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Abstract

LKB1 acts as a master upstream protein kinase regulating a number of kinases involved in diverse cellular functions. Recent
studies have suggested a role for LKB1 in male fertility. Male mice with reduced total LKB1 expression, including the
complete absence of the major splice variant in testis (LKB1S), are completely infertile. We sought to further characterise
these mice and determine the mechanism underlying this infertility. This involved expression studies of LKB1 in developing
germ cells, morphological analysis of mature spermatozoa and histological studies of both the testis and epididymis using
light microscopy and transmission electron microscopy. We conclude that a defect in the release of mature spermatids from
the seminiferous epithelium (spermiation) during spermatozoan development is a major cause of the infertility phenotype.
We also present evidence that this is due, at least in part, to defects in the breakdown of the junctions, known as
ectoplasmic specialisations, between the sertoli cells of the testis epithelium and the heads of the maturing spermatids.
Overall this study uncovers a critical role for LKB1 in spermiation, a highly regulated, but poorly understood process vital for
male fertility.
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Introduction

LKB1 is a serine/threonine protein kinase which has been

implicated in a number of key cellular processes including the

regulation of cell proliferation, cell polarity and energy metabolism

[1]. Mutations in the human gene encoding LKB1 cause a rare

disease called Peutz-Jeghers Syndrome [2]. Patients suffer many

benign hamartomatous polyps of the gastrointestinal tract and

display a predisposition towards malignant tumours [3]. In mice,

global deletion of LKB1 is embryonic lethal; the embryos

displaying defects in neural tube closure and vascular development

[4].

LKB1 exists as a heterotrimeric complex in cells with the

proteins STE20-related adaptor (STRAD) and mouse protein 25

(MO25). STRAD and MO25 have been shown to stabilise the

LKB1 protein and greatly increase its catalytic activity. Their

binding also causes LKB1 to relocalise from the nucleus to the

cytoplasm [5,6,7,8]. The emerging consensus view is that the

LKB1 heterotrimer is constitutively active and that regulation

occurs at the level of its downstream substrates or via changes in its

localisation.

In 2003, LKB1 was shown to be a main upstream kinase

responsible for the activation of AMP-activated protein kinase

(AMPK) [7,9,10], a key regulator of cellular energy metabolism.

Later studies implicated LKB1 in the regulation of 12 other

kinases known as AMPK-related kinases [11,12]. These are

BRSK1 and BRSK2 (Brain-specific kinases 1 and 2); SIK1, SIK2

and SIK3 (Salt-inducible kinases 1–3); NUAK1 and NUAK2;

MARK1-4 (Microtubule-affinity-regulating kinase 1–4) and

SNRK (SNF1-related kinase). The role of some of the AMPK-

related kinases is currently not well understood [13].

The Lkb1 gene is composed of 10 exons, 9 of which are coding

[2,14,15]. The human LKB1 protein has 433 amino acids (436 in

mice). Amino acids 43–309 comprise the catalytic domain and this

is flanked by N- and C- terminal domains, the functions of which

are not well understood. Previously, we and others reported the

existence of an alternative splice variant of LKB1 [8,16], termed

LKB1 short form (LKB1S) as opposed to the previously reported

form of LKB1, termed LKB1 long form (LKB1L). The amino acid

sequence of the two variants is identical apart from the C-terminus

which is encoded by a different exon (exon IXa in the case of

LKB1S or IXb in the case of LKB1L). Both splice variants show a

similar sub-cellular localisation and comparable catalytic activity

towards AMPK and a number of AMPK-related kinases

[8,16,17]. We reported previously that the LKB1S protein is

primarily expressed in the testes. Western blotting of total cell

extracts from testis show that LKB1S is the most abundant LKB1

splice variant in this tissue, although some LKB1L is also

detectable [8]. LKB1S is also present in human testis [16].

The testis is a highly specialised organ and contains many cell

types necessary for the highly coordinated process of spermato-

genesis, the mechanism by which undifferentiated diploid

spermatogonia develop into haploid spermatozoa. Spermatogen-

esis can be divided into four main phases; proliferation, meiosis,
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spermiogenesis and spermiation which progress within the

seminiferous epithelium, from the outside of the seminiferous

tubule toward the lumen. Sertoli cells present within the

epithelium play a major role in supporting germ cell development

and sertoli-germ cell junctions are thought to allow for continuous

communication between these cell types. As spermatogenesis

occurs in waves along the seminiferous tubules, the stage of

spermatogenesis will vary at different lengths along the tubule and

can be assigned a number (I-XII in mice). Following development

within the seminiferous tubules, the spermatids are released into

the lumen and from here move into the epididymis where further

maturation occurs. The epididymis is divided into three sections,

the caput epididymis (upper section), corpus epididymis (central

section) and cauda epididymis (lower section). It is in the cauda

epididymis that the sperm are stored prior to release [18].

In a recent independent study, male mice displaying signifi-

cantly reduced total LKB1 expression were shown to be

completely infertile, the only overt phenotypic abnormality

detected [16,19]. In addition to possessing lower levels of LKB1L

protein in most tissues, these mice completely lack expression of

the LKB1S splice variant, the primary form of LKB1 in the testis.

This has led to the hypothesis that the LKB1S splice variant is

involved in processes important for male fertility. In this study, we

have further characterised these mice, which we term LKB1SKO, to

establish the intra-testicular mechanisms underlying the observed

infertility phenotype. During the final phase of spermatogenesis,

termed spermiation, mature spermatids become detached from the

supporting sertoli cells and are released into the lumen of the

seminiferous tubule (see [20] for a recent review). Here we show

that spermiation is defective in the absence of LKB1S.

Materials and Methods

Antibodies
Mouse anti-LKB1 monoclonal antibody (Ley37 D/G6), which

recognizes both splice variants of LKB1, was from Santa Cruz

Biotechnology. Anti-tubulin Yol1/34 antibody and rabbit anti-

MARK3 was from Abcam. Mouse monoclonal antibody recognis-

ing the spermatozoan acrosome (Mab 18.6) was a kind gift from

Prof. Harry Moore (University of Sheffield, UK). Anti-NUAK2

raised against residues 653–673 of human NUAK2, anti-BRSK2

raised against a C-terminal peptide sequence of the human protein,

and anti-SNRK antibody raised to residues 737–753 of human

SNRK were kind gifts from Prof. Dario Alessi (University of

Dundee, UK). Phospho-SIK1 antibody was raised in rabbit against

the peptide, CKSGEPLS(pT)WCGSPPY. SIK2 antiserum was a

kind gift from Prof. Hiroshi Takemori (Osaka, Japan). Antibodies

recognizing AMPKa1 and AMPKa2 were a kind gift from Prof.

Grahame Hardie (University of Dundee, UK) [21]. Secondary

antibodies conjugated to Alexa-Fluor 488/568/680 or IRDye800

were purchased from Invitrogen and Li-COR respectively.

Animals
All procedures were in accordance with the UK Home Office

Animal Procedures Act of 1986 under licence number PPL 70/

6670. Approval was also given by the Imperial College Animal

Ethics Committee. Production of mice harbouring Lkb1 floxed

alleles (LKB1SKO) has been described previously [19,22].

Tissue harvesting and preparation
Male mice (C57/Bl6) at approximately 12 weeks were culled by

cervical dislocation. Tissues were harvested and immediately

frozen in liquid nitrogen. Prior to analysis, tissues were roughly

chopped in two volumes of ice-cold buffer A and briefly

homogenized with a rotor-stator homogenizer. 1% (v/v) Triton

X-100 was added and the homogenates were incubated on ice for

10 min, sonicated in a 4uC water bath for 3 cycles of 20 sec, and

then centrifuged at 16,000 x g for 15 min to remove insoluble

material. Protein concentration in cell and tissue lysates was

determined using the Bradford assay [23].

Western blot analysis
All tissue homogenates for blotting LKB1 were first pre-cleared

with protein A-Sepharose to remove IgG. Samples were resolved

on 10–12% polyacrylamide gels by SDS-PAGE. Primary anti-

bodies were detected using secondary antibody conjugated to

either Alexa-Fluor 680 or IRDye800 and scanned on the Li-COR

Odyssey Infrared Imaging System. Quantification of results was

performed using Odyssey software 2.0 (LI-COR Biotechnology).

Mating assays
Males: 8 wild-type and 8 LKB1SKO mice (8–20 weeks old) were

paired with at least two females each for up to 14 days. Females

were checked for vaginal mucus plugs for 2 days and pregnancies

noted after the appropriate time.

Sperm counts
Cauda epididymides were excised and placed in 1 ml M2

medium (Sigma) (both epididymides per mouse). Several incisions

were made and the spermatozoa allowed to disperse into the

medium for 15 minutes at room temperature. Sperm were counted

on a haemocytometer and the mean number of spermatozoa

collected per mouse calculated.

Cells were only included in the counts if they could be

recognised as a spermatozoan at low magnification, i.e., a head

with a flagellum attached, regardless of whether they looked

morphologically abnormal. Detached heads and tails and round

cells were not included.

Spermatozoa immunofluorescence
Mouse cauda epididymides were excised and placed in 0.5 ml

M2 medium (Sigma). Several incisions were made and the

spermatozoa allowed to disperse into the medium for 15 minutes

at room temperature. Aliquots of the suspension were pipetted

onto polylysine coated glass slides, air dried and fixed in

methanol. Acrosomes were stained with Mab 18.6 monoclonal

antibody, which recognises a specific antigen on the acrosomal

surface [24], and tails were stained with an anti-tubulin antibody.

Primary antibodies were detected with Alexa fluor linked

secondary antibodies. Nuclei were stained with DAPI. Slides

were viewed by sequential scanning of each wavelength on a

Leica TCS SP1 confocal microscope and analysed with Leica

software.

Tissue preparation for light microscopy (LM) and
transmission electron microscopy (TEM)

After glutaraldehyde fixation and processing, samples were

embedded in araldite. Semi thin sections of 0.5–1 mm were stained

with toluidine blue in borax. Ultra-thin sections were stained in

uranyl acetate followed by Reynold’s lead citrate.

Quantification of seminiferous epithelium thickness
Seminiferous epithelium thickness was measured in testis thin-

sections from six LKB1SKO and five wild-type mice by subtracting

the seminiferous tubule radius from the tubule lumen radius of at

least 100 tubules per section, as previously described [25].

LKB1 in Spermiation
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Immunoprecipitation and Activity Assays
All tissue homogenates were first pre-cleared with protein A or

G-Sepharose. AMPK, AMPK-related kinases or LKB1 complexes

were immunoprecipitated from soluble tissue homogenates using

antibodies bound to protein A/G-Sepharose. After extensive

washing, kinase activity present in the immune complexes was

determined as previously described [22,26].

Quantitative RT-PCR analysis
RNA was isolated from testis (n = 5–7 testes per age) by

homogenization in Trizol reagent (Invitrogen) according to the

manufacturer’s instructions, followed by purification on an RNeasy

column (Qiagen). 2 mg RNA was used for first strand cDNA synthesis

using Superscript II (Invitrogen) according to the manufacturer’s

instructions. For LKB1L and total LKB1, quantitative PCR was

performed with SensiMix Plus SYBR kit (Quantace) using Opticon

DNA Engine. Total LKB1 was amplified using primers spanning

exons 2 and 3 (forward: ggacgtgctgtacaatgagg, reverse: gcatgccaca-

tacgcagt). Primers spanning exons 9 b and 10 were used to

specifically amplify LKB1L (forward: cctgcaagcagcagtgac, reverse:

ccaacgtcccgaagtgag). Detection of transcripts was done using Roche

Universal Probe Library (Roche, Welwyn, UK). For LKB1S,

transcripts were amplified using primers spanning exons 8 and 9a

(forward: cattatctacacccaggacttcaca, reverse: cgcatgcatcctcgctaa).

The LKB1S specific product was detected using Fam labelled probe:

aggaggcggccgag (from Integrated Technologies Inc). ABI Prism 7500

Sequence Detection System (Applied Biosystems) was used for

detection according to the manufacturer’s instructions. Expression of

all samples was compared to that of GAPDH.

Immunohistochemistry
Single colorimetric immunohistochemistry on Bouin’s-fixed

testicular tissue was performed as previously described [27]

(n = 5 testes per age).

Results

Male mice lacking LKB1S protein are infertile
LKB1SKO mice were originally generated during the develop-

ment of a conditional allele of LKB1 [19] (Figure 1A). LKB1SKO

Figure 1. LKB1 expression in LKB1SKO mice. A) Generation of LKB1SKO mice, adapted from [19]. Exons IV–VII (encoding the kinase domain) of the
wild-type (WT) Lkb1 gene were replaced by a cassette encompassing exon IV plus cDNA encoding the rest of LKB1L. This cassette was flanked by lox-P
excision sites (c) and contained a neomycin (Neo) gene for selection. Mice homozygous for expression of this cassette (Lkb1fl/fl) no longer express
LKB1S and are de facto LKB1SKO mice. B) Mouse tissues homogenates were analysed by western blotting with a monoclonal antibody raised against
total LKB1. An anti-actin antibody was used to show equal loading. Representative blots are shown and the migration of molecular mass standards
are as indicated. C) Quantification of the relative intensity of the LKB1L band between wild-type and LKB1SKO mice is shown in the bar graph below.
Results are plotted as the percentage expression of LKB1L in LKB1SKO mice compared to wild-type and are the means6S.E.M. of three separate blots
from three individual mice.
doi:10.1371/journal.pone.0028306.g001

LKB1 in Spermiation
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mice are homozygous for the presence of a ‘floxed’ Lkb1 allele

(Lkb1fl/fl). Western blot analysis of testis, brain and liver extracts,

using a monoclonal antibody that recognises both splice forms of

LKB1, shows that LKB1S is undetectable in tissues isolated from

LKB1SKO mice confirming functional deletion of LKB1S. The

expression of LKB1L is also dramatically reduced (.80% in testis,

.50% in brain and .90% in liver) confirming the previously

reported effect of the floxed allele on LKB1L expression [19,22]

(Figure 1B).

In order to confirm the male infertility previously reported [19],

mating assays were conducted. Males were paired with at least two

females each for up to 14 days, and mating determined by the

presence of copulation plugs in the mated females. Plug checks

were discontinued once every male had plugged at least one

female. This indicated that although LKB1SKO mice did attempt to

mate, no pregnancies were observed in the females paired with

LKB1SKO males, whereas around 70% of females paired with wild-

type mice became pregnant (Table 1). No fertility problems were

noted in female LKB1SKO mice as the ratio of pregnancies of

LKB1SKO females paired with wild-type males was the same as that

shown by purely wild type crosses (75%) over the breeding

programme of more than 30 pairings.

Mature spermatozoa are absent in the epididymis of
LKB1SKO mice

In order to elucidate the infertility of LKB1SKO mice,

spermatozoa were collected from the cauda epididymides, where

mature spermatozoa are stored, and sperm count calculated. An

average of 2.76107 spermatozoa were collected from each wild-

type mouse, whereas only 2.86105 spermatozoa were collected

from each LKB1SKO mouse, a reduction of .95%. There was no

significant difference in sperm counts between wild-type mice and

mice heterozygous for the floxed allele (Lkb1+/fl).

Spermatozoan morphology from the LKB1SKO mice was

analysed by fluorescence microscopy (Figure 2). An anti-tubulin

antibody was used to stain the flagellum and DAPI used to stain

the nucleus. In addition, the slides were incubated with the

Mab18.6 antibody that recognises an antigen within the

spermatozoan acrosome. The acrosome is a secretory organelle

containing digestive enzymes which are released upon binding to

the ovum [28]. Spermatozoa from a wild-type mouse are shown in

Figure 2A. The nucleus is falciform in shape and the acrosome

appears as a crescent-shaped structure extending over the anterior

nuclear surface. Spermatozoa from LKB1SKO mice display a

number of abnormalities. Heads and tails are often separated and

many tails appear fragmented (Figure 2B). Tails are frequently

coiled, sometimes around the head (Figure 2 B,C), and sometimes

appearing as a ‘lasso’-type structure (Figure 2D). Approximately

70% of spermatozoa heads from LKB1SKO mice have no

detectable acrosome staining at all, many of the remainder

displaying an abnormal staining pattern, with the acrosomes often

being reduced in size. Only 10–15% of spermatozoa from wild-

type mice have no acrosomal staining. Overall, more cellular

debris is visible amongst the spermatozoa from LKB1SKO mice

(Figure 2C). There were no differences apparent between the

morphology of spermatozoa from wild-type mice and mice

heterozygous for the floxed allele (Lkb1+/fl) (data not shown).

Light microscopic (LM) and transmission electron microscopic

(TEM) analysis of sections of cauda and caput epididymis shows

dramatic differences in the contents of the lumen between wild-

type and LKB1SKO. In wild-type sections (Figure 3 A,C,E), the

lumen has an abundance of spermatozoa, as recognised by deeply

staining nuclei, whereas in the LKB1SKO mice (Figure 3 B,D,F),

there are very few identifiable spermatozoa. In the caput

epididymis the majority of lumens appear empty in LKB1SKO

animals. However, the cauda epididymis is filled with abnormal

cellular debris including numerous deeply staining round struc-

tures of various sizes, most likely degrading germ cells. No obvious

differences in the structure of the epididymal epithelium were

apparent between LKB1SKO and control animals.

Histological abnormalities in testis from LKB1SKO mice
To establish the reason for the large reduction in numbers of

correctly developed spermatozoa in the epididymis, testes were

harvested from age-matched wild-type and LKB1SKO mice. There

was no significant difference in testis weight between the genotypes

(data not shown). Analysis of testis sections by LM showed no

differences in the thickness of the seminiferous epithelium between

wild-type (7362.9 mm, n = 5) and LKB1SKO (7762.2 mm, n = 6)

mice (Figure 4 A,B).

Examination of tubule structure in LM and TEM images did

not show any major differences in the appearance of spermato-

gonia, spermatocytes and round spermatids. However, the luminal

interface of the seminiferous epithelium appeared disorganised in

LKB1SKO testes compared to wild-type. In addition, there were

numerous, often large, darkly staining bodies present at the

luminal interface of LKB1SKO tubules (Figure 4 B,D). These dense

bodies were analysed at higher magnification by TEM. This

showed them to be similar in appearance to residual bodies that

are formed during normal spermatogenesis in wild-type mice

(Figure 4E). Residual bodies are formed at spermiation when the

excess cytoplasm (cytoplasmic lobe) from adjacent spermatids fuses

and condenses. They often contain vacuoles, RNA and organelles

such as mitochondria. In LKB1SKO mice, unlike normal residual

bodies, these bodies frequently contain at least one condensed

spermatid nucleus along with flagella (Figure 4F). Dense granular

material is also visible, whilst acrosomes are often completely

detached from the spermatid nucleus, frequently remaining

attached to the sertoli cells at the cell periphery, with the detached

nucleus left surrounded by cytoplasm.

Defective spermiation in LKB1SKO mice
Condensed elongated spermatids are released into the lumen of

the seminiferous tubules at stage VIII of spermatogenesis in a

process known as spermiation [29]. In wild-type testes, at stage

VIII the elongated spermatids are still visible attached to the sertoli

cells at the luminal interface. The cytoplasmic lobes can be

recognised, as the more deeply staining cytoplasm now positioned

Table 1. Mating Assays.

Male Genotype Number of males Number of females paired Numberof males that plugged females Pregnancies

WT 8 26 8 18

LKB1SKO 8 26 8 0

doi:10.1371/journal.pone.0028306.t001

LKB1 in Spermiation

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28306



basally to the spermatid heads (Figure 5A). By stage IX, the

condensed spermatids have been released and most of the residual

bodies have been phagocytosed. In contrast, elongated spermatids

are retained through stages VIII, IX, X, and XI in the tubules

from LKB1SKO animals, showing a failure of spermiation (Figure 5

B,D,F,H). There are notably fewer by stage XI suggesting many of

the elongated spermatids have either been released or phagocy-

tosed by the sertoli cells by this stage (Figure 5 B,D,F,H). Overall,

the majority of elongated spermatids were retained such that they

were present in all seminiferous tubules analysed from LKB1SKO

mice, whereas they were only present in stage I–VIII tubules from

wild-type mice (data not shown).

Overall, no obvious differences were detected in the number of

elongated spermatids visible in stage I to VIII tubules between wild-

type and LKB1SKO seminiferous epithelium, or the numbers of

round and elongating spermatids present in the appropriate stages.

For spermiation to proceed correctly a series of highly regulated

steps is required. One of the key processes required for spermiation

to occur is the breakdown of junctions between spermatid heads

and sertoli cells, known as ectoplasmic specialisations [29]. These

ectoplasmic specialisations can be recognised at the EM level by

the presence of deeply staining actin bundles around the spermatid

heads. The regulation of these junctions is not well understood

[30]. Analysis of the structure of ectoplasmic specialisations by

TEM shows that they appear normal in LKB1SKO mice. However,

in LKB1SKO mice it appears that they are not breaking down at the

correct stage. At stage VII/VIII, just prior to spermiation in wild-

type tubules, the excess cytoplasm has formed a ‘hood’ over the

nucleus and the ectoplasmic specialisations are beginning to break

down (Figure 6A). Conversely, in stage X tubules from LKB1SKO

testes partial regions of the actin bundles from ectoplasmic

specialisations can still be seen adjacent to the mature spermatid

heads (Figure 6B). This suggests that a defect in the breakdown of

ectoplasmic specialisations is playing a role in the failure of

spermiation.

LKB1 is localised in the cytoplasm of meiotic and post-
meiotic germ cells

To determine the normal expression pattern of LKB1 in the

developing postnatal testis and the significance of the LKB1S

transcript, expression of the two splice forms was determined.

During testis development in young mice, the first wave of

spermatogenesis occurs synchronously across all seminiferous

tubules so that all tubules are at an equivalent point in the cycle.

Different germ cell generations appear in mice of specific ages

(primary spermatocytes day 14, round spermatids day 23, elongate

spermatids, day 32) [31] and so changes in gene expression over

time can reflect changes in the germ cell population providing an

Figure 2. Fluorescence microscopy images of mature spermatozoa. Spermatozoa were taken from the cauda epididymis of wild-type (A)
and LKB1SKO mice (B–D), and visualised by immunofluorescence. Tails were stained with an anti-tubulin antibody (red), acrosomes with an anti-
acrosomal monoclonal antibody (green) and nuclei with DAPI (blue). Sperm from LKB1SKO mice frequently show coiled tails (filled white arrows). In
(D), the tail has formed a ‘lasso’-type structure around an abnormally shaped nucleus. Sperm nuclei from LKB1SKO mice often lack acrososmes (open
white arrow in B) as shown by the lack of green fluorescence at the anterior nuclear surface. Abnormal cellular debris is visible in LKB1SKO samples, as
indicated by asterisks in (C). Slides were viewed on a Leica TCS SP1 confocal microscope. Images are representative of at least three mice (Scale bar
= 20 mM).
doi:10.1371/journal.pone.0028306.g002
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insight into cell-specific expression. The expression of the two

LKB1 splice variants was analysed by RT-PCR in wild-type testis

from mice at age 16, 21, 35 and 100 days. Total LKB1 transcript

increases almost 3-fold throughout this developmental period. This

increase was primarily accounted for by an increase in LKB1S.

Whereas the expression of LKB1L does not greatly alter between

the four time points, the expression of LKB1S increases about 6-

fold from day 16 to day 100, suggesting high expression of LKB1S

in later generations of germ cells (post-meiotic). Indeed, immuno-

histochemistry using an antibody specific to total LKB1, showed

minimal expression in testis from 16 day old mice, but confirmed

expression from day 21 onwards in meiotic and post-meiotic germ

cells (Figure 7).

Analysis of Potential Downstream Substrates for LKB1 in
Testis

In order to determine which downstream targets of LKB1 may

be responsible for the failure of spermatid release in the LKB1SKO

tubules we analysed the RNA expression levels of AMPK and

AMPK-related kinases in testes of developing mice. We reasoned

that downstream targets of LKB1 in the testis are likely to have

similar expression patterns to that of LKB1S (Figure 8). The

expression of several of the RNAs examined followed a similar

pattern through development to that of LKB1S. AMPKa1 and a2,

SIK1, SIK2, SIK3 and BRSK2 all show large, significant

increases in expression between day 21 and 35, similar to that of

LKB1, making them possible candidates for a role downstream of

LKB1 in male spermiation. Interestingly, SNRK which has

previously been reported to have testis specific expression in rats

[12], does not have a similar RNA expression pattern to LKB1S

but rather has unaltered expression through 16–100 days

suggesting it is not expressed at significant levels in postmeiotic

germ cells. The expression levels of AMPK or AMPK-related

kinase mRNAs were not significantly different between wild type

and LKB1SKO testis between 21 and 35 days (data not shown). This

suggests that these downstream targets of LKB1 are not under

Figure 3. Histology of the cauda and caput epididymis. Cauda epididymis (A–B) and caput epididymis (C–D) sections were visualised by light
microscopy. Representative images are shown from observations of three mice per genotype. Epididymal epithelia (E) and tubule lumens (L) are
labelled. (A) and (C) show sections through wild-type epididymis showing an abundance of spermatozoa within the lumen. (B) and (D) show sections
through the epididymis of LKB1SKO mice showing abnormal structures within the lumen and very few spermatozoa. (E–F) TEM images of the cauda
epididymal lumen from a wild-type mouse (E) and a LKB1SKO mouse (F). The wild-type section shows numerous cross-sections through sperm heads
(N) and tails (arrows). The section from a LKB1SKO mouse shows dense luminal fluid (as indicated by the darker background to WT), cellular debris,
abnormal round structures (asterisk) and an absence of recognisable spermatozoa cross sections (A and B, scale bar = 20 mm; C and D, scale bar
= 50 mm; E and F, scale bar = 5 mm).
doi:10.1371/journal.pone.0028306.g003
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transcriptional regulation by LKB1. Regulation of the downstream

targets of LKB1 is likely to involve post-transcriptional mecha-

nisms, for example, phosphorylation.

In order to further investigate possible downstream substrates of

LKB1S in testis, the activity of AMPK and various AMPK-related

kinases was compared in testis tissue extracts from wild-type and

LKB1SKO mice. Antibodies raised against AMPKa1, AMPKa2,

NUAK2, BRSK2, SIK1, SIK2, MARK3 and SNRK were used to

immunoprecipitate the proteins from testis homogenates and

activity in the immune complexes was determined using the

AMARA peptide assay. The activity of other AMPK-related

kinases was not determined due to a lack of suitable antibodies. Of

the eight kinases measured, the activities of AMPKa2, NUAK2,

BRSK2 and SNRK were most reduced in LKB1SKO mice

compared to wild-type (by approximately 60–75%) (Figure 9).

Discussion

In this study, we describe the infertility phenotype of male mice

which display significantly reduced LKB1 expression. These mice

show a complete absence of a testis-specific LKB1 splice variant,

LKB1S. Our study confirms and extends the results of a previous

study that reported male infertility in LKB1SKO mice [16].

Importantly, our study identifies a defect in the release of mature

spermatids from the seminiferous epithelium of the testis

(spermiation) as a major cause of the observed infertility phenotype

Figure 4. Testis histology. Cross-sections of seminiferous tubules from wild-type (left-hand panel, A and C) and LKB1SKO (right-hand panel, B and
D) mice. The seminiferous epithelium (SE), which is made up of sertoli cells and developing germ cells, is indicated. This surrounds the lumen (L) of
the tubules. (C) and (D) show sections from tubules at approximately stage V. Circles have been used to show the nuclei of elongating spermatids.
Spermatogonia (open curved arrow), spermatocytes (closed curved arrow) and round spermatids (open arrow) are also indicated. A number of dense,
round bodies of varying sizes can be seen around the lumens from LKB1SKO mice. Examples of these are indicated in (D) (closed black arrows).
Representative images are shown (A and B, scale bar = 100 mm; C and D, scale bar = 20 mm). (E) and (F) show TEM images of a residual body (RB)
within the seminiferous epithelium (SE) from a wild-type mouse (E), and an abnormal cytoplasmic body from a LKB1SKO mouse (F). Normal residual
often contain such structures as vacuoles (V), RNA and mitochondria (Mt). The abnormal cytoplasmic bodies seen in (F) are similar to residual bodies
but often contain at least one condensed spermatid nuclei (N) and several cross sections of flagella (F) as indicated. Detached acrosomes, identified as
the deeply staining crescent shape structures close to the anterior nuclear surface, are indicated with an arrow. Granular material is also indicated (G),
(E and F, scale bar = 2 mm).
doi:10.1371/journal.pone.0028306.g004
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There is almost a complete absence of mature spermatozoa in

the cauda epididymis of LKB1SKO mice. The few spermatozoa

present are immotile and abnormal in terms of morphology, often

showing coiled and fragmented tails, absence of an acrosome and

abnormal head shapes. Surprisingly, testis weight, which can give

an indication of the number of germ cells present and if there is a

severe disruption of spermatogenesis [18], was unaltered in the

LKB1SKO mice. In addition, analysis of testis histology did not

show any obvious reductions in different germ cell types.

The release of mature spermatozoa into the lumen of the

seminiferous tubules occurs at stage VIII of spermatogenesis [29].

Analysis of tubules at different stages of the spermatogenic cycle

indicated that spermiation was not occurring at the correct stage in

the LKB1SKO mice. Deeply staining elongated spermatid nuclei

could be seen in the adluminal compartment of all LKB1SKO

seminiferous tubules whereas in normal mice spermiation results in

an absence of elongated spermatids in tubules in the two or three

stages following spermiation. The relative absence of spermatozoa

reaching the epididymis would suggest spermatids are never

released and are instead phagocytosed by the sertoli cells. This is

also supported by the observation of many deeply staining

degenerating elongate spermatids around all observed tubule

lumens. These resemble residual bodies (the excess spermatid

cytoplasm that is retained by the sertoli cells upon normal

spermatid release) but in the LKB1SKO mice usually at least one

nucleus and flagellum is visible within them. They are often

Figure 5. LM images showing ‘failure of spermiation’ in LKB1SKO mice. Representative images of seminiferous tubules are shown at stage VIII
(A,B), when spermiation normally occurs; and stages IX, X, and XI (C–H), after spermiation has normally taken place. The stage numbers are shown to
the right of the images. Elongated spermatids are identifiable by their darkly-staining, condensed nuclei. The nuclei of immature round spermatids
(open arrows) and elongating spermatids (closed arrows) are less deeply stained and can be seen embedded within the epithelium at the relevant
stages of both WT and LKB1SKO sections. There is a progressive condensation and elongation of the nucleus of the elongating spermatids from stage
IX to stage XI. Sections from wild-type mice are displayed on the left. At stage VIII, elongated spermatids (examples circled) and cytoplasmic lobes (CL)
are visible around the lumen. There are no elongated spermatids present around the lumen after stage VIII in wild-type sections. In contrast, in
tubules from LKB1SKO mice, shown on the right, elongated spermatids are visible around the lumen at all stages displayed (examples circled). In
addition, abnormal deeply staining cytoplasmic bodies (CB) can be seen around the lumen, (scale bar = 20 mm).
doi:10.1371/journal.pone.0028306.g005
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multinucleate suggesting the cytoplasm from adjacent spermatids

has fused together. It is likely therefore, that a failure of

spermiation accounts for the apparent disorganised appearance

of the luminal region of the seminiferous epithelium due to

degrading spermatids. It is possible that most spermatids are never

released and instead degrade and fuse together, eventually to be

phagocytosed by the sertoli cells.

Spermiation is recognised as a process requiring a series of co-

ordinated steps that prepare the spermatids for release, up until the

final disengagement. These include the translocation of germ cells

through the seminiferous epithelium from the blood-testis barrier

to the luminal edge; relocalisation and removal of residual

cytoplasm; breaking down of the sertoli:germ cell adherens

junctions, known as ectoplasmic specialisations; formation and

removal of tubulobulbar complexes; and the final disengagement

of the germ cells into the lumen [29,32]. Each of these steps is

thought vital for spermiation to proceed correctly and so it is

possible that more than one of these processes is disrupted in

LKB1SKO mice.

Some previous reports of mouse models showing a failure in

spermiation have suggested that there is observed a defect in the

breakdown of the ectoplasmic specialisations between the sertoli

cells and spermatid heads. These include male mice lacking

expression of the Sox8 transcription factor which is expressed by

sertoli cells [33], and mice lacking expression of the endocytic

receptor trafficking protein, EDH1 [34]. In the EDH1 study, the

spermiation failure was accompanied by the presence of clumped

spermatids and aggregated residual bodies within the seminiferous

epithelium. It was proposed that EDH1 may play a role in the

endocytosis and recycling of ectoplasmic specialisation compo-

nents. In the current study, TEM analysis of ectoplasmic

specialisations around retained spermatids in the LKB1SKO mice

shows that these junctions are still present at stages when they

should have already broken down. These could be identified by

actin filament bundles adjacent to the spermatid heads. The apical

ectoplasmic specialisations ES is an atypical actin-based adherens

junction and is thought to share components and properties of

adherens junctions, focal contacts and tight junctions [30,35]. The

mechanism by which these junctions are regulated is still not well

understood. A number of peripheral protein kinases and

phosphatases have been shown to associate with them, such as

the tyrosine kinase c-Src, focal adhesion kinase and myotubularin

related protein-2, a lipid/protein phosphatase [36,37,38]. The

PAR3/PAR6 polarity complex has also been implicated in

ectoplasmic specialisation restructuring and spermiation [39]. In

addition, special germ cell cytoplasmic extensions known as

tubulobulbar complexes have been suggested to play a role in the

breakdown of the junctions [40]. Whether dysregulation of any of

these protein complexes is involved in the phenotype of the

LKB1SKO mouse model remains to be determined. LKB1 has

previously been implicated in the regulation of tight junctions and

adherens junctions [41,42,43] and it is therefore tempting to

speculate that LKB1 may play a role in junction dynamics in testis.

In the drosophila eye, loss of LKB1 was shown to cause an

expansion of adherens junctions [43], whereas in the LKB1-

deficient pancreas of mice, tight junctions and adherens junctions

were absent [41].

Overall, there are a number of processes that may be disrupted

in the LKB1SKO mice to cause the failure of spermiation. For

example, the translocation of spermatids to the lumen is thought to

be due to the association of the ectoplasmic specialisation with

microtubule motor proteins within the sertoli cells which are then

involved in transporting the junctions and therefore germ cell to

the lumen [44]. LKB1 has previously been implicated in the

regulation of microtubule dynamics via the MARK family of

AMPK-related kinases [45,46], which raises the possibility that

Figure 6. TEM images of cell junctions between sertoli cells and spermatids. A) Elongated spermatids are shown around the lumen from a
wild-type stage VII tubule before spermiation. The residual spermatid cytoplasm can be seen around the spermatid nucleus (N) as a cytoplasmic lobe
(CL). Although the actin bundles of ectoplasmic specialisations are still visible around some spermatids (arrow), they are beginning to break down
around others as indicated by an asterisk. Mitochondria aligned along the spermatozoan flagellum are labelled (Mt). Spermatid acrosomes (A) and the
tubule lumen (L) are indicated. B) Elongated spermatids are shown around the lumen from a stage X LKB1SKO tubule. These spermatids would
normally have been released at stage VIII. Areas of ectoplasmic specialisations are still visible around the retained spermatid heads as indicated by an
arrow, (scale bar = 2 mm).
doi:10.1371/journal.pone.0028306.g006
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Figure 7. LKB1 splice variant relative gene expression and testicular localisation. A) At day 16, prior to meiosis, testicular LKB1 is expressed
at relatively low levels, with LKB1 protein below the detectable limits of colourimetric immunohistochemistry. B) At day 21 total LKB1 expression has
increased, predominantly through increased expression of LKB1S. LKB1 protein can be detected in meiotic spermatocytes (inset and arrow), and post-
meiotic spermatids (arrowhead). At day 35 (C) and day 100 (D), the predominant transcript is LKB1S with LKB1 protein localised to the cytoplasm of
elongated spermatids in addition to round spermatids and spermatocytes, (scale bar = 50 mm). The insert labelled ‘neg’ shows a negative control in
which no primary antibody was incubated with the tissue.
doi:10.1371/journal.pone.0028306.g007
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Figure 8. Expression of AMPK and AMPK-related kinases in testis. The mRNA expression levels of LKB1 and downstream kinases in
developing testis at post-partum days 16–100. Values are shown relative to the expression levels at day 16 and shown as the mean +/- SEM, n = 5.
doi:10.1371/journal.pone.0028306.g008
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decreased MARK activity in the LKB1SKO mice interferes with

this process. It is also possible that there is a defect in the removal

of residual cytoplasm from the spermatids. This could be a reason

why spermatid heads and tails around the lumen often appear

buried in large amounts of cytoplasm. If the cytoplasmic lobes are

not released properly from the spermatids, they may become fused

together with the spermatids still attached. Excess retained

cytoplasm could also be an explanation for the detachment of

the acrosomes from spermatid nuclei. In LKB1SKO mice acrosomal

development appears to progress normally but then the acrosomes

‘peel off’ the nuclei of many late spermatids. A similar

phenomenon of acrosome detachment has also been reported in

mice that have a deletion of histone H1 variant, H1T2 [47]. It

was suggested that in the case of H1T2 deletion this is due a

defect in the elimination of residual cytoplasm during elongation.

This pulls the outer membrane, with the acrosome attached, away

from the spermatid head. This is similar to the situation in

LKB1SKO mice where the detached acrosome usually stays

attached to the outer membrane, with the ectoplasmic specialisa-

tion still visible linking it to the sertoli cells. It cannot be ruled out

that problems in spermiogenesis may have occurred prior to the

defect in spermiation. The sertoli cells may be able to detect that

the spermatids are abnormal and therefore retain them for

phagocytosis.

LKB1 has previously been described as a ‘master kinase’ with

many different functions. It is therefore very possible that a

number of downstream kinases and pathways are affected in

LKB1SKO mouse testis. Of the 14 kinases shown previously to be

substrates of LKB1, there have been few studies characterizing the

tissue distribution of the proteins. So far, AMPKa1/a2 [48],

BRSK1/2 [11], SNRK [12] and NUAK2 [49] proteins have been

shown to be present in testis and our RT-PCR data has detected

RNA for the remainder of the AMPK-related kinases in testis. The

expression of some of those studied shows a similar temporal

expression pattern to LKB1S in early testis development,

particularly AMPKa1. Comparison of the catalytic activities of

AMPK and several of the AMPK-related kinases showed that their

activities were all reduced in testis from LKB1SKO mice relative to

wild-type. The greatest reductions in activity were seen for

BRSK2, NUAK2 AMPKa2 and SNRK. It is interesting to note

that the kinases with the greatest reductions in activity do not

always show similar developmental expression profiles to LKB1S.

For example, SNRK expression does not correlate with that of

LKB1S during testis development and yet its activity is reduced by

more than 60% in LKB1SKO mice. These findings underscore the

likelihood that functional kinase activity is not necessarily directly

related to mRNA levels. Other factors, including protein stability

and post-translational modification may play an important role in

determining kinase activity in vivo. Due to there being a number of

different cell types in testis it is hard to draw any firm conclusions

as to the downstream substrates of LKB1S. For example, in wild-

type mice some kinases may be expressed in a number of different

cell types that normally express different relative amounts of

LKB1L and LKB1S. If the activity of one kinase was completely

lost in developing spermatids due to the absence of LKB1S, it may

still be highly expressed and active in another cell type where

LKB1L is still present, thus masking the loss in germ cells.

Unfortunately, specific antibodies that could be used in cellular

localisation studies were unavailable. A study looking at the

activity of AMPK and individual AMPK-related kinases specifi-

cally in spermatids may be informative. Interestingly, in rats

SNRK has previously been suggested to be testis-specific [12]

making this a potential candidate in the infertility phenotype. In

addition, AMPK has previously been implicated in the provision

of lactate to germ cells, their main energy source, via the

regulation of glucose and lactate transporters on the surface of

sertoli cells [50,51]. Whether these processes are disrupted in

LKB1SKO mice is unknown.

Whilst this model unequivocally demonstrates thatLKB1 is an

important regulator of male fertility, a limitation of the current

model is that it is not clear whether the defects seen are a result of

absence of LKB1S expression, downregulation of LKB1L expres-

sion, or a combination of both effects. Despite this, there is good

evidence to suggest that the LKB1S splice variant plays a

significant role in spermatogenesis due to its high expression in

spermatids relative to LKB1L.

In conclusion, the primary cause of the infertility in LKB1SKO

mice is a defect in spermatid release from the seminiferous

Figure 9. Activity of AMPK and AMPK-related kinases in LKB1SKO testis. Activity measured in immune-complexes using antibodies specific
for AMPK and AMPK-related proteins are plotted as a percentage of the activity measured in wild type testis and shown as the mean6S.E.M. from
three individual mice. * indicates a statistically significant difference in activity in LKB1SKO compared to wild-type samples (p,0.05 with Student’s
unpaired t test).
doi:10.1371/journal.pone.0028306.g009
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epithelium. A future aim is to identify the protein kinase target(s)

downstream of LKB1 involved in spermiation. At present, many of

the processes involved in spermiation are not well understood. Our

finding that LKB1 plays a critical role in spermiation brings us a

step closer to understanding the molecular mechanisms involved in

this complex process, the regulation of which is a potential target

for male contraceptives and infertility therapies.
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