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BACKGROUND: Estrogen receptor related beta (ERRb, ESRRB/NR3B2) is an orphan receptor that shares signifi-
cant sequence homology with estrogen receptors ERa and ERb. ERR family members are reported to exhibit consti-
tutive transcriptional activity; however, little is known about the biological function of ERRb. In an attempt to
delineate its role, we examined expression of ERRb in normal human endometrium, a tissue that undergoes cyclic
remodelling under the influence of estrogen and progesterone. METHODS: Well-characterized endometrial tissue
(n 5 31), including full-thickness biopsies, was obtained from women with regular menstrual cycles. RT–PCR was
used to measure mRNA encoding ERRb, the peroxisome proliferator activated receptor gamma coactivators
(PGC)-1a and b and to determine whether ERRb splice variant mRNAs were expressed. ERRb was immunolocalized
using both single and double antibody immunohistochemistry. RESULTS: Total ERRb mRNA appeared higher in
proliferative phase samples but results did not reach significance. Transcripts corresponding to the long- and
short-splice variants of ERRb as well as PGC1a and b were detected but ERRbD10 was absent. ERRb protein
was localized to cell nuclei within multiple endometrial cell types including the glands, stroma, endothelium and
immune cells, including uterine natural killer (uNK) cells and macrophages. Fluorescent immunohistochemistry
revealed that some cells co-expressed ERRb and ERa or ERb, for example, endothelial and uNK cells were
ERRb1/ERb1. CONCLUSIONS: ERRb mRNA and protein are expressed in healthy human endometrium.
Further studies are warranted to characterize the functional impact of ERRb on endometrial biology.

Keywords: endometrium; estrogen receptor; uterine natural killer cell; macrophage; peroxisome proliferator-activated receptor gamma
coactivator

Introduction

Nuclear receptors (NR) act as ligand-activated transcription

factors and affect tissue homeostasis in response to a range

of signals, including steroid hormones and various endogenous

and exogenous molecules (Aranda and Pascual, 2001); some

NR superfamily members are reported to act in the absence

of a cognate ligand. These orphan receptors include the

NR3B subfamily, named estrogen receptor related (ERR)

owing to their sequence homology to the estrogen receptors

(ERa/ESR1 and ERb/ESR2) (Giguere, 1999; Giguere,

2002). Three ERR genes have been cloned (ERRa/ESRRA,

b/ESRRB and g/ESRRG). ERRs are reported to constitutively

modulate transcription via estrogen response elements (ERE)

or steroidogenic factor-1 response elements (SFRE/ERRE)

in the regulatory regions of target genes (Giguere, 2002).

Initial research was aimed at establishing whether ERRs can

stimulate the expression of genes in estrogen responsive

tissues. For instance, it was reported that the osteopontin and

pS2 gene promoters could be activated either by ERRa or

by ERRb in a ligand-independent manner via interactions

with ERE sequences (Vanacker, et al., 1999; Lu, et al., 2001).

Conversely, reporter gene assays also suggested that

ligand-activated ERa (but not ERb) can activate the osteopon-

tin promoter via an ERRE sequence (Vanacker, et al., 1999).

These studies pointed towards an interplay between ERs and

ERRs in modulating gene expression of the same target genes.
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In common with ERa and ERb, ERRs can be activated

through post-translational modifications including phosphoryl-

ation (Driggers and Segars, 2002), which may be induced by

growth factors such as epidermal growth factor (Barry and

Giguere, 2005). In addition, their function is also regulated

by the NR coactivators peroxisome proliferator-activated

receptor gamma coactivators 1a and 1b (PGC1a/
PPARGC1A and PGC1b/PPARGC1B). These proteins are

widely expressed, and they are thought to play a key role in

the regulation of energy metabolism (Kamei, et al., 2003; Puig-

server and Spiegelman, 2003). Cell-based studies have shown

that PGC1a enhances ERRa expression and ERRa transcrip-

tional activity via direct interaction between the coactivator

and the NR (Schreiber et al., 2003). Finally, these coregulators

are themselves post-translationally regulated in response to

stimuli such as dietary signals or infection (Puigserver and

Spiegelman, 2003), adding an additional layer of control to

transcriptional regulation of ERR target genes and further flexi-

bility to the phenotypic adaptation of cells to their

environment.

The human endometrium undergoes cyclic remodelling

under the influence of sequential exposure to the ovarian

steroids estradiol and progesterone (Jabbour et al., 2006).

As each cycle progresses, component cells of the endo-

metrium serially proliferate and differentiate in preparation for

implantation of the conceptus; in the absence of pregnancy,

the upper functional layer is shed (menses). A complex

series of biological processes is involved in these pivotal

reproductive events, including the regulation of cell division,

the metabolism of several biochemical mediators and the

inflammatory response. Although the precise molecular and

cellular mechanisms by which steroid hormones promote

uterine receptivity are still the subject of intensive investi-

gation, it is generally accepted that estradiol and progesterone,

acting via their cognate receptors, ensure a pattern of gene

expression that facilitates implantation and the early stages

of pregnancy. Dysfunctional regulation of these events may

result in subfertility and various reproductive tract patho-

logies, including implantation failure and aberrations of men-

strual bleeding (Jabbour et al., 2006; Talbi, et al., 2006;

Aghajanova, et al., 2008).

The processes that regulate endometrial function need to be

controlled both temporally and spatially, thereby making the

study of transcriptional regulators paramount in our under-

standing of endometrial biology. The pattern of expression of

ER subtypes in the endometrium has been reported previously

(Critchley et al., 2001, 2002). We have also documented the

pattern of expression of NR in the uterine natural killer cells

(uNK), which represent a major fraction of the endometrial

immune cell population, especially in the luteal phase

(Moffett and Loke, 2006) and demonstrated that these cells

express ERb and glucocorticoid receptor (GR) but not ERa

or the progesterone receptor (PR) (Henderson et al., 2003).

As an extension of these investigations and because ERRs

and ERs appear to be functionally connected, we initiated a

study to determine if ERRb was also expressed in the endome-

trium. While this work was being carried out, a paper was

published describing three ERRb splice variants: a long form

consisting of 11 exons, a short form lacking exons 10 and 11

and a form missing exon 10 (ERRbD10) (Zhou et al., 2006).

It was reported that none of these variants was expressed in

three human samples described as ‘uterus’ (Zhou et al.,

2006). In the present paper, we report that both ERRb short-

and long-form mRNAs are expressed in the normal human

endometrium, that total transcript levels do not appear to

vary significantly over the span of the endometrial cycle,

although there appeared to a trend for them to be higher

during the proliferative phase, and that the protein can be

detected in the nuclei of multiple cells types, including

immune and endothelial cells.

Materials and Methods

Sample collection

Endometrial biopsies were collected at different stages of the

menstrual cycle with either an endometrial suction curette (Pipelle,

Laboratoire CCD, Paris, France) or a full-thickness sample (surface

epithelium to endometrial–myometrial junction) from women attend-

ing the gynaecological services at the Royal Infirmary, Edinburgh,

UK. All women from whom endometrial tissue was collected provided

written informed consent for biopsy collection, and there was insti-

tutional ethical approval. Subjects were of reproductive age (median

40 years; range 30–48 years) and all described regular menstrual

cycles (25–35 days length). Endometrial tissue was collected from

women at the time of hysterectomy, laparoscopic sterilization or

hysteroscopy. At the time of recruitment, no subject was known to

have endometriosis or submucus fibroids. No subject had taken a

sex steroid hormonal preparation during the 3 months prior to

biopsy collection. Endometrial tissue was fixed in 4% neutral buffered

formalin overnight at 48C before being routinely wax embedded for

immunohistochemical assessment. In addition, endometrial tissue

was either snap frozen in liquid nitrogen or placed in RNA Later

(Ambion) overnight at 48C for subsequent RNA extraction.

Histological dating of the samples was performed according to the

criteria of Noyes (Noyes et al., 1950). Serum samples collected at

the time of endometrial biopsy were used for determination of circu-

lating estradiol and progesterone concentrations by radioimmunoassay

(Table I). These were consistent with the patient’s reported last

menstrual period and a histological dating assessment that was

undertaken by an expert histologist (Critchley et al., 2001, 2002).

Numbers of samples used for RNA extraction were menstrual n ¼ 5,

proliferative n ¼ 8, early secretory n ¼ 7, mid-secretory n ¼ 4 and

late secretory n ¼ 7. For immunohistochemistry, 3–5 independent

samples were examined at each stage.

Gene expression analysis

RNA was extracted using an RNeasy kit (QIAGEN); expression levels

of mRNAs were determined by TaqmanTM quantitative RT–PCR

(qRT–PCR). Assay on demandTM primer/probe sets specific for

Table I. Hormone profile of patients during the menstrual cycle (mean+SE).

(n) Estradiol (pmol/l) Progesterone (nmol/l)

Menstrual (5) 145+24 2.8+0.8
Proliferative (8) 454+107 3.4+0.6
Early secretory (7) 488+69 89+9
Mid-secretory (4) 871+374 79+16
Late secretory (7) 455+129 17+11

Estrogen receptor related beta and human endometrium
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ERRb (Hs01584021_m1: detects a region common to all splice var-

iants) and ERa (Hs00174860_m1) were from Applied Biosystems;

data were normalized by measuring 18S ribosomal RNA (assay

4308329) in the same reactions. Transcript abundance was expressed

as a ratio against a standard comparator sample run with all plates that

consisted of complementary DNA made from an ERa-positive endo-

metrial adenocarcinoma Ishikawa cell line (Nishida et al., 1985).

The sequences of primers specific for the amplification of

ERRb short-form (hERR2f1328 and hERR2r1690), long-form

(hERRB2f1565 and hERRB2r1833) and ERRbD10 (hERRB2f1607

and hERRB2r2151) have been published (Zhou et al., 2006). Messen-

ger RNA was detected using a PCR-based method (Zhou et al., 2006)

with minor modifications as follows: RNA extracted from samples

was reverse transcribed using oligo-dT primers and analysed by touch-

down PCR. The conditions were as follows: 5 min at 948C, then 10

cycles for 30 s at 948C, 30 s at 608C, with the temperature decreasing

by 0.58C every cycle, 45 s at 728C, followed by 25 cycles for 30 s at

948C, 30 s at 558C, 45 s at 728C and a final extension step for 10 min

at 728C.

For the detection of the NR coactivators, primers were designed

against PGC1a using GenBank sequence NM_013261 (PGC1a

forward: 50-GCG CTG ACA GAT GGA GAC GT-30 and PGC1a

reverse: 50-TCT GTG GGT TTG GTG TGA GG-30) and PGC1b

using sequence NM_133263 (PGC1b forward: 50-TGG AGA GCC

CCT GTG AGA GT-30 and PGC1b reverse: 50-TCG CTC TGG

GTG CTT CTT TG-30). A standard PCR protocol was applied for

30 cycles and using the annealing temperature of 598C. The reactions

yielded products of size 347 and 350 bp for PGC1a and PGC1b,

respectively. Following amplification, products were visualized on

1.5% (w/v) agarose gels, purified and sequenced. In parallel reactions

where reverse transcriptase was omitted, no amplicons were detected.

Control reactions containing primers directed against glyceraldehyde-

3-phosphate dehydrogenase (GAPDH forward: 50-CTG CAC CAC

CAA CTG CTT AGC-30; GAPDH reverse: 50-ATG CCA GTG

AGC TTC CCG TTC-30) were carried out using an annealing tempera-

ture of 588C and 30 cycles of a standard PCR protocol yielding a

204 bp product. Reverse transcription and PCR were carried out

using Omniscript and HotStart Taq polymerase (Qiagen) following

the manufacturer’s instruction.

Immunohistochemistry

Tissue samples were fixed in 4% neutral buffered formalin and

embedded in paraffin wax. A list of all the antibodies and reagents

used in this study can be found in Table II. To confirm the specificity

of the anti-ERRb antibody, a blocking peptide (LS-P7128, LifeSpan

Biosciences) was pre-incubated overnight with an aliquot of the

antibody (10 mg peptide per microgram antibody) and immunohisto-

chemistry performed as below.

Single antibody staining

Slide-mounted 5 mm sections were deparaffinized, rehydrated and

subjected to heat-induced antigen retrieval in a pressure cooker con-

taining 0.01 M citrate buffer. The sections were then incubated with

3% hydrogen peroxide in methanol for 30 min to block endogenous

peroxidase. All incubations are carried out at room temperature

unless otherwise stated and were carried out in Tris-buffered saline

(TBS; 50 mM Tris pH 7.4, 0.85% saline). Slides were blocked for

30 min in normal goat serum (NGS, Biosera) diluted 1:4 in TBS con-

taining 5% bovine serum albumin, and an avidin-biotin block was per-

formed as per manufacturer’s instructions, using reagents from Vector

(Peterborough, UK). Rabbit anti-ERRb was diluted 1:500 in NGS/
TBS/BSA and incubated on sections overnight at 48C; after washes

in TBS, sections were incubated with GARB (goat anti-rabbit biotiny-

lated) diluted 1:500 in NGS/TBS/BSA for 30 min. After further

washes in TBS, sections were incubated in Streptavidin-horse-radish

peroxidase for 30 min, washed in TBS (twice for 5 min each time)

and bound antibodies were visualized by incubation with

3,3’-diaminobenzidine tetra-hydrochloride (liquid DABþ, product

no. K346811 from DAKO).

Double antibody fluorescent immunohistochemistry

Slides were subjected to antigen retrieval as described above. The

procedures for the double fluorescent immunohistochemistry are

presented in Table III; all detections were performed sequentially.

After blocking, washes between antibody incubations were performed

twice for 5 min each using phosphate-buffered saline instead of TBS.

Slides were examined using a Zeiss LSM Meta-confocal micro-

scope fitted with a motorized stage. For the study of the full-thickness

tissue (encompassing the functionalis and basalis layers of the

endometrium and the myometrium), a tiled montage 1 frame wide

by 8–10 frames in depth was acquired. Once settings were optimized

for the brightest staining section, all further images were taken at the

same settings to allow comparison.

Statistical analysis

Statistical analysis was carried out with Prism (GraphPad). Data

normality was assessed with a Kolmogorov–Smirnov test and the

Table II. List of antibodies and reagents used for immunohistochemistry.

Antibody Abbrv Source Product no. Working dilution Incubation time

ERRb ERRb Abcam ab12986 1:500/1:200* Overnight at 48C
ERb1 (clone PPG5/10) ERb1 Serotec MCA19745 1:250 Overnight at 48C
ERa (clone 6F-11) ERa Novocastra NCL-ER-6F11/2 1:20 Overnight at 48C
CD68 (clone KP 1) CD68 Dako M0814 1:50 Overnight at 48C
CD56 (clone 123C3) CD56 Zymed Laboratories 18-0152 1:50 Overnight at 48C
CD45 (clone 2B11þPD7/26) CD45 Dako M0701 1:50 Overnight at 48C
Goat anti rabbit biotinylated GARB Dako E0432 1:500 30 min
Goat anti-rabbit peroxidase GARP Dako P0448 1:200 30 min
Goat anti-mouse Alexa Fluor 488 GAM 488 Molecular Probes A-11029 1:200 60 min
Streptavidin Alexa Fluor 546 Streptavidin 546 Molecular Probes S-11225 1:200 60 min
Tyramide fluorescein Tyramide fluorescein Perkin Elmer Life Sciences NEL 744 1;50 10 min
To Pro To Pro Molecular Probes T3605 1:1000 10 min
DAPI DAPI Sigma D9542 1:1000 10 min

*Primary antibody was used at the higher concentration in fluorescent immunohistochemical procedures.
ERRb, estrogen receptor related beta; DAPI: 4’,6-diamidino-2-phenylindole.
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analysis of variance or the non-parametric equivalent (Kruskal–

Wallis test) with a 5% level of statistical significance.

Results

Expression of ERRb mRNA(s) in normal human
endometrium

Expression of ERRb mRNA was detected in the human endo-

metrium throughout the menstrual cycle using qRT–PCR.

There were no significant differences between samples

obtained at different stages of the cycle (P ¼ 0.679), although

there was a suggestion that the levels were higher in the prolif-

erative and early secretory phases (Fig. 1A). In line with expec-

tations (Henderson et al., 2003) when ERa mRNA was

measured in the same set of samples, highest levels of

expression were detected in proliferative and early secretory

phases (P ¼ 0.0052) (Fig. 1B). The existence of ERRb splice

variant mRNAs in normal cycling endometrium was investi-

gated with a PCR-based assay. In the proliferative phase,

mRNAs corresponding to both the short and long forms of

ERRb were detected in three of four samples, in the remaining

sample only the ERRb short form was detected (Fig. 2, lane 1).

The same pattern was seen in RNA from tissues sampled at the

mid-secretory phase, and mRNA corresponding to the

ERRbD10 form was never detected; although this method is

only semi-quantitative, transcript abundance appeared higher

in samples from the proliferative phase. All three transcripts

were expressed in RNA prepared from human kidney, which

was used as a positive control (Fig. 2K). Expression of

mRNA encoding PGC1a was detected in all proliferative

phase samples and three of four samples from the mid-

secretory phase. PGC1b mRNA was present in all four

proliferative phase samples and in three out of four samples

from the mid-secretory phase (Fig. 2).

Table III. Summary of protocols used for fluorescent colocalization.

ERRb/ERa ERRb/ERb1 ERRb/CD68 ERRb/CD56 ERRb/CD45

Citrate retrieve Citrate retrieve Citrate retrieve Citrate retrieve Citrate retrieve
NGS block Methanol/peroxide block NGS block NGS block NGS block
Avidin block NGS block Avidin block Avidin block Avidin block
Biotin block Avidin block Biotin block Biotin block Biotin block
ERRb 1:200 Biotin block CD68 1:50 CD56 1:50 CD45 1:50
GARB ERRb 1:200 GAM488 GAM488 GAM488
Streptavidin 546 GARB NGS block NGS block NGS block
NGS block Streptavidin 546 ERRb 1:200 ERRb 1:200 ERRb 1:200
ERa 1:20 NGS block GARB GARB GARB
GAM 488 ERb1 1:250 Streptavidin 546 Streptavidin 546 Streptavidin 546
To-Pro GAMP DAPI DAPI DAPI

Tyr fluorescein
GAM 488
To-Pro

NGS, normal goat serum.

Figure 1: Detection of ERRb mRNAs in endometrial tissue using
qRT–PCR.
Expression of ERRb (A) and ERa (B) mRNAs in human endometrial
samples recovered during the normal cycle. RNA was extracted from
pipelle biopsies taken from patients at different stages of the cycle,
mRNA was evaluated using qRT–PCR. Data are expressed relative
to an internal control and was compared using a one-way analysis
of variance for ERa (P ¼ 0.0052) or a Kruskal–Wallis test for
ERRb (P ¼ 0.679). Data are mean+SE. M, menstrual; P, prolifera-
tive; ES, early secretory; MS, mid-secretory; LS, late secretory.

Figure 2: Evidence that both long and short forms of ERRb and the
nuclear receptor coactivators PGC1a and PGC1b are present in
normal endometrium.
RT–PCR analysis of RNA from kidney (K), proliferative (lanes 1–4)
and mid-secretory (lane 5–8) phase endometrium. The abbreviations
on the right-hand side indentify DNA amplied with primers specific
for the following: ERRb short form (SF), ERRbD10 (D10), ERRb
long form (LF), PGC1a, PGC1b and GAPDH. The experiment was
repeated three times and similar results were obtained on each
occasion.
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Expression of ERRb protein

Western blotting of nuclear proteins from Ishikawa cells

infected with a virus expressing the short form of ERRb

resulted in binding of antibody to a protein of the expected

size (�45 kDa), which was not detected when the membrane

was probed with pre-absorbed antibody (not shown). ERRb

protein was immunolocalized to multiple cell types within

the endometrium using an antibody directed against a sequence

that is present in both the long and short forms of the protein

(Fig. 3A–F). Specificity was confirmed by incubation of anti-

body with the immunising peptide (Fig. 3A0, inset) and positive

nuclear staining was demonstrated in breast cancer tissue

(Fig. 3G) and the cytotrophoblast cells within term placenta

(Fig. 3H). Immunopositive staining for ERRb was detected

in the nuclei of cells within the glandular epithelium (g in

Fig. 3B–D), the stroma as well as in the endothelial cells

of blood vessels (Fig. 3D, arrows). There was no obvious

stage-dependent change in the intensity of immunoexpression

using this method of immunohistochemistry.

ERRb was co-expressed with ERa or ERb in some
cell types within the endometrium

Fluorescent immunohistochemistry using full-thickness endo-

metrial biopsies revealed that expression of ERRb was

different to that of either ERa (Fig. 4) or ERb (Supplementary

Fig. S1). For example, during the proliferative and early

secretory phases, the intense immunoexpression of ERa in

the glandular epithelium of the functional layer masked the

immunostaining of ERRb (Figs 4 and 5A), whereas ERRb

appeared to be expressed in a higher proportion of the

stromal cells and was readily detected in ERa-negative endo-

thelial cells (Fig. 5A inset, arrows). Expression of ERRb was

maintained in the epithelial cells within the functional layer

in the late secretory phase when ERa was no longer detectable

(Fig. 5C); expression of ERa in the basal compartment was

maintained throughout the cycle (Fig. 4). In full-thickness

samples obtained from the mid-proliferative and early secretory

phases, groups of cells that were ERRb positive/ERa negative

were present within the basal compartment (Fig. 4, arrow-

heads). At all stages of the cycle ERRb and ERb were

co-expressed in multiple cell types in both the stromal and epi-

thelial cell compartments of the functional layer (Fig. 5B and D

yellow nuclei). Endothelial cells were immunopositive for both

ERRb and ERb although ERb immunopositive staining was

intense in the myometrial layer, whereas expression of ERRb

was low/negative (Supplementary Fig. 1, unpublished data).

ERRb was expressed in immune cell populations
within the normal endometrium

Leukocyte populations within the endometrial stromal cell

compartment vary during the menstrual cycle and include

macrophages, neutrophils and uNK cells. Immunopositive

staining for ERRb was detected in cell nuclei of immune cell

populations identified by double fluorescent immunohisto-

chemistry as being leukocytes (CD45 positive, Fig. 6A and

B), uNK cells (CD56 positive, Fig. 6C and D) and macrophages

(CD68 positive, Fig. 6E and F). Furthermore, in the endo-

metrial samples where spatial orientation of the tissue was

maintained, we observed large groups of ERRb positive cells

that did not appear to be ERa or ERb positive (Fig. 4). We

speculate that these cells are immune cell aggregates that are

known to occur in the basal layer of the human endometrium

(Marshall and Jones, 1988).

Discussion

In this study, we have demonstrated for the first time that

mRNAs encoding ERRb long and short forms, but not

ERRbD10, are expressed in human endometrium at all stages

of the cycle. The function of NR is modulated by receptor coac-

tivators, it was therefore important that we were also able to

demonstrate expression of mRNAs for PGC1a and b. ERRb

protein was detected in immune cells including macrophages

and uNK cells as well as in endothelial cells where it was

co-expressed with ERb.

Figure 3: ERRb protein is expressed in human endometrium throughout the cycle.
Endometrial samples were dated as being from the following stages of the menstrual cycle; (A) Early proliferative, (B) late proliferative, (C) early
secretory, (D) mid-secretory, (E) late secretory, (F) menstrual. (G and H) Immunopositive staining of cell nuclei in breast cancer and first trime-
ster placenta, respectively (positive controls). The arrows point towards the endothelial cells of the spiral arterioles. The inset (A0) shows a section
incubated with antibody pre-absorbed with the blocking peptide. Magnifications all �20, bar in panel A0 is 50 microns and applies to all other
images.
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The total amount of ERRb mRNA was low compared with

that for ERa and, together with a certain amount of inter-

individual variability, this may explain why a previous study

(Zhou et al., 2006) failed to detect expression in uterine

RNA samples of commercial origin, using identical PCR

cycling conditions. Although the results did not reach signifi-

cance using both semi-quantitative and qRT–PCR, there was

a trend for ERRb mRNAs to be higher in samples from the pro-

liferative phase. In preliminary experiments, we have failed to

detect any consistent change in expression following treatment

of epithelial and stromal endometrial cell lines with either

estradiol or progestagen; however, bioinformatic analysis has

revealed the presence of putative PR binding sites in the 50

region of the ERRb gene (unpublished observation). In

ERRa knockout mice, kidney ERRb mRNA levels were

reduced compared with those in wild-type littermates,

suggesting that the amount of ERRa might influence

expression of ERRb in this tissue (Luo et al., 2003). Data

showing that expression of ERRa is up-regulated by estradiol

treatment in the mouse uterus (Shigeta et al., 1997), the

HEC-1 human endometrial adenocarcinoma cell line and

MCF-7 breast cancer cells (Liu et al., 2003) have been pub-

lished. These authors reported that the estrogenic response

was mediated by a 34 bp DNA element containing multiple

steroid hormone response element half-sites that are conserved

between the human and mouse ERRa gene promoters (Liu

et al., 2003). However, when we carried out sequence

alignment analysis of 10 kb in the 50 region of ERRa and b,

we failed to detect this response element in the ERRb promoter

and further studies are needed to establish the role played, if

any, by steroid hormones in regulating ERRb mRNA

expression in vivo.

In contrast to a previous paper that reported that ERRb

was immunolocalized within the cytoplasmic compartment

[Gao et al., 2006, we consistently detected the protein in the

nuclear compartment, a finding that is in agreement with

nuclear localization of fluorescent protein tagged constructs

(Zhou et al., 2006) and our unpublished data]. The commercial

antibody we used was directed against a peptide present in both

long and short forms of ERRb, and although the results of

our RT–PCR studies would suggest that both forms were

expressed in the same samples, this would need to be eluci-

dated using a new antibody specific to the C-terminal domain

of the ERRb long-form protein.

NR coactivators have an important impact on NR signalling,

through remodelling of the local chromatin environment and

recruitment of the transcription machinery (McKenna et al.,

1999). Other reports have described the expression of NR

regulatory proteins within the endometrium, including SRC1

(steroid receptor coactivator 1), and the corepressors NCoR

(nuclear receptor corepressor) and SMRT (silencing mediator

of retinoid and thyroid) (Shiozawa et al., 2003). Dysregulation

of NR coactivators has been reported to occur in the endo-

metrium of women with polycystic ovarian syndrome (Gregory

Figure 4: Full thickness endometrial biopsies taken throughout the menstrual cycle reveal differences in the expression of ERa and ERRb
proteins.
ERRb (red) was detected in cell nuclei in the functional layer (F) closest to the lumen (L) of the uterus. Tissues were dated as originating during
the following phases of the cycle: EP, early proliferative; MP, mid-proliferative; ES, early secretory; MS, mid-secretory; LS, late secretory;
M menstrual. Immunopositive staining for ERa (green) was particularly intense in cells lining the glands(g) during MP and ES phases. Note
that groups of ERRb positive cells (arrowheads) within the basal layer of the endometrium. The positions of the basal (B) and myometrial (M)
layers are indicated.
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et al., 2002). Although the PGC-1 family of NR coactivators is

reported to interact with several different NR, they appear to be

critical regulators of ERR protein activity and are considered to

act as ‘protein ligands’ for this class of orphan receptor (Huss

et al., 2002; Kamei et al., 2003). PGC1a binds to ERRa via a

specific leucine-rich domain that is distinct from the region

involved in binding to other NR, including ERa (Huss et al.,

2002). Results from in vitro transactivation assays suggest

that ERRb can also be regulated by PGC1b (Kamei et al.,

2003). In silico comparisons between ERRa and ERRb

protein sequences (our unpublished observation) reveal that

the region associated with binding to PGC1a is conserved

between the proteins.

The endometrium contains a diverse population of immune

cells that play a vital role in maintaining a balance between

protecting the tissue from pathogenic attacks and tolerating

the allogeneic sperm and trophoblast cells (Lea and Sandra,

2007). In the present study, we have demonstrated that

ERRb can be immunolocalized to uNK cells, macrophages

and leukocytes within the functional layer of the endometrium

and to aggregates of cells within the basal compartment that

we also believe to be immune cells. uNK cells have a unique

phenotype (CD56 bright, CD162 and CD32), distinguishing

them from peripheral blood NK cells (CD56 dim, CD16 bright

and CD32). They are the major immune cell population in

the late secretory phase and early pregnancy, and they play a

key role in implantation and early placentation (Moffett and

Loke, 2006; Lea and Sandra, 2007). The cyclical change in

uNK cell number in the endometrium suggests that this cell

type may be regulated by changes in the amounts of sex

steroid hormones. We have previously demonstrated that

uNK express ERb and GR but not ERa (Henderson et al.,

2003) and recently discovered that they also express ERRa

(unpublished observations). The function of uterine macro-

phages is less clearly defined, but we speculate that they may

be involved in clearing extracellular components from

degraded cells (Repnik et al., 2008). Studies in mice lacking

ERRa demonstrate that it is required for induction of mito-

chondrial reactive oxygen species production in macrophages,

a response that was also dependent upon PGC-1b (Sonoda

et al., 2007). We believe that our data are the first to demon-

strate expression of ERRb in immune cells within endome-

trium and further studies are therefore required to determine

the significance of this result.

Since ERRb and the ERR coactivators PGC1a and b are all

expressed in the human endometrium, it is appropriate to

Figure 5: Co-expression of ERa, ERb and ERRb proteins in functional layer of the endometrium during the normal menstrual cycle.
Co-localization of ERRb (red) with ERa (A and C) or ERb (B and D) (both green); counterstained with 4’,6-diamidino-2-phenylindole (DAPI)
(blue), yellow indicates colocalization. (A) Section from mid-proliferative endometrium with intense immunostaining for ERa in the glandular
epithelium (g); inset shows high-power magnification to highlight mixed cell population in the stroma with cells including endothelial cells lining
blood vessels (arrows) that express ERRb but not ERa (red nuclei); (B) mid-secretory endometrium (same sample as in A) with prominent
expression of ERb1 in glandular epithelium and cells lining the lumen (L); (C) section from late secretory endometrium (code 2232) with
reduced expression of ERa revealing expression of ERRb as red nuclei; (D) ERRb and ERb in late secretory endometrium (2232), note over-
lapping pattern of expression (yellow nuclei). Panels A and B �10 and C and D �40, scale bar ¼ 50 microns and applies to panels C and D.
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consider how the protein might influence endometrial function.

On the basis of the available literature on the function(s) of

ERRs, we speculate that ERRb might have an impact on ER

signalling, influence expression of previously identified ERR

target genes and/or influence cell differentiation. The evidence

for each of these functions is considered below.

In the current study, we found that immunoexpression of

ERRb in normal endometrium occurred in multiple cell popu-

lations within the normal endometrium. Although some cells

appeared to express ERRb alone (e.g. immune aggregates),

in other cell types, the receptor was co-expressed with ERa

(e.g. epithelial cells in the proliferative phase) or ERb (e.g.

endothelial cells, uNK cells). We have also detected expression

of ERRb in stage 1 endometrial cancers (unpublished obser-

vations), and it is notable that expression of ERRa also

occurs in endometrial cancers where it has been suggested

that it may be linked to dysregulation of estrogen signalling

(Watanabe et al., 2006). Experiments support the idea that

ERRa and ERRb proteins both have the ability to bind to iden-

tical ERE and ERRE sequences (Vanacker et al., 1999). Genes

expressed in the human endometrium that contain promoters

reported to be regulated by ERRa include lactotransferin

(Yang et al., 1996), thyroid hormone receptor a (Vanacker

et al., 1998a,b), osteopontin (Vanacker et al., 1998a,b), aroma-

tase (CYP19) (Yang et al., 1998) and monoamine oxidase

(Zhan et al., 2004); therefore, our data showing expression of

ERRb raises the possibility that this protein may also influence

expression of the same set of genes.

There is an emerging consensus that ERRs play a key role in

regulating genes involved in energy homeostasis, including

fatty acid metabolism (Sladek et al., 1997). For example, trans-

genic mice lacking ERRa have a reduced fat mass and are

resistant to diet-induced obesity (Luo et al., 2003). To date,

there is no data to support a similar role for ERRb and this

therefore requires further study. Finally, a number of recent

papers report a role for ERRb with the regulation of stem

cell differentiation (Ivanova et al., 2006; Loh et al., 2006). In

murine embryonic stem cells, ERRb is not only a direct

target of the stem cell regulator Oct4, but also acts as a tran-

scription factor regulating Oct4 (Zhou et al., 2007). Studies

in ERRb knock-out animals have revealed problems with

differentiation of trophoblast, and viable knock-out animals

can only be generated by aggregating mutant embryos with

wild-type cells which can then develop a functional placenta

(Luo et al., 1997). Additionally, ERRb is expressed in primor-

dial germ cells during embryonic life and gene deficiency leads

to a reduction in the number of differentiated germ cells

(Mitsunaga et al., 2004); therefore, we propose that ERRb

may also have an impact on endometrial cell differentiation.

In summary, we have demonstrated for the first time that

ERRb short and long splice variant mRNAs are both expressed

in the human endometrium. ERRb protein is expressed within

the cell nuclei of epithelial, stromal, immune and endothelial

cells. Expression of the protein partially overlaps with that of

ERa and ERb. We speculate that ERRb may play a role in

endometrial cell fate determination and in regulating factors

important for endometrial function and receptivity, including

osteopontin. Clearly, further studies are required to uncover

the full impact of expression of ERRb in endometrial

biology and investigate whether there are differences in the

functional effects of the splice variant isoforms.
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