicable. Specifically, species
were deleted if there were more than 4 FFDs less than
75 or more than 4 FFDs greater than 165, or fewer than
12 FFDs between 75 and 165. Our subsequent analyses
use data from the remaining 79 species.

2.2. Climate data

Edinburgh has particularly good and extensive records
of its weather and climate, with observations of pressure,
precipitation, and mean air-temperature extant from 1775
onwards. Sunshine hours, wind, and maximum and
minimum temperatures are also available for our period
of interest. A preliminary correlation analysis (authors’
unpublished calculations) between the flowering data and
the meteorological data revealed clear linkages between
flowering and mean air-temperature but no consistent
relationship with sunshine hours; no major improvement
with using maximum or minimum temperature; and little,
or no, association with precipitation. Consequently, in
the remainder of this paper, we concentrate on the
relationship between FFD and mean air-temperatures,
examining the extent to which this relationship alone
can explain and predict changes in FFDs. Daily mean
air-temperature measurements, in Edinburgh, cover the
whole of the period of interest to us (1908–1938).
These temperatures are the mean daily air-temperature,
measured in the shade, using the standard exposure of a
louvred white screen at 1.25 m above the ground.

We will be particularly concerned with spring (March
to May) temperatures. Year-to-year differences in spring
temperatures in Edinburgh can be quite large. Four exam-
ples of extreme years are illustrated in Figure 1. Between
1908 and 1938 mean-spring (MAM) temperature in Edin-
burgh varied from 5.5 to 8.6 °C. Such large interannual
variations are a key facet in any procedure designed to use
archival records as a basis of predicting future impacts
of global warming. The important point is that projected
temperature changes are within, or similar to, the inter-
annual range. Consequently, impact predictions do not
require any extrapolation beyond the temperature range
of the observations.

2.3. Global warming scenarios

2.3.1. Global climate models and warming scenarios

Changes in the climate system, in response to increases
in greenhouse gases that are confidently predicted,
include increases in global mean-surface air-temperature,
increases in global mean rates of precipitation, and rising
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sea level (IPCC, 2007). However, substantial uncertain-
ties remain in the magnitudes and geographical distribu-
tion of the changes and in the rates at which they may
be expected to occur. Gyalistras (2002) has reviewed cli-
mate change scenarios for Europe. He considers that the
climatic evolution of Europe remains uncertain except
for the sign of the temperature change and for a gen-
eral northward drift of the major atmospheric circulation
patterns.

We explore the implications of three climate change
scenarios on flowering behaviour in Britain. In scenario
1, temperatures are 1 °C higher than normal. Scenario 2A
uses the results of local RCMs, e.g. UKCIP98, UKCIP02
based on the Hadley Centre suite of models such as
HadRM3 (Hulme et al., 2002). Here we assume that the
mean temperature will rise by 1.5° on Day 75 and 0.5°

on Day 165 with a linear trend in between. Scenario
2B has an overall, year around, warming of 365 degree-
days, exactly as for scenarios 1 and 2A, but with a 0.5 °C
warming at the start of spring (Day 75) which increases to
a 1.5 °C warming by Day 165. So scenario 2B represents
a more continental climate in contrast with the more
oceanic climate of scenario 2A.

In our global analysis we use general circulation model
(GCM) output, for the 2080s, from HadCM3 A1FI in a
study of the desynchronisation of the springtime phenolo-
gies that may occur between species due to future climate
change. HadCM3 is a coupled atmosphere-ocean GCM,
and one of the major models used in the IPCC (Inter-
governmental Panel on Climate Change), (Gordon et al.,
2000). It provides us, at each grid square of interest, with
output that can be easily used to calculate the two key
climatic parameters needed to ‘drive’ our phenological
model. These are: (1) the change in springtime tempera-
ture between today and some future date and (2) the rate
of increase in springtime temperature in a typical year.

2.4. Statistical assumptions

Our notation and methods can be demonstrated by
considering initially just one species. Let µi denote its
expected or theoretical FFD (in Julian days) in year i,
and yi denote the actual observed FFD in year i, both
recorded in units of days relative to Day75 (in view of
Equation (3) below). We assume throughout, as in most
statistical analyses, that the observed dates differ from
the expected dates by ‘errors’ which are assumed to be
approximately normally distributed. In other words:

yi = µi + ei (1)

where the ‘error terms’ ei (in units of days) are approxi-
mately normally distributed with mean zero and standard
deviation σ . This assumption is not crucial, since all of
our analyses are based on simulation or bootstrapping.

We consider two models:
Model 1 : The species is insensitive to temperature, and

always comes into flower on the same day each year.
Hence µi = µ0, independent of the year i.

Equivalently,
yi = µ0 + ei (2)

Model 2 : The species comes into flower after β growth
degree-days above a threshold or base temperature α.

Records of daily temperature in Edinburgh from 1908
to 1938 indicate that for each year the increase in
mean daily temperature from mid-March to mid-June
is approximately linear (Figure 1). Consequently, we
assume that for days between 75 and 165, the mean
temperature on Day x relative to Day 75 in year i is
given by the linear equation:

Ti(x) = mix + ci (3)

With this notation, ci is the mean temperature on Day
75 and mi is the rate of increase of temperature in
degrees per day. These coefficients are estimated by least-
squares regression using the known daily temperatures
each year. Test calculations show that the choice of the
spring period over which Equation (3) is applied is not
critical. For example the astronomical definition of spring
of Day 80 to Day 172 could equally well have been used.
Equation (3) is the key to our methodology, as it allows
a simple and elegant linear solution to the heat unit, or
growing degree-day, problem.

Setting γi equal to the day on which the temperature
first reaches the threshold α, Equation (3) and simple
geometry (Figure 2) imply that:

β = 1

2
mi(µi − γi)

2 where mi γi + ci = α (4)

and hence

µi =
√

2β

mi

+ α − ci

mi

(5)

We assume that each species has its own α and β;
this, together with Equation (5), would explain why in
any given year, different species have different FFDs.

2.5. Testing Model 2 versus Model 1

If the mean FFD of the species in question depends on
temperature, then Model 2 should be a better fit to the
data than Model 1. The usual procedure for compar-
ing the fit of two hierarchical linear models is to use
the F -statistic in the corresponding analysis of variance.
But our models are not hierarchical. Nevertheless, to test
our models, we mimic that standard procedure based on
analysis of variance for hierarchical linear models, as rec-
ommended by Bates and Watts (1988) and Hastie and
Tibshirani (1990). Let RSS1 and RSS2 denote the resid-
ual sums of squares for Models 1 and 2 respectively,
with corresponding degrees of freedom ν1 and ν2. Then
by analogy with this standard procedure, we compute the
pseudo F -statistic:

F ∗ = (RSS1 − RSS2)/(ν1 − ν2)

RSS2/ν2
= RSS1 − RSS2

RSS2/(n − 2)
(6)

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 30: 1599–1613 (2010)
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Figure 1. Daily spring air-temperatures in Edinburgh during four representative years between 1908 and 1938. Straight lines are least-squares
fits. The gradient of the linear temperature rise (the ‘m’ in Equation (3)) and the mean temperature in degree celcius are noted in the top left
and bottom right corners, respectively. The solid square and bar represent the mean and interquartile range of the FFDs for the 45 species we
judge as temperature-sensitive. 1922 is an example of a year in which spring temperatures rise rapidly; 1924, a year of a cold spring; 1927, a

year with a very slow rise in temperature; and 1933, a warm spring.

noting that ν1 = n − 1 and ν2 = n − 2. If Model 2 is
a better fit than Model 1, then F ∗ should be ‘large’.
Conversely, if F ∗ is ‘large’, it is reasonable to conclude
that Model 2 is a better fit than Model 1.

The F -statistic (Equation (5)) does not have the F

distribution on 1, n − 2 degrees of freedom as might be
expected naively. This is for three reasons:

1. The models are not hierarchical (non-nested); i.e.
Model 1 is not a special case of Model 2. Although
Model 2 has one more parameter than Model 1, Model
2 does not reduce to Model 1 by setting either α or β

to zero.
2. Model 2, although linear in α, is subject to the

constraint β ≥ 0. This basic constraint cannot be
removed by re-parameterising to β∗ = √

β; while this
makes Model 2 linear in both parameters, there is still
the constraint that β∗ ≥ 0.

3. F ∗ can be negative. This can happen if Model 1 is in
fact true, with small residual variation.

Whilst several alternative tests have been proposed
for comparing non-nested hypotheses in regression mod-
els (Pesaran, 1982; Godfrey and Pesaran, 1983), these
procedures apply only asymptotically, and do not apply
when the regression parameters are constrained. In view
of these complications, the only way of assessing the
significance of an observed value of Equation (6) is by
obtaining an empirical p-value by simulation, treating
Model 1 as the null hypothesis H0 and Model 2 as the
alternative hypothesis H1. The procedure involves the
simulation of data under Model 1 using the values of µ0

and σ estimated from the actual data. The test-statistic
F ∗ is then computed for each such simulation, and the
p-value is estimated by the proportion of 1000 simulated
values of F ∗ that exceed F ∗∗, the value of F ∗ for the
actual data.

The null hypothesis H0 (Model 1) is rejected in favour
of alternative hypothesis H1 (Model 2) if the empirical
p-value is less than 0.05, and we classify the species
as ‘primarily temperature-sensitive’. Otherwise, we con-
clude that there is insufficient evidence (at significance
level 0.05) to reject Model 1 in favour of Model 2.

The above test procedure is then performed for each
of the 79 species. We can then judge each species as
‘temperature-sensitive’ (as defined by Model 2) or not.

This procedure ensures that the type I error rate, the
proportion of false positives, is less than 0.05. Essentially,
the same procedure can be used to estimate the type
II error rate, the proportion of false negatives. This is
equivalent to estimating the power of the test, defined
by:

Power = Prob(F ∗ > F ∗
c |Model 2 is true)

where F ∗
c is the upper 5% point of the null distribution

of F ∗, for any given choice of the parameters α and
β defining Model 2. In principle, the power could be
estimated for a range of assumed α and β corresponding
to different levels of sensitivity to temperature, producing
a power function.

Such computations would be time-consuming, would
require arbitrary choices of the parameters, and would be
difficult to interpret. Instead, we compute the empirical

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 30: 1599–1613 (2010)
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Figure 2. Schematic illustration of our GDD model under our assumption of linear temperature increase, with slope m and intercept c as in
Equation (3) for any given species in any given year. Shaded area denotes β, the total thermal days above the threshold temperature α (horizontal
line) under the line representing the mean daily temperature. The vertical lines indicate γ , the day on which the temperature first reaches the
threshold α and the expected FFD µ under this model. The dashed line denotes the observed FFD, which differs from µ by a ‘random error’.
This may be positive (as shown here) or negative. The linear temperature function changes from year to year, which is why subscripts are

required in Equation (3).

power for just one choice of α and β, namely their
estimated values. The empirical power is the proportion
of times that the simulated F ∗ exceeds the critical value
F ∗

c . Figure 3 gives a schematic illustration of the p-value
and power for two representative taxa. The distribution of
F ∗ under Model 2 is always shifted to the right relative
to that for Model 1: the relative extent of this shift
determines the power. Bisono (2006) showed that our test
procedure based on Equation (6) was almost as powerful
as those suggested by Pesaran (1982) and others.

2.6. Estimation of parameters

The unknown parameters α and β must be estimated,
subject to the obvious constraint that β ≥ 0. When β is
significantly greater than zero, standard regression pro-
cedures can be used to estimate α and β simultaneously.
When β is close to 0, we use the following modified
least-squares method. We rewrite Equation (5) as:

ui = β∗
√

2

mi

+ α
1

mi

+ ei (5a)

where β∗ = √
β and ui = yi + ci/mi (which may be

regarded as an ‘adjusted’ FFD), subject to the obvious
constraint that β∗ ≥ 0. The method of least-squares is
then applied in two stages, by first minimising the error
sum of squares with respect to α conditional on a given
value of β∗, and then minimising with respect to β∗
subject to the constraint.

2.7. Confidence intervals

Rather than presenting the results obtained from solving
Equation (5) in terms of the least-squares estimates of α

and β and their standard errors, we derive non-parametric

bootstrap confidence intervals for each parameter using
the bias-corrected and accelerated procedure (Efron and
Tibshirani, 1993, Ch. 14; Efron, 1987). We do this for
two reasons: first, it is not sensible to give standard
errors because of the intrinsic constraint, and second, the
non-parametric method makes no assumptions about the
distributional form of the data.

2.8. Effect of global warming on mean FFD

How will the expected or average FFD for each species
change from the ‘present’ climate to some ‘future’
climate?

We represent the present climate by the average linear
temperature rise during the spring (mid-March to mid-
June). This turns out to be (for Day x relative to Day
75):

T (x) = 4.4 + 0.09x (7)

We assume that under global warming, the mean
temperature on Day 75 increases by A degrees, the
temperature on Day 165 increases by B degrees, but
otherwise the rate of temperature increase from Day 75
to Day 165 remains linear. The values of A and B are
chosen so that the average increase in temperature is 1°

over 90 days, making an additional 90 growth degree-
days. Let � denote the mean difference in expected FFD
in the future compared with the present, defined in such a
way that � > 0 implies that the expected FFD is smaller
in the future than in the present, i.e. the plant will flower
sooner. Then under Model 2 and this assumption, � is
given by:

� =
√

2β

M
+ α − C

M
−

√
2β

M + A∗ − α − C − A

M + A∗ (8)
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1604 R. M. CLARK AND R. THOMPSON

Figure 3. Empirical power and p-value for two representative taxa. For each taxon, the upper histogram shows the simulated distribution of F ∗
under Model 1, and the lower histogram shows the simulated distribution of F ∗ under Model 2 using the estimated values of α and β. In each
histogram the vertical axis represents proportions, not frequencies, so that the total area under the histogram is 1. The dashed vertical line is the
observed value F ∗∗ based on the actual data, while the solid line is the critical F ∗-value F ∗

c . In the upper histogram (Model 1), the p-value is
the area to the right of the dashed line, and the area to the right of the solid line is 0.05, by definition. The power is the area to the right of the
solid line in the lower histogram. (a) Prunus avium is an example of a taxon with negligible p-value (high significance) and high power, while

(b) Ranunculus amplexicaulis is an example with p-value close to 0.05 and low power.

where M and C are the slope and intercept of the average
linear temperature relationship (Equation (7)) and A∗ =
(B − A)/90.

2.8.1. Scenario 1

The mean temperature increases by 1° uniformly. In
other words, A = B = 1, and hence A∗ in Equation (8)

is zero, and consequently � = A/M = 1/0.09 = 11.1
days, independently of α and β. In other words, all
species will come into flower about 11 days sooner.

2.8.2. Scenario 2

Again we assume an overall 1° warming, but for scenario
2A we assume that the mean temperature will increase

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 30: 1599–1613 (2010)
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by 1.5° on Day 75 and 0.5° on Day 165 (Section 2.3). So
in Equation (8), A = 1.5, B = 0.5 and A∗ = −0.0111.
In scenario 2B, A = 0.5 and B = 1.5. Since each species
has its own α and β, � will vary from species to species.
We estimate � by using the estimated values of α and
β in Equation (8). We obtain confidence intervals for �

for each scenario and each species by applying the same
bootstrap procedure as before, but this time using the
definition (8) of � directly.

2.9. Effect of global warming on the
desynchronisation of springtime phenologies

As our phenological model is very general, it can be
readily applied to other parts of the world, and to
other taxa. In Section 3.1 we use it to estimate the
desynchronisation that can be expected between fully
temperature-sensitive taxa and temperature-insensitive
taxa in temperate climatic regions around the world. In
this study, global data from the HadCM3 A1FI GCM was
processed as follows. At each grid square of interest, a
two-term time-series (1-year + 6-month cycle) was fit
to the annual temperature cycle. The time series was
used to obtain the day-of-the-year, and magnitude (M)
of the maximum rate of increase of temperature. Next,
the change of temperature (A) between today and the
2080s, for the day-of-the-year of maximum increase, was
derived. Finally, we calculated the ratio A/M .

3. Results

The procedure described in Section 2.5 for testing Model
2 versus Model 1 indicated that 45 of the 79 species were
judged to be ‘primarily temperature-sensitive’ (Table I).
α, the growth threshold, averages around 5.8 °C, and
ranges from 3.5 °C, for Saxifraga aizoon var. pyrenaica,
to 7.9 °C, for Ranunculus amplexicaulis and R. multifidus
for these 45 temperature-sensitive species. β, the cumula-
tive thermal energy (GDD), averages around 70 degree-
days, ranging from zero, for species such as Anemone
rosea and A. pulatilla to 189 degree-days for Pyrus aria.

Figure 4 shows the 95% bootstrapped confidence inter-
vals for α and β, plotted against the mean FFD for those
taxa judged to be sensitive to temperature. The ther-
mal threshold α is virtually constant while β increases
in an approximate quadratic fashion. This relationship is
not unexpected. If α is virtually constant and there is
relatively small year-to-year variation in the linear tem-
perature relationship, then effectively the subscripts in
Equation (4) could be dropped. Then β would be approxi-
mately a quadratic function of µ. The confidence intervals
for both α and β become wider with increasing mean
FFD (equivalently, the estimates of α and β become
less precise). This is to be expected since the cumulative
thermal energy (GDD) should increase with increasing
mean FFD.

Under Model 2, any uniform warming (such as sce-
nario 1) will cause all fully temperature-sensitive species
to come into flower the same number of days early. The

extent of this change is determined only by the amount
of warming (A), and the continentality of the climate
(M−1). Figure 5 shows the 95% confidence intervals for
�, the expected change in the mean FFD under scenarios
2A and 2B as a function of the average FFD, for all our
fully temperature-sensitive species. This relationship is
approximately linear, since all terms in Equation (8) are
approximately linear, noting that β is approximately a
quadratic function of mean FFD. � depends on both the
temperature sensitivity and the magnitude and timing of
the warming. Under the more oceanic climate of scenario
2A, � decreases through the spring because warming is
greater in the winter than in the summer. The small varia-
tions about the main trend are caused by differences in β.
Plants with large β tend to integrate temperatures over a
longer period, and so (in scenario 2A) experience some-
what greater warming than low-β plants which, by virtue
of higher αs, happen to have the same mean flowering
date. The reduced winter warming of scenario 2B gener-
ates smaller changes in FFD. In this case, � increases in
value through the spring because of the greater warming
in summer. In short, Figure 5 illustrates the importance
for flowering dates, not only of a warming of the climate
but also a change in continentality.

Table I gives the p-value, empirical power, 95% boot-
strapped confidence intervals for α, β, and � under
scenarios 2A and 2B for all 79 taxa, sorted by increas-
ing p-value and then alphabetically. Table I also gives
the variability in FFD that remains unexplained by
our model, expressed as the residual standard deviation
(σ ). For temperature-sensitive species, the residual stan-
dard deviation generally ranged from 5 to 15 days. As
would be anticipated, species we judge as not primarily
temperature-sensitive, tend to have higher unexplained
variances. However, a number of temperature-sensitive
species, e.g. Geranium cinereum and G. phaeum, also
have high natural variability (standard deviations of
19 days) that is not accounted for by temperature. An
important task for phenologists is to explain such vari-
ability.

Table I also gives the ratio of the unexplained vari-
ability in FDD (expressed as residual standard deviation
or σ ) for Model 2 relative to Model 1. For species that
are judged to be sensitive to temperature, this ratio is
generally less than 1, as expected.

The power analysis is used to guard against wrongly
declaring a species to be not sensitive to temperature.
Ideally, we want a test to have high power. A low
power warns us that the sample size is too low, and
hence our hypothesis test lacks the precision to provide
reliable answers. As can be seen in Table I, the power
is good for many species such as Cardamine trifolia and
Prunus avium, but surprisingly poor for others such as
Iris florentina.

3.1. Time resolution of phenological observations

At first sight, a time resolution of 1 week on the phe-
nological observations might seem low for our purposes.
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Table I. Statistical properties, and 95% confidence intervals for parameter estimates and climate scenario results, for 79 taxa.

Taxa p-value Power αa

(°C)
βb

(degree-days)
�2Ac

(days)
�2Bc

(days)
σ d

(days)
Ratio

Cardamine trifolia 0 0.527 3.2 7.0 0 79 14.3 17.5 6.1 8.6 14.9 0.78
Prunus avium 0 0.892 3.8 7.0 0 53 14.3 16.9 6.8 8.6 12.2 0.64
Geranium robertianum 0 0.595 3.5 7.1 99 428 11.1 13.7 9.4 11.4 16.7 0.75
Iris florentina 0 0.163 4.0 5.8 126 255 12.0 13.9 9.2 10.1 7.3 0.59
Sorbus latifolia 0 0.233 4.5 6.4 56 216 9.2 13.8 9.2 10.4 7.3 0.52
Cerasus avium 0 0.438 4.4 7.0 0 51 14.1 16.2 7.3 8.9 11.1 0.71
Pr. serrulata 0 0.755 4.2 6.9 11 105 13.5 15.3 8.0 9.2 8.4 0.59
Ranunculus montanus 0.001 0.547 6.6 7.7 0 14 13.2 15.0 8.1 9.4 12.6 0.72
Pr. cerasus 0.001 0.777 3.3 5.9 42 184 14.0 15.8 7.6 8.9 6.8 0.54
Anemone nemorosa 0.002 0.657 5.3 6.7 0 4 14.8 16.3 7.1 8.2 14.6 0.86
Pr. avium cv. ‘P. Tricolor’ 0.003 0.263 3.8 6.9 0 70 14.2 16.5 7.1 8.7 11.3 0.78
A. rosea 0.004 0.225 5.9 7.1 0 10 14.2 15.3 7.5 8.6 10.9 0.76
Malus baccata cv. ‘F. Maximo’ 0.004 0.458 3.3 5.9 44 211 13.8 15.3 7.9 9.1 13.7 0.78
Pr. tomentosa 0.004 0.515 6.5 7.4 0 9 14.0 15.1 8.0 8.9 13.5 0.83
A. nemorosa cv. ‘Robert.’ 0.005 0.403 5.6 6.8 0 0 14.7 16.3 7.1 8.3 13.7 0.95
Pr. persica cv. ‘F. Alboplena’ 0.005 0.297 4.8 6.9 0 19 14.5 16.0 7.4 8.5 11.7 0.86
I. biflora 0.006 0.210 4.1 8.4 0 148 11.7 15.0 8.3 10.5 8.5 0.80
Saxifraga umbrosa cv. ‘Varieg.’ 0.006 0.145 1.0 6.3 67 426 12.7 17.0 6.9 10.0 10.9 0.82
So. aucuparia cv. ‘Pendula’ 0.007 0.008 3.9 6.7 79 246 12.1 14.3 9.0 10.6 8.8 0.89
I. missouriensis 0.007 0.008 3.5 6.8 29 184 12.6 15.1 8.1 10.0 8.2 1.13
So. aria 0.008 0.028 1.3 6.0 140 406 11.9 14.2 9.1 10.7 8.0 0.83
C. pinnata 0.009 0.263 5.3 7.3 0 23 13.8 15.1 8.0 8.9 11.4 0.85
I. siberica 0.009 0.560 5.0 10.0 0 188 9.8 13.2 9.6 12.1 15.9 0.80
Sa. juniperifolia 0.009 0.477 4.7 6.3 0 0 15.5 17.1 6.4 7.7 14.2 0.96
So. aucuparia cv. ‘Fifiana’ 0.009 0.030 3.8 6.8 84 257 11.8 14.3 8.9 10.5 9.0 0.95
G. phaeum 0.010 0.385 2.5 9.3 10 428 10.5 15.1 8.4 12.0 19.3 0.84
So. alpina cv. ‘Superaria’ 0.010 0.058 4.2 6.6 71 225 12.2 13.8 9.1 10.4 9.1 0.85
Pyrus salicifolia 0.010 0.398 4.2 7.4 0 58 13.0 16.3 7.1 9.1 13.0 0.86
R. auricomus 0.011 0.170 2.9 7.3 0 111 13.8 16.3 7.2 9.0 12.7 0.88
M. spectabilis cv. ‘Rosea’ 0.011 0.323 2.7 6.3 23 239 13.1 15.9 7.6 9.5 14.5 0.83
M. spectabilis 0.016 0.335 1.1 7.4 7 405 13.2 17.0 6.5 9.4 16.0 0.84
M. baccata 0.018 0.338 2.6 6.2 35 267 14.0 16.5 7.2 9.0 15.0 0.85
Py. pinnatifida 0.018 0.228 1.7 6.9 65 371 12.3 16.4 7.3 10.3 9.1 0.80
Sa. umbrosa 0.019 0.130 3.6 7.8 11 215 11.9 15.0 8.3 10.7 13.7 0.93
I. bucharica 0.021 0.215 5.4 7.4 0 16 13.8 15.9 7.5 9.0 13.1 0.97
R. gramineus 0.021 0.150 4.9 8.8 0 94 11.6 14.7 8.6 10.6 13.9 0.94
Sa. ciliata 0.021 0.380 5.6 6.3 0 0 15.4 16.6 6.9 7.8 13.0 0.91
M. floribunda 0.024 0.228 3.6 7.2 2 146 13.3 15.7 7.5 9.4 14.9 0.92
Pr. mahaleb cv. ‘Globosa’ 0.024 0.090 5.3 7.6 9 96 11.9 14.0 9.0 10.3 10.5 0.80
A. pulsatilla 0.027 0.328 5.7 6.4 0 0 15.4 16.5 6.9 7.8 13.1 1.04
Pr. cerasus cv. ‘Pulverulenta’ 0.027 0.258 1.1 6.5 36 392 13.3 17.8 6.4 9.5 12.9 0.87
Pr. armeniaca 0.033 0.245 5.8 6.9 0 13 14.6 16.2 7.0 8.4 15.8 0.99
R. acris 0.035 0.093 3.9 7.3 22 193 12.5 15.0 8.4 10.3 11.3 0.96
M. baccata cv. ‘Hiemalis’ 0.035 0.250 2.4 7.6 5 230 12.9 16.7 7.0 9.3 16.6 0.83
R. amplexicaulis 0.040 0.350 7.3 8.4 0 16 12.3 13.8 9.1 10.1 15.2 0.91

R. multifidus cv. ‘Fl. Pt.’ 0.044 0.078 5.1 9.0 0 82 11.3 14.5 8.8 11.0 12.5 0.96
I. neglecta 0.045 0.150 2.8 9.0 27 398 9.7 14.4 8.9 12.3 12.7 0.91
G. macrorrhizum 0.049 0.258 0.4 8.5 56 804 9.7 16.3 7.6 12.0 15.4 0.85
A. pulsitilla cv. ‘Amoena’ 0.054 0.300 5.4 6.4 0 0 15.3 16.8 6.7 7.8 11.6 1.21
M. sieboldii 0.060 0.230 0.3 6.6 20 458 13.2 17.9 5.9 9.5 17.7 0.90
So. aucuparia 0.062 0.053 2.4 5.3 156 407 12.8 15.3 8.1 9.9 11.3 0.99
M. x prunifolia 0.062 0.212 2.0 7.6 8 266 12.5 16.9 6.9 9.6 16.8 0.91
Pr. mollis 0.068 0.015 4.8 8.4 6 106 11.5 14.4 8.8 10.7 11.1 1.11
I. orientalis 0.073 0.170 −1.1 6.8 126 597 10.7 15.5 7.4 11.6 16.3 0.90
M. orthocarpa 0.100 0.102 2.2 7.3 7 284 13.1 16.8 6.9 9.6 16.4 0.96
Primula sikkimensis 0.101 0.083 4.5 8.1 26 230 11.3 13.8 9.3 11.2 14.5 1.02
A. alpina 0.116 0.005 5.5 8.6 0 60 11.6 14.3 9.0 10.7 11.7 1.26
Sa. allionii 0.125 0.073 3.7 9.0 0 159 11.0 15.2 8.2 11.2 17.1 0.98
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Table I. (Continued ).

Taxa p-value Power αa

(°C)
βb

(degree-days)
�2Ac

(days)
�2Bc

(days)
σ d

(days)
Ratio

Sa. afghanica 0.126 0.383 4.0 7.1 0 131 14.1 17.0 6.1 8.6 24.2 0.97
Pr. mahaleb 0.131 0.010 4.1 8.5 0 133 12.0 15.1 8.3 10.5 12.7 1.05
Pr. triloba 0.133 0.145 4.6 6.4 0 17 15.4 17.2 6.2 7.9 18.4 1.16
I. ruthenica 0.156 0.025 3.5 8.0 31 252 11.7 14.8 8.4 11.0 11.3 1.06
So. aucuparia cv. ‘D. Aurea’ 0.166 0.010 2.7 6.7 77 335 11.0 14.8 8.5 10.9 10.8 1.35
Euphorbia amygaloides 0.168 0.153 4.9 7.5 0 34 13.5 16.4 7.0 9.2 20.7 1.02
Py. conescens 0.169 0.255 2.1 7.7 0 155 13.3 18.1 5.9 9.4 18.9 0.98
Sa. wallacei 0.192 0.145 4.1 8.8 0 137 11.4 15.2 7.9 10.9 17.8 1.00
Pri. veitchii 0.221 0.030 3.9 8.4 0 124 12.0 15.9 7.8 10.5 15.3 1.11
Sa. trifida 0.229 0.180 4.4 8.9 0 172 11.6 14.9 8.5 10.8 14.8 0.95
Sa. decipiens 0.234 0.183 7.4 8.7 0 63 11.6 13.4 9.2 10.6 19.7 1.01
A. sylvestris 0.237 0.142 2.3 6.9 45 381 12.1 15.4 6.6 10.5 14.5 0.98
Aronia arbutifolia 0.279 0.003 4.5 8.5 45 245 10.1 13.2 9.8 12.1 9.2 1.34
Acer campestre 0.312 0.018 3.2 8.7 0 201 11.5 16.1 7.8 10.7 15.6 1.13
Pri. allionii 0.336 0.138 5.4 6.6 0 0 15.0 16.8 6.6 8.0 17.0 1.18
Pri. cockburniana 0.336 0.018 4.7 8.6 9 204 11.0 13.5 9.3 11.1 14.6 1.16
R. ficaria cv. ‘Alba’ 0.336 0.145 5.3 7.1 0 24 14.1 16.6 6.8 8.7 22.9 1.14
Pr. persica cv. ‘Pyramidalis’ 0.420 0.075 5.7 7.0 0 0 14.2 16.4 7.1 8.7 12.4 1.56
Pr. amygdalus cv. ‘Georgica’ 0.501 0.025 6.8 7.7 0 45 13.2 14.8 8.2 9.4 16.2 1.31
Sa. lingulata 0.770 0.313 7.6 9.6 0 41 10.4 14.0 8.9 11.5 39.3 1.03
Py. communis 0.847 0.058 1.7 9.1 0 279 10.8 16.2 6.7 11.2 29.9 1.14

Taxa names follow the RBGE nomenclature used in the early 1900s.
As the true p-value could be marginally greater than the empirical (simulated) values listed in column 2 (as judged by a hypothesis test for a
binomial proportion), we use a value of 0.040 (rather than 0.05) to distinguish between Models 1 and 2. The 45 species with p-value of 0.040
or less (those above the solid horizontal line), are taken to be primarily temperature-sensitive.
Last column gives the ratio of unexplained variability of Model 2 relative to that of Model 1.
a α is the thermal threshold.
b β is the thermal requirement.
c � is the expected or predicted change in mean FFD under model 2A or 2B.
d σ is the unexplained variability (residual standard deviation under Model 2).

We therefore carried out several analyses to determine
the influence of different time resolutions on our calcu-
lations. To do this, we made use of daily observations of
FDDs at the same Botanic garden site made during the
late 1800s. We applied our degree-day procedures to the
daily observations, to the daily observations degraded to
weekly values, and to fortnightly values. In particular, we

compared the accuracies (and parameters) derived from
the actual daily phenological observations with those
derived from the weekly and fortnightly observations.
We found no significant differences. These calculations
demonstrate that weekly values are quite satisfactory for
our purposes. In retrospect, the reason why a lack of
daily observations has only a minor effect on our results

Figure 4. Confidence intervals for α and β. Estimated values plus 95% bootstrapped confidence intervals for (a) α and (b) β, respectively, plotted
against the mean FFD (the estimate of µ0 under Model 1).
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Figure 5. Impact of global warming (scenarios 2A and 2B) on FFDs. Estimates and 95% bootstrapped confidence intervals for �, the expected
or predicted change in mean FFD under (a) scenario 2A and (b) scenario 2B. Horizontal line corresponds to scenario 1. The confidence limits
are not symmetric due to the constraint on β. The vertical bars do not indicate interannual variability, just the uncertainty in estimating � from

small samples.

can be explained as follows. First, the residual error in
our basic equation is the sum of a ‘model error’ and
the ‘measurement error’. The latter follows a uniform
distribution on 0, 1, . . ., 6, which has mean 3 and variance
4. Now we find that the standard errors of our predicted
FFDs, according to our GDD model, are mostly around
11 days, but can be as low as 7.5 days in some cases.
Since variances, not standard deviations, add up, the mea-
surement error has variance 4 out of a total variance of
typically 50–120 or more, and so, is of relatively minor
importance. Second, recording leafing, or FFDs, to a true
accuracy of just 1 day is difficult to achieve in practice
because different observers can be involved, and observ-
ing a large plant or tree is not necessarily straightforward.
Third, plants respond to the weather when integrated
over several weeks, if not months, rather than just in
1 or 2 days immediately before leafing or flowering. In
summary, while it would be nice to have accurate, daily
FFDs, such information, over and above weekly obser-
vations, is of limited practical value for our purposes.

3.2. Uniformity of parameters

One of our aims is to apply our phenological model to the
analysis of desynchronisation of springtime phenophases
over the world. As a preliminary, a demonstration of the
geographical uniformity of the values of the parameters
α and β for individual temperature-sensitive species
could be useful. The conceptual relationship between
α, β, and the local climate has been shown in a
previous study (Thompson and Clark, 2006, Figure 3).
In particular, we showed that the sensitivity of FFD,
or flushing date, to temperature depends on the rate
of increase of springtime temperatures and not on the
precise temperature threshold, or GDD requirement. In
this respect, we checked the uniformity of our degree-
day models across two main data sets. These are:
(1) pan-European phenological observations on natural
populations of Pr. padus (293 observations) and Tilia
cordata (1705 observations) (Thompson and Clark, 2006)

and (2) extensive observations on clonal trees in the
International Phenological Gardens (Chmielewski and
Rötzer, 2001) (our unpublished calculations). In both
cases, we find no evidence for a significant variation
of the degree-day parameters with geography. Instead,
we find our phenological models apply across regions
spanning hundreds of thousands of square kilometres.

3.3. Desynchronisation of springtime phenologies

Figure 6 plots the desynchronisation that can be expected
around the world by the 2080s, based on our phenolog-
ical model, the IPCC emission scenario A1FI, and the
HadCM3 global circulation model. The map plots � of
Equation (8) and represents the difference between the
change in flowering date of thermally sensitive and pho-
tosensitive taxa to a change in the local climate. � was
calculated on a 0.5 × 0.5 degree grid; it is given by the
ratio of the change in springtime temperature, A, and the
rate of increase of spring temperature rise, M . Desynchro-
nisations range from under 10 to over 50 days. Regions
with no vegetation (polar ice, inland waters, desert) or
moisture dominated phenologies (savanna, semi-desert,
thorn woods, salt flats), or with little or no seasonal tem-
perature change (tropical and subtropical biomes) have
all been left blank. Each grid square shows the ratio
A/M , which is our estimate of the difference in response
between temperature- and photoperiod-sensitive taxa.

Mainly, as a consequence of the strong continentality
(high M) of their climates the interiors of the North-
ern Hemisphere land masses are predicted to show only
modest desynchronisation. So although climate warm-
ing is expected to be large over the northernmost edge
of the northern continents, we estimate that large tracts
of land from the Urals eastwards right across north-east
Asia to Alaska, the Yukon, and Manitoba will experi-
ence little between taxa desynchronisation. In contrast
strong desynchronisation is modelled for west-coast mar-
itime climates (e.g. the coastal ranges and mountains
of British Columbia and Washington State, the Atlantic
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Figure 6. Phenological desynchronisation expected under IPCC global warming scenario A1FI for the 2080s. The map plots � of Equation (8)
and represents the difference in the change of flowering date of thermally sensitive and photosensitive taxa to a change in the local climate.
� was calculated on a 0.5 × 0.5 degree grid. It is given by the ratio of the change in springtime temperature, A, and the rate of increase of

springtime temperature, M .

hinterlands of Western Europe and North Africa, New
Zealand, Western Australia, Western Chile) and for lower
latitude biomes with temperature-dependent phenologi-
cal components. Phenological information about lower
latitude taxa is rather scarce. Nevertheless, specific exam-
ples of temperature-sensitive phenologies in lower lat-
itude biomes are the Arizona-Sonora desert (Bowers
and Dimmitt, 1994; Bowers, 2007), the Australian Box-
Ironbark eucalypt forest (Keatley and Hudson, 2007), and
Eucalyptus regnens eucalypt forests in southeast Aus-
tralia (Keatley’s 10-year record of unpublished data and
author’s unpublished calculations). Pronounced desyn-
chronisation can be anticipated in warm temperate, sub-
tropical or oceanic regions such as Florida, the west-
ern Mediterranean, western Australia, Indo-Burma, and
New Zealand. It is salutary to note that all five of these
strong desynchronisation regions coincide with biodiver-
sity hotspots (Figure 1 in Myers et al., 2000), where
endemic species are currently undergoing exceptional
loss of habitat and so already constitute priority habitats
for conservation planners.

4. Discussion

4.1. Caveats on the limitations of our approach

It is important to note the simplifications we have adopted
in our statistical analysis. We have assumed that: (1) the
rate of increase of temperature between mid-March and

mid-June in any year is linear, (2) the thermal degree-
days depend only on the mean daily temperature (inde-
pendent of the daily minimum, maximum, or hours of
sunshine), and (3) the global warming effect is quantified
by a linear change in temperature, relative to the average
linear temperature change over the 31 years considered.

Assumption (1) seems reasonable, as indicated by the
four typical years shown in Figure 1. Furthermore, it is
well established that spring flowering dates are often
associated with air-temperatures 1, 2, and 3 months
prior to flowering (Fitter et al., 1995; Sparks et al.,
2000), and not just to temperatures at the time of
flowering. So a method, like ours, which integrates
air-temperatures over a period of several weeks, can
perform well. Indeed, the simplicity of the basic method
allows it to outperform more complex methods. At
first sight a method using daily temperature data would
be expected to be more skilful than the one using
monthly, or longer, averaging. However, the slight loss
of temperature information in our linear model is more
than compensated by the avoidance of threshold effects,
non-linearities, and problems connected with finding the
true global minimum during optimisation. Kramer (1994)
highlights the difficulties that methods using daily forcing
can encounter. He reviews 12 different phenological
models with up to 12 free-parameters, but found that
only one managed to outperform the null model (the
mean). We too found that use of daily data provided
only very minor improvements to fit but had the major
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disadvantage of precluding confidence limit and power
calculations.

In principle, it is straightforward to obtain prediction
limits for FFDs of a given species in given years, apply-
ing well-known results from linear regression (Seber,
1977, chapter 7) The width of these prediction intervals
depends on both the slope and intercept of the tempera-
ture gradient and the residual σ , given in Table I. Hence
it is not possible to give an overall statement of the pre-
cision of predicted FFDs.

Residual plots for our selected models were (generally)
satisfactory, as were plots of observed versus predicted
FFDs, with no real difference between significant and
non-significant species, except for obvious greater spread
in the latter. In addition, our procedure has been validated
by our extended analysis using 1706 observed FFDs of
Pr. padus and 294 observed FFDs of T. cordata, from a
range of locations, with latitudes varying from 45°N to
70°N (Thompson and Clark, 2006).

Regarding assumption (2), a preliminary analysis of the
available meteorological data for Edinburgh showed that
hours of sunshine were only weakly correlated with the
daily mean temperature. Nevertheless, inclusion of daily
minimum, maximum, or hours of sunshine did little to
improve our approach.

A further assumption we are making is that the linear
temperature increase is appropriate to both the ‘past’ and
the ‘future’.

The restricted range of species we are able to analyse
also limits our approach. We have to pre-select spring
flowering species. These taxa however dominate the
RBGE living collection.

4.2. Generalisation

Our method is a general approach applicable to any
situation where the FFD of a spring flowering species
depends primarily on the total thermal days above
a threshold temperature. Equation (8) can be used to
predict the effect on the mean FFD for a particular species
for any global warming scenario of the form considered
here, i.e. any values of A and B in Equation (8).

To what extent can our results be generalised: To other
climatic regions? To other ‘similar’ taxa? Equation (8)
is applicable to any (linear) global change and so
potentially applicable to a wide range of situations. Under
our climate scenario 1 of uniform temperature change
throughout the year, all fully temperature-responsive
species conform to one another and display only one
response. In all cases the response will be M−1 days/°C
and is the same for all ‘temperature-responsive’ species.
(We exploited this generalisation in the construction
of Figure 6.) Under scenario 2, all fully temperature-
responsive plants that flower at the same time of year
show very similar responses to changing temperatures.
Under scenario 2A, temperatures increase more in early
than late spring, and so an enhanced temperature response
is predicted for earlier flowering species. In contrast
under scenario 2B, early spring temperatures change

less (although the overall annual temperature increase is
the same in all the scenarios we consider) and hence
we predict a reduced temperature response for earlier
flowering species. We speculate that plants from the
temperate zone that are predominantly responsive to
springtime temperature will all follow these general
behavioural patterns. Plants within a geographical region
will be attuned to their local climate. We predict greater
temperature responses in oceanic climates (like Scotland)
where spring temperatures rise slowly (M−1 is high)
and weaker responses in continental climes (continental
interiors) where spring temperatures rise rapidly (M−1 is
low).

In more tropical regions the phenology of flowering,
fruiting, and leafing can be very different to that in
temperate climates; it can involve multiple flowerings
and stronger relationships to precipitation (Bawa et al.,
2003; Keatley et al., 2004), and hence these regions were
excluded from our desynchronisation studies.

4.3. Comparison with correlation and regression
analyses

Our approach is based on a known phenological model
for the growth of plants rather than a regression fit to
past data on FFDs. While such regression procedures
often give a reasonable fit (Fitter et al., 1995; Sparks and
Carey, 1995; Sparks et al., 1997), they give no expla-
nation for such results and do not extrapolate naturally
to other species or future data. Multiple regression has
a number of drawbacks. In phenological studies, there
are often many plausible but highly correlated explana-
tory variables and relatively few years of observations.
There are well-known procedures for selecting subsets
of correlated regressors, such as stepwise regression and
best subsets regression (Miller, 1984). Nevertheless in
cases such as these, the fitted regression equations are
typically unstable. If, for instance, one particular regres-
sor is omitted, then there can be significant changes in
the coefficients of the remaining regressors. This is why
the interpretation of regression equations is fraught with
danger. Further, with few years of observations, multiple-
regression techniques can have low power, because of
low degrees of freedom for error. In contrast, our proce-
dure avoids the drawbacks of multiple regression and uses
a simple model involving two easily interpreted param-
eters, leading to an enhanced scope for prediction and
generalisation.

For species with β = 0 in our GDD model, this does
not mean that they have not experienced any temperatures
above that of the thermal threshold. The temperature of
plant tissue and the air inside a meteorological screen are
very different. Furthermore, each day a plant undergoes
a cycling of its temperature due to diurnal fluctuations in
insolation and air-temperature. β = 0 means that the first
flower opens on the day when the linear rise in springtime
temperature reaches α.
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4.4. Comparisons of phenological data from one
century to the next

At first sight it might seem possible to validate our pre-
diction method by hindcasting past phenological changes
and comparing them with observations. For example one
could compare phenological observations made in the
Royal Botanical Garden in Edinburgh in the epoch begin-
ning in the 1850s (Harper et al., 2005) with those anal-
ysed here (from 1908 to 1938), and with those obtained
on a newly re-established monitoring programme (2002
onwards) (Harper and Morris, 2006). Unfortunately, there
are three difficulties. First, although hundreds of taxa
were monitored in the early 20th century, only a few of
these were monitored in the 1800s. Second, temperatures
changed only by a fraction of a degree between each of
these periods so that any phenological signals are likely
to be rather small. Third, when the few matching taxa
are compared their flowering dates are commonly seen
to have changed dramatically (often by several weeks).
Some become earlier, others later, while a few change
only a modest amount. In retrospect, it seems likely
that any climate change signal has become swamped by
additional effects. Here a likely explanation is that the
plants themselves have changed over the centuries so that
their phenological data are no longer directly comparable.
For example the cultivars, or the precise varieties, could
have altered. It is because of this type of difficulty that
our preference for predicting future phenological changes
lies with calibrating phenological models using interan-
nual changes. The main advantages are that temperature
changes from year to year can be large, and any long-term
changes in plant genotype can be avoided.

4.5. Improved models

The method outlined above is very general and so can
be readily extended to include additional effects. For
example the budding and flowering of many temperate
trees are affected by wintertime chilling (Campbell et al.,
1975; Häkkinen et al., 1995; Häkkinen et al., 1998)
as well as by springtime warmth. Chilling can be
incorporated into our basic model by expanding β in
Equation (4) in order to make it depend on chilling
duration (Thompson and Clark, 2008).

Our model could be improved by combining a pho-
toperiod effect along with a thermal effect. This leads to a
three-parameter model that can be examined in essentially
the same way as our two-parameter model. Preliminary
studies have led to only modest improvements in fit.
Similarly, Kramer (1994) has found that more complex
phenological models do not necessarily perform better
than simple models.

Thompson and Clark (2006) give a general theoretical
framework to GDD models that incorporates both a
photoperiod effect and a general monotonic increase in
daily temperature. Both a linear function and suitably
restricted sinusoidal function are special cases of such a
monotonic function.

At first sight it might be expected that the use of indi-
vidual daily temperatures, rather than our linear fit to

spring temperature rise, would improve the modelling.
Unfortunately, modelling using daily data necessitates
optimisation methods. Extensive trials produced no sig-
nificant improvements in fit and caused major difficulties
in the construction of confidence intervals (on account
of multiple local minima). In retrospect, the good perfor-
mance of the linear approach is seen to arise because the
main mechanisms controlling flowering times integrate
temperatures over a period of many weeks.

Another improvement would be to represent tem-
perature change each year as a sine function (Allen,
1976). Our current assumption of linearity of temperature
increase between mid-March and mid-June corresponds
roughly to the approximate linear part of this sine curve.
Test calculations indicate that when dealing with tempera-
ture changes between about −3° and +3°, the differences
caused to our analyses between a sine function and linear
fit approach are minimal (Thompson and Clark, 2006).
The main advantage of a sine-function approach would
be that our method could also be used with winter flow-
ering plants.

5. Conclusions

• A general linear modelling method, based on thermal
degree-day growth, allied with an assumption of a lin-
ear change in spring temperature, has been developed
to model FFDs.

• Spring FFDs in Edinburgh show a good association
with air-temperature. We find that 45 out of 79 taxa
are primarily temperature-sensitive.

• We demonstrate that the sensitivity of spring flowering
dates to temperature is strongly governed by the
continentality of the climate.

• We predict high temperature sensitivities of flowering
in oceanic climates, and in low-latitude, temperate
biomes.

• We illustrate our method by predicting the changes
in spring flowering to be anticipated in Scotland for
three climate change scenarios. All three scenarios
are based on an average 1 °C temperature rise. For
scenario 1 (1 °C increase throughout the year), we
predict a shift in the botanical season of approximately
11 days with respect to the climatic year. For scenario
2A (greater winter than summer warming), we predict
shifts ranging between 16.2 days at the start of spring
and 11.2 days at the end of spring. For scenario 2B (a
warmer, more continental climate), we predict shifts
ranging between 7.2 days at the start of spring and
11.2 days at the end of spring.
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Häkkinen R, Linkosalo T, Hari P. 1998. Effects of dormancy and
environmental factors on timing of bud burst in Betula pendula .
Tree Physiology 18: 707–712.

Harper G, Mann D, Thompson R. 2005. Phenological monitoring at
Royal Botanic Garden Edinburgh. Sibbaldia 2: 33–45.

Harper G, Morris L. 2006. Flowering and climate change – part 1.
Sibbaldia 4: 71–86.

Hastie T, Tibshirani R. 1990. Generalized Additive Models. Chapman
and Hall: London.

Hudson IL, Keatley MR, Roberts AMI. 2005. Statistical methods
in phenological research, International Workshop in Statistical
Modelling IWSM 2005 , 10-15 July. University of Western Sydney,
Penrith, Sydney.

Hulme M, Jenkins GJ, Lu X, Turnpenny JR, Mitchell TD, Jones RG,
Lowe J, Murphy JM, Hassell D, Boorman P, McDonald R, Hill S.
2002. Climate change scenarios for the UK: UKCIP02 scientific
report , Tyndall Centre for Climate Change Research.

IPCC. 2007. Climate Change 2007: The Physical Science Basis.
Cambridge University Press: Cambridge.

Jones PD, Thompson R. 2003. Instrumental records. In Global Change
in the Holocene, Mackay AW, Battarbee RW, Birks HJB, Oldfield F
(eds). Arnold: London.

Keatley MR, Hudson IL. 2007. A comparison of long-term flowering
patterns of Box-Ironbark species in Havelock and Rushworth Forests.
Environmental Modelling and Assessment 12: 279–292, published
online 9 January 2007) DOI: 10.1007/s10666-006-9063-5.

Keatley MR, Hudson IL, Fletcher TD. 2004. Long-term flowering
synchrony of Box-Ironbark Eucalypts. Australian Journal of Botany
52: 47–54, DOI: 10.1071/BT0317.

Kramer K. 1994. Selecting a model to predict the onset of growth of
Fagus sylvatica . Journal of Applied Ecology 31: 172–181.

Manabe S. 1970. The dependence of atmospheric temperature on the
concentration of carbon dioxide. In Proceedings of the AAAS Air
Pollution Session, Dallas, Texas, Global Effects of Environmental
Pollution, Singer SF (ed). D. Reidel Publishing Co: Dordrecht;
25–29.

Manabe S, Wetherald RT. 1967. Thermal equilibrium of the
atmosphere with a given distribution of relative humidity. Journal
of the Atmospheric Sciences 24(3): 241–259.

McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds).
2001. Climate Change 2001: Impacts, Adaptation and Vulnerability.
Contribution of the Working GroupII to the Third Assessment Report
of the Intergovernmental Panel on Climate Change. Cambridge
University Press: Cambridge.

Menzel A, Fabian P. 1999. Growing season extended in Europe. Nature
397: 659.

Miller AJ. 1984. Selection of subsets of regression variables (with
discussion). Journal of the Royal Statistical Society, Series A:
General 147: 389–425.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J.
2000. Biodiversity hotspots for conservation priorities. Nature 403:
853–858, DOI: 10.1038/3500250.

Oliveira M. 1998. Calculation of budbreak and flowering base
temperatures for Vitis vinifera cv. Touriga Francesa in the Douro
Region of Portugal. American Journal of Oenology and Viticulture
49: 74–78.

Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate
change impacts across natural systems. Nature 421: 37–42, DOI:
10.1038/nature0128.

Pesaran MH. 1982. Comparison of local power of alternative tests of
non-nested regression models. Econometrica 50: 1287–1306.

Penuelas J, Filella I. 2001. Responses to a warming world. Science
294: 793–794. DOI: 10.1126/science.106686.

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA.
2003. Fingerprints of global warming on wild plants and animals.
Nature 421: 57–60, DOI: 10.1038/nature0133.

Salisbury FB. 1963. The Flowering Process. Pergamon Press: New
York.

Saxe H, Cannell MGR, Johnsen O, Ryan MG, Vourlitis G. 2001.
Tree and forest functioning in response to global warming.
Tansley Review no. 123. New Phytologist 149: 369–400, DOI:
10.1046/j.1469-8137.2001.00057.x.

Seber GAF. 1977. Linear Regression Analysis. Wiley: New York.
Sparks TH, Carey PD. 1995. The responses of species to climate over

two centuries: an analysis of the Marsham phenological record, 1736-
1947. Journal of Ecology 83: 321–329.

Sparks TH, Carey PD, Combes J. 1997. First leafing dates of trees in
Surrey between 1947 and 1996. The London Naturalist 76: 15–20.

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 30: 1599–1613 (2010)



GLOBAL WARMING AND TIMING OF SPRING FLOWERING 1613

Sparks TH, Jeffree EP, Jeffree CE. 2000. An examination of the
relationship between flowering times and temperature at the
national scale using long-term phenological records from the
UK. International Journal of Biometeorology 44: 82–87, DOI:
10.1007/s004840000049.

Tanja S, Berninger F, Vesala T, Markkanen T, Hari P, Makela A,
Ilvesniemi H, Hanninen H, Nikinmaa E, Huttula T, Laurila T,
Aurela M, Grelle A, Lindroth A, Arneth A, Shibistova O, Lloyd J.
2003. Air temperature triggers the recovery of evergreen boreal forest
photosynthesis in spring. Global Change Biology 9: 1410–1426,
DOI: 10.1046/j.1365-2486.2003.00597.x.

Thompson R, Clark RM. 2006. Spatio-temporal modelling and
assessment of within-species phenological variability using thermal
time methods. International Journal of Biometeorology 50: 313–322,
DOI: 10.1007/s00484-005-0017-4.

Thompson R, Clark RM. 2008. Is spring starting earlier?. The Holocene
18: 95–104.

Wang JY. 1960. A critique of the heat unit approach to plant response
studies. Ecology 41: 785–790.

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 30: 1599–1613 (2010)




