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Abstract 

 

The effects of temperature on the crystal structure of a natural epidote [Ca1.925 

Fe0.745Al2.265Ti0.004Si3.037O12(OH), a=8.890(6),  b=5.630(4),  c=10.150(6)Å and β= 

115.36(5)°, Sp. Gr. P21/m]  have been investigated by means of neutron single-crystal 

diffraction at 293 and 1070K. At room conditions, the structural refinement confirms 

the presence of Fe3+ at the M3 site [%Fe(M3)=73.1(8)%] and all attempts to refine the 

amount of Fe at the M(1) site were unsuccessful. Only one independent proton site 

was located. Two possible hydrogen bonds, with O2 and O4 as acceptors [i.e. O(10)–

H(1)···O2  and O(10)–H(1)···O4], occur. However, the topological configuration of 
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the bonds suggests that the O(10)–H(1)···O4  is energetically more favourable, as 

H(1)···O(4)=1.9731(28)Å, O(10)···O(4)=2.9318(22)Å and O(10)–

H(1)···O4=166.7(2)°, whereas  H(1)···O(2)=2.5921(23)Å, 

O(10)···O(2)=2.8221(17)Å and O(10)–H(1)···O2=93.3(1)°.  The O(10) - H(1) bond 

distance corrected for “riding motion” is 0.9943Å. The diffraction data at 1070K 

show that epidote is stable within the T-range investigated, and that its crystallinity is 

maintained. A positive thermal expansion is observed along all the three 

crystallographic axes. At 1070K the structural refinement again shows that Fe3+ share 

the M(3) site along with Al3+ [%Fe(M3)1070K=74(2)%]. The refined amount of Fe3+ at 

the M(1) is not significant [%Fe(M1)1070K=1(2)%]. The tetrahedral and octahedral 

bond distances and angles show a slight distortion of the polyhedra at high-T, but a 

significant increase of the bond distances compared to those at room temperature is 

observed, especially for bond distances corrected for “rigid body motions”. The high-

T conditions affect also the inter-polyhedral configurations: the bridging angle Si(2)-

O(9)-Si(1) of the Si2O7 group increases significantly with T. The high-T structure 

refinement shows that no dehydration effect occurs at least within the T-range 

investigated. The configuration of the H-bonding is basically maintained with 

temperature. However, the hydrogen bond strength changes at 1070K, as the 

O(10)···O(4) and H(1)···O(4) distances are slightly longer than those at 293K.  The 

anisotropic displacement parameters of the proton site are significantly larger than 

those at room condition. Reasons for the thermal stability of epidote up to 1070K 

observed in this study, the absence of dehydration and/or non-convergent ordering of 

Al and Fe3+ between different octahedral sites and/or convergent ordering on M(3) are 

discussed.  

 

Keywords: epidote, high-temperature, neutron single-crystal diffraction, structurally 

incorporated water, hydrogen bonding. 

 

Introduction 

  Epidotes are a class of sorosilicates with the general formula 

A1A2M1M2M3(Si2O7)(SiO4)O(OH), where the A(1) and A(2) sites with coordination 

number (CN) >6 and mainly occupied by Ca, and M(1), M(2) and M(3) sites with 

CN=6 and mainly occupied by Al and Fe3+. However, a large number of elements can 

substitute Ca at A(1) and A(2) and Al or Fe3+ at the M(1) and M(3) sites, making the 



crystal chemistry of natural epidote more complex (Franz and Liebsher 2004). 

According to the Commission of the International Mineralogical Association, the term 

“epidote” sensu stricto (s.s.) should be used for members with composition Ca2Al2 

Fe3+Si3O12(OH). In Nature, epidotes s.s. usually form during low grade  

metamorphism and hydrothermal activity (250–400°C, 1-2 kbars). However, they are 

stable over a wide range of pressure and temperature in continental and oceanic crust 

(Poli and Schmidt 1998). Magmatic epidote has been also found (Schmidt and Poli 

2004). The stability of epidotes s.s. depends not only on pressure and temperature, but  

is also significantly influenced by the Al/Fe3+ ratio, oxygen fugacity, fluid 

composition and solution pH (Holdaway 1972, Liou 1973, Bird and Helgeson 1980, 

Bird et al. 1988, Klemd 2004). Epidote s.s. is particulary common in metamorphosed 

basalts and gabbros where it replaces plagioclase, pyroxene and olivine. It can also be 

found in schists and marbles. In addition, it is frequently found infilling vugs or veins 

in these rocks. Epidotes are commonly associated with chlorite, actinolite and quartz. 

Epidote s.s. is metrically monoclinic and the unit-cell constants appear to be 

correlated to the amount of Fe3+ (unit-cell 8.861<a<8.922, 5.577<b<5.663, 

10.140<c<10.200Å, 115.31<β<115.93º, Z=2, Franz and Liebsher 2004). The space 

group is P21/m; however possible symmetry reduction to Pm, P21 or P1, due to cation 

ordering, have been reported (Franz and Liebsher 2004). Epidote is a structurally 

complex mineral having both single silicate tetrahedrons, SiO4, and double silicate 

tetrahedrons, Si2O7. Continuous chains of AlO6 and AlO4(OH)2 octahedra running 

parallel to the b-axis and are bridged by single SiO4 and double Si2O7 tetrahedral 

groups (Fig. 1). These chains are arranged in parallel planes and the perfect cleavage 

breaks the bonds between these planes. The formula of a chemically simple epidote 

s.s. can be expressed in a such a way so as to reflect this organization: 
A1CaA2CaM1(Al,Fe3+)M2(Al)M3(Al,Fe3+)O(SiO4)(Si2O7)(OH). Several studies based on 

different techniques, recently reviewed by Franz and Liebsher (2004), showed a 

preference of Fe3+ for M(3) and M(1) sites. The replacement of Al by Fe3+ in the 

epidote structure does not significantly exceed one atom per formula unit [i.e. the 

composition lies between Ca2Al3Si3O12(OH) and Ca2Fe3+Al2Si3O12(OH)].  

Several authors have investigated the crystal structure and crystal chemistry of 

compositionally different epidotes s.s. at room or low-temperature by means of X-ray 

and neutron single-crystal diffraction, IR and Mössbauer spectroscopy and theoretical 



models (among those: Ito et al. 1954, Hanisch and Zemann 1966, Dollase 1968, 1969, 

1971, 1973; Gabe et al. 1973, Langer and Raith 1974, Nozik et al. 1978, Bird and 

Helgeson 1980, Carbonin and Molin 1980, Stergiou et al. 1987, Bird et al. 1988, 

Kvick et al. 1988, Bonazzi and Menchetti 1995, Comodi and Zanazzi 1997, Giuli et 

al. 1999) and recently reviewed by Bonazzi and Menchetti (2004), Franz and Liebsher 

(2004) and Liebsher (2004). However, no study has been devoted to the high-

temperature behaviour of epidote s.s. based on in-situ high-temperature (HT) 

experiments, despite the importance of this minerals in the field of the metamorphic 

and/or magmatic petrology. The only in-situ HT X-ray single-crystal diffraction study 

was performed on a Sr-piemontite by Catti et al. (1988), although the X-ray 

diffraction study proved to be insufficient to monitor T-induced disordering 

phenomena and to locate directly the proton site at HT in epidote (Catti et al. 1988).  

In this light, the aim of the present study is a re-investigation of the crystal structure 

and HT crystal chemistry of a natural epidote s.s. at ambient and high-temperature (up 

to 1070K) by means of single-crystal neutron diffraction, in order to define (1) the T-

induced structure evolution and the mean deformation mechanisms, (2) any possible 

T-induced disordering phenomena (Al↔Fe3+), and (3) any change in hydrogen 

bonding or dehydration effects. Neutron diffraction is the best technique for a study of 

partial site-occupancy by Fe and Al, since the neutron-scattering lengths of these two 

elements are significantly different (i.e. b56Fe=9.94 and bAl=3.449 fm). In addition, the 

independence of scattering lengths and (sinθ)/λ allows a separation of substitutional 

and thermal-motion effects. 

 

Experimental methods 

A natural, dark-green, gem-quality single-crystal of epidote s.s. (~ 2.4 cm3) 

from the intrusive/metamorphic complex of Val Sissone, Valmalenco (Rhetic Alps, 

Italy) was used in this study. The sample and the chemical analysis [Ca1.925 

Fe0.745Al2.265Ti 0.004Si3.037O12 (OH), in Bedognè et al. 1993] have been kindly provided 

by Museo di Storia Naturale, Milano, Italy. 

 A fragment of the crystal of approximately 2.3 x 2.5 x 4 mm3 was selected for 

the neutron diffraction experiment. Under a polarised microscope, the crystals 

appeared free of defects, twinning or zoning. A preliminary test of the crystal was 

performed by means of X-ray diffraction at the Earth Science Department – 



University of Milano using an Xcalibur-1 Oxford Diffraction diffractometer equipped 

with CCD, with monochromatized Mo-Kα radiation. Accurate cell parameters were 

measured using diffraction data from a small fragment of about 0.1 x 0.1 x 0.1 mm, 

within the range 5˚<2θ<40˚, giving a metrically monoclinic lattice with: 

a=8.8900(3)Å, b=5.6286(2) Å, c=10.1558(4)Å, β=115.412(2)° and V=459.02(4)Å3. 

The single-crystal neutron diffraction experiment was first performed at room 

temperature with the four-circle diffractometer HEiDi (beam line SR9) at the FRM-II 

reactor (Forschungsneutronenquelle Heinz Maier-Leibnitz) at Garching (near 

München), Germany. The FRM II provides a maximum undisturbed thermal neutron 

flux density of 8x1014cm-2s-1 at a nominal thermal power of 20MW. The incident 

radiation (CW with λ=0.5500Å) was obtained using a focusing Cu-(420) 

monochromator. Cu monochromator cystals show typically a strong λ/2 

contamination; therefore, a neutron filter (0.5 mm Hf foil) was used to cut off the 

neutrons around the λ/2 area from the neutron spectrum. An integrated slit system 

defined the cross section of the entrance window of the detector. A ³He single counter 

detector was used [Eurisys 73NH17/5X end window counter, 50 mm entrance 

window, 5 bar ³He pressure and 170 mm active length for high detection probability 

(>90% at 0.8 Å), separation of γ radiation by pulse height discrimination]. The unit-

cell parameters refined on the basis of the 37 Bragg reflections at T=293K are: 

a=8.890(6)Å,  b=5.630(4)Å, c=10.150(6)Å, β=115.36(5)°. A total number of 2741 

reflections were recorded with -16≤ h ≤12, 0≤ k ≤10 and 0≤ l ≤18 (maximum 2θ = 

60˚, sin(θ)/λ~0.9). Two standard reflections were measured with every 450 min 

throughout the experiment and the intensity variation was within σ(I). Further details 

of the data collection are reported in Table 1. The systematic extinction rules agreed 

with the space group P21/m. Diffraction data were then corrected for Lorentz effect. 

No absorption correction was applied because of the shape and the dimensions of the 

sample. After correction, the discrepancy factor for the symmetry related reflections 

(Laue class: 2/m)  was Rint = 0.0357. 

A further set of data was collected at T=1070 K, using an air cooled furnace 

designed at the Jülich Centre for Neutron Science (JCNS) (temperature precision: ± 

1K). The temperature of the crystal was slowly increased (~200K/h) and kept at 

T=1070K for 3 hours prior to data collection. Unit-cell parameters refined on the basis 

of the 37 Bragg reflections at 1070K are: a=8.939(10)Å,  b=5.682(10)Å, 



c=10.251(4)Å and β= 115.78(5)°. A total of 841 reflections were recorded with -13≤ 

h ≤0, 0≤k ≤8 and -15≤ l ≤15 (maximum 2θ=52˚, sin(θ)/λ~0.8) (Table 1). The lower 

number of reflections compared to 293K are due to the shadowing effect of the 

furnace and to a technical problem at the beam-line. As with data collection at room 

temperature, two standard reflections were measured every 450 min throughout the 

experiment and the intensity variation was within σ(I). Further details of the data 

collection are reported in Table 1. The systematic extinction rules agreed with the 

space group P21/m. Diffraction data were then corrected for Lorentz effect and no 

absorption correction was applied. After correction, the discrepancy factor for the 

symmetry related reflections was Rint = 0.071. 

 

Structure refinements  

The neutron diffraction data of epidote collected at room temperature were first 

processed with the program E-STATISTICS, implemented in the WinGX package 

(Farrugia 1999). The statistics of distributions of the normalized structure factors (E's) 

showed that the structure is centrosymmetric at 65.4% likelihood. The Sheldrick’s 

│E2-1│ criterion (Sheldrick 1997) indicated that the structure is centrosymmetric 

(│E2-1│= 0.891) (Table 1). The intensity data were then processed with the program 

ASSIGN-SPACEGROUP (in WinGX, Farrugia 1999), aimed to check the supposed 

symmetry by comparing the equivalent reflections. The program selected two possible 

space groups (both belonging to the 2/m Laue class): P21 and P21/m. The Combined 

Figure of Merit (CFOM) showed that the centrosymmetric space group P21/m is 

highly likely (CFOM - P21/m = 2.367, CFOM- P21 =4.163; the lower the value of 

CFOM, the more likely the assignment is correct) (Table 1). The crystal structure 

refinement was then performed in the space group P21/m using the SHELX-97 

software (Sheldrick 1997), with anisotropic thermal displacement parameters and 

starting from the atomic coordinates of Kvick et al. (1988), with a H-free structural 

model. The neutron scattering lengths of Ca, Al, Fe, Si, O and H have been used 

according to Sears (1986). The secondary isotropic extinction effect was corrected 

according to Larson’s formalism (1970), as implemented in the SHELXL-97 package 

(Sheldrick 1997). When convergence was achieved, one intense negative residual 

peaks (~ -25 fm/Å3) at x~0.05, y=1/4, z~0.32  (~0.98Å from the oxygen site O10) was 

found in the final difference-Fourier map of the nuclear density (Fig. 2). As the 



neutron scattering length of hydrogen is negative (-3.7409 fm/Å3), a further 

refinement was then performed assigning H to the residual peak, with anisotropic 

thermal parameters for all sites including the proton site. Convergence was rapidly 

achieved and all the principal mean square atomic displacement parameters were 

positively defined. The variance-covariance matrix showed no significant correlation 

among the refined parameters. At the end of the last cycle of refinement, no peak 

larger than +1.07/-1.04 fm/Å3 was present in the final difference-Fourier map of the 

nuclear density (Fig. 2, Table 1). The final agreement index (R1) was 0.0351 for 127 

refined parameters and 1756 unique reflections with Fo>4σ(Fo) (Table 1). Site 

positions are reported in Table 2a, displacement parameters in Tables 3a and 4a. 

Relevant bond lengths and angles are listed in Tables 5a.  

The neutron diffraction data collected at 1070K were processed following the 

same protocol already adopted for the refinement at room temperature. The 

preliminary data treatment on the symmetry of the structure showed that the structure 

is centrosymmetric at 53% likelihood (│E2-1│= 0.846), and the CFOM of the P21 

and P21/m are similar, showing that there is not a clear evidence of the presence of the 

inversion center (Table 1). The anisotropic structural refinement was performed 

starting from the structural model previously refined at room condition. When 

convergence was achieved, no peak larger than +1.15/-1.21 fm/Å3 was present in the 

difference-Fourier map of the nuclear density (Table 1). At the end of the refinement, 

an inspection of the variance-covariance matrix showed no significant correlation 

among the refined parameters. All the principal mean square atomic displacement 

parameters were positively defined. The final agreement index (R1) was 0.0548 for 

126 refined parameter and 519 unique reflections with Fo>4σ(Fo) (Table 1). The 

refined atomic positions at 1070K are reported in Table 2b, the displacement 

parameters in Table 3b and 4b. Bond lengths and angles are listed in Tables 5b. A 

further isotropic structure refinement was performed, increasing significantly the 

observation/refined parameters ratio. The refined atomic positions and the occupancy 

factors of Fe and Al at the octahedral sites agree with those obtained from the 

anisotropic refinement within the e.s.ds, proving the reliability of the anisotropic 

structure refinement at 1070K. 

 

 

 



Discussion and conclusions 

This is the first experiment in which the structural evolution of epidote in 

response to the temperature is described on the basis of in-situ neutron diffraction 

data.  

At room conditions, the structural refinement confirms the presence of Fe3+ at 

the M3 site [%Fe(M3)=73.1(8)%] (Table 2a). Any attempt to refine the amount of Fe 

at the M(1) site was unsuccessful; in other words, the M(1) site is completely 

occupied by Al, whereas Fe and Al occupy the M(3) site (Table 2a). This is in 

agreement with the previous results of Bonazzi and Menchetti (1995), who found that 

a significant amount of Fe3+ is found at the M(1) site only when the volume of the 

M(3) polyhedron is higher than 11Å3. As the refined volume of the M(3) polyhedron 

approaches 11Å3  (Table 5a), we cannot expect a significant amount of Fe3+ at the 

M(1) site. The refined amount of Fe on the basis of the neutron structural refinement 

is in good agreement with the chemical analysis [i.e. 0.735 vs 0.745 a.p.f.u.]. 

According to the previous studies (Franz and Liebsher 2004 and references therein), 

the M(2) site was found to be occupied only by Al. The structural refinement at room 

temperature shows that the thermal displacement ellipsoids are only slightly 

pronounced (Table 3a and 4a). The largest anisotropy is observed for the O(3), O(8) 

and O(9) oxygen sites, with R1/R3~2 (where R1 and R3 represent the longest and the 

shortest root-mean-square components of the thermal ellipsoids, respectively; Table 

4a). A similar finding was reported by Kvick et al. (1988), who suggested this effect 

is driven by rotation of the Si(2)-tetrahedron due to the presence of Fe3+ at the M(3) 

site with respect to a Fe-free structure (i.e. zoisite, Smith et al. 1987). The least-square 

refinement shows that there is only one independent proton site in the epidote 

structure and its refined position is in good agreement with that of Kvick et al. (1988). 

Two possible hydrogen bonds, with O2 and O4 as acceptors [i.e. O(10)–H(1)···O2  

and O(10)–H(1)···O4, Table 5a], occur. However, the topological configuration of the 

bonds suggests that the O(10)–H(1)···O4  is energetically more favourable, as 

H(1)···O(4)=1.9731(28)Å, O(10)···O(4)=2.9318(22)Å and O(10)–

H(1)···O4=166.7(2)°, whereas  H(1)···O(2)=2.5921(23)Å, 

O(10)···O(2)=2.8221(17)Å and O(10)–H(1)···O2=93.3(1)°. Evidence of possible 

hydrogen bonds with O(2) as acceptors, with a complex bifurcated configuration, 

where reported in previous IR-spectroscopy studies (Liebscher et al. 2002, Liebsher 

2004). The O(10) - H(1) bond distance corrected for “riding motion” (Busing and 



Levy 1964) is 0.9943Å (Table 5a). Kvick et al. (1988), on the basis of the structural 

refinement of epidote s.s. at 15K, suggested that the deviation of the O(10) – 

H(1)···O4 angle from the linearity (i.e. 180°) might be ascribable to the electrostatic 

repulsion from the trivalent cations at the M(3)-site and from the Ca(2)-site, as 

M(3)···H(1)~2.728 and Ca(2)···H(1)~3.004Å. In our refinement at 298K we obtain: 

M(3)···H1~2.782Å and Ca(2)···H(1)~3.014Å, reflecting a possible repulsion effect. 

The almost linear hydrogen bond in zoisite at 15K [a Fe-free epidote, in which O(10)–

H(1)···O4 = 176.4(2)° , O(10)···O(4) = 2.742(2)Å and H(1)···O(4) = 1.752(2),  Smith 

et al. 1987], suggests that the presence of Fe3+ at the M(3)-site leads to a weakening of 

the bonds, as shown by the increase of the O(10)···O(4) and H(1)···O(4) distances. 

This agrees with some experimental findings based on vibrational spectroscopy in 

which the O-H stretch frequencies were found to be positively correlated with Fe 

content (Langer and Raith 1974; Liebscher 2004): the higher the Fe amount into the 

structure, the higher the O-H stretching frequency. The comparative study of Franz 

and Liebscher (2004), based on a wide numbers of structure refinements of epidotes 

s.s. with different Fe-content, shows a significant increase of the O(10)···O(4) value 

with increasing the Fe-content.  

The diffraction data at 1070K show that epidote s.s. is stable within the T-

range investigated and that its crystallinity is maintained. This result is in agreement 

with previous experimental findings on Sr-piemontite, which shows a structural break 

down at about 1150K (Catti et al. 1988). However, the crystal chemistry of epidote 

s.s. and that of Sr-piemontite are significantly different. A positive thermal expansion 

is observed along all the three crystallographic axes of our epidote s.s. (Δa/a≈0.55%, 

Δb/b≈0.91%, Δc/c≈1.00% and ΔV/V≈ 2.4% with ΔT=777K). As observed at room 

conditions, the 1070K the structure refinement also shows that Fe3+ shares the M(3) 

site along with Al3+ [%Fe(M3)1070K=74(2)%] (Table 2b). The refined amount of Fe3+ 

at the M(1) site is not significant [%Fe(M1)1070K=1(2)%] (Table 2b). The tetrahedral 

and octahedral bond distances and angles show a slight distortion of the polyhedra at 

high-T, but a significant increase of the bond distances compared to those at room 

temperature is observed, especially for bond distances corrected for “rigid body 

motions” following Downs et al. (1992) and Downs (2000) (Table 5b). The HT-

conditions also affect the inter-polyhedral configurations: the bridging angle Si(2)-

O(9)-Si(1) of the Si2O7 group, for example, increases significantly from 154.59(9)° at 



298K to 157.4(5)° at 1070K, respectively (Tables 5a and 5b). The high-T structural 

refinement shows that no dehydration effect occurs at least within the T-range 

investigated. The configuration of the H-bonding is basically maintained with 

temperature, as shown by the bond distances and angles reported in Table 5b. 

However, the hydrogen bond strength changes at 1070K, as the O(10)···O(4) and 

H(1)···O(4) distances are slightly longer than those at 293K.  The anisotropic 

displacement parameters of the proton site are significantly larger than those at room 

condition, although the R1/R3 ellipticity ratios are similar (Tables 4b). On the whole, 

the structure reacts in response to the applied temperature without any drastic change, 

but mainly by increasing inter-atomic bond distances and thermal vibration of all the 

atomic sites, as shown in Fig. 3, and with inter-polyhedral tilting. 

The thermal stability of epidote s.s. up to 1070K observed in this study, the 

absence of dehydration and/or non-convergent ordering of Al and Fe3+ between 

different octahedral sites and/or convergent ordering on M(3) (Fehr and Heuss-

Assbichler 1997, Franz and Liebscher 2004 and references therein, Gottschalk 2004 

and references therein) are likely due to the slow kinetics of the aforementioned 

processes. Fehr and Heuss-Assbichler (1997) studied the kinetics of the non-

convergent ordering process of Al and Fe3+ between M(3) and M(1) sites, heating 

epidote with different Fe-content at 773, 873, and 923K (at 0.3 GPa) for 1 to 22 days 

under controlled oxygen fugacity. The experiments showed that after 5 days 

equilibrium was achieved (Fehr and Heuss-Assbichler 1997). A large crystal, as that 

used for this neutron diffraction experiment, and the short time of the in-situ high-T 

experiment likely hindered the aforementioned T-induced processes.  
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Tables and Figures 

 

Table 1. Details pertaining to the data collection and refinement of epidote at 298 and 

1073K. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Crystal size (mm3) 2.3 x 2.5 x 4 2.3  x 2.5  x  4 
Cell parameters a = 8.890(6)Å a = 8.939(10) Å 
 b = 5.630(4)Å b = 5.682(10)Å 
 c = 10.150(6)Å c = 10.251(4)Å 
 β= 115.36(5)° β= 115.78(5)°  
Z 2 2 
T (K) 298 1070 
Radiation (Å) 0.5500 0.5500 
Scan type, steps and width:    
   2θ <60° 31 steps, pure ω-scan 31 steps, pure ω-scan 
   Time per step (s) 5 5 
   u, v, w 5.4, -12.0, 16.3 5.4, -12.0, 16.3 
Max. 2θ (°) 60 52 
 -16≤ h ≤12 -13≤ h ≤0 
 0≤ k ≤10  0≤  k ≤8  
 0≤ l ≤18 -15≤ l ≤15 
No. measured reflections  2741 841 
Space Group assignment :   
Prob. centrosymmetric structure  65.4% 53.0% 
│E2-1│ 0.891 0.846 
CFOM- P21/m 2.367 7.329 
CFOM- P21 4.163 6.831 
Selected space group P21/m P21/m 
No. unique refl. with Fo >4σ(Fo) 1756 519 
No. refined parameters  127 127 
Extinction correction factor 0.017(1) 0.013(4) 
R int 0.0357 0.0710 
R1 (F) with Fo >4σ(Fo) 0.0351 0.0548 
wR2 (F2)   0.0486 0.0922 
GooF 1.001 1.139 
 Weighting Scheme: a, b 0.01, 0 0.01, 1 
Residuals (fm/ Å3) +1.07/-1.04 +1.16/-1.21 
Note: Rint = Σ | Fobs

2 - Fobs
2(mean) | / Σ [ Fobs

2 ];   R1 = Σ(|Fobs| - |Fcalc|)/Σ|Fobs|;  
wR2 = [Σ[w(F2

obs - F2
calc)2]/Σ[w(F2

obs)2]]0.5; 
w= 1/ [σ2(Fobs

2) + (a*P)2 + b*P ];  P = (Max (Fobs
2, 0) +2*Fcalc

2)/3; 
ω-scan width = (u + v*tanθ + w*tan2θ)0.5 



 

Table 2a.   Refined fractional atomic coordinates and equivalent isotropic temperature 
factors (Å2), with standard deviations in parentheses, based on the diffraction data 
collected at 293K.  
                     

Site x/a           y/b             z/c             Ueq 
CA(1) 0.75755(12) 0.75 0.15178(12) 0.0088(1) 
CA(2) 0.60525(12) 0.75 0.42409(13) 0.0111(1) 
SI(1) 0.33936(10) 0.75 0.04749(11) 0.0036(1) 
SI(2) 0.68410(11) 0.25 0.27477(11) 0.0041(1) 
SI(3) 0.18396(10) 0.75 0.31832(11) 0.0037(1) 
M(1) 0 0 0 0.0036(2) 
M(2) 0 0 0.5 0.0041(1) 
M(3) 0.29382(6) 0.25 0.22428(6) 0.0049(1) 
O(1) 0.23406(5) -0.00563(8) 0.04145(6) 0.0065(1) 
O(2) 0.30384(6) -0.01778(8) 0.35522(6) 0.0069(1) 
O(3) 0.79461(6) 0.01389(8) 0.33999(6) 0.0082(1) 
O(4) 0.05280(8) 0.25 0.12950(9) 0.0049(1) 
O(5) 0.04160(8) 0.75 0.14566(9) 0.0051(1) 
O(6) 0.06664(8) 0.75 0.40667(9) 0.0055(1) 
O(7) 0.51529(8) 0.75 0.18079(10) 0.0082(1) 
O(8) 0.52467(9) 0.25 0.30785(11) 0.0117(1) 
O(9) 0.62773(12) 0.25 0.09900(11) 0.0139(1) 
O(10) 0.08212(9) 0.25 0.42841(9) 0.0058(1) 
H(1) 0.0537(2) 0.25 0.3242(2) 0.0194(3) 
Note: %Al[M(1)]=99.9(6)% and %Fe[M(1)]=0.1(6); 
%Al[M(2)]=100%; %Al[M(3)]=26.9(8)% and %Fe[M(3)]= 73.1(8)% 
 
 
 
Table 2b.   Refined fractional atomic coordinates and equivalent isotropic temperature 
factors (Å2), with standard deviations in parentheses, based on the diffraction data 
collected at 1070K.  
       
Site x/a           y/b             z/c             Ueq 
CA(1) 0.7588(9) 0.75 0.1535(8) 0.030(2) 
CA(2) 0.6002(9) 0.75 0.4183(8) 0.036(2) 
SI(1) 0.3385(6) 0.75 0.0440(7) 0.013(1) 
SI(2) 0.6832(6) 0.25 0.2728(7) 0.012(1) 
SI(3) 0.1840(6) 0.75 0.3184(7) 0.012(2) 
M(1) 0 0 0 0.014(2) 
M(2) 0 0 0.5 0.014(1) 
M(3) 0.2934(4) 0.25 0.2257(4) 0.020(1) 
O(1) 0.2334(3) -0.0087(8) 0.0384(3) 0.022(1) 
O(2) 0.3039(3) -0.0187(8) 0.3555(4) 0.022(1) 
O(3) 0.7935(4) 0.0157(8) 0.3409(4) 0.024(1) 
O(4) 0.0562(6) 0.25 0.1276(5) 0.016(1) 
O(5) 0.0442(6) 0.75 0.1471(6) 0.018(1) 
O(6) 0.0665(6) 0.75 0.4057(6) 0.017(1) 
O(7) 0.5123(6) 0.75 0.1769(6) 0.027(1) 
O(8) 0.5221(6) 0.25 0.3032(6) 0.029(1) 
O(9) 0.6331(8) 0.25 0.1018(6) 0.039(1) 
O(10) 0.0810(7) 0.25 0.4296(8) 0.021(1) 
H(1) 0.0579(14) 0.25 0.3299(13) 0.045(3) 
Note: %Al[M(1)]=99(2)% and %Fe[M(1)]=1(2)%; 
%Al[M(2)]=100%; %Al[M(3)]=26(2)% and %Fe[M(3)]=74(2)% 



 Table 3a. Refined displacement parameters (Å2) in the expression: -2π2[(ha*)2U11 
+…+ 2hka*b*U12 +…+2klb*c*U23 ], based on the data collected at 293K. Ueq is 
defined as one third of the trace of the orthogonalised Uij tensor. 
 

                 

     
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Table 3b. Refined displacement parameters (Å2) in the expression: -2π2[(ha*)2U11 
+…+ 2hka*b*U12 +…+2klb*c*U23 ], based on the data collected at 1070K. Ueq is 
defined as one third of the trace of the orthogonalised Uij tensor. 

 

 

 

 

Site U11 U22 U33 U12 U13 U23 
CA(1) 0.0118(3) 0.0083(3) 0.0086(4) 0 0.0066(3) 0 
CA(2) 0.0099(3) 0.0161(3) 0.0068(3) 0 0.0031(3) 0 
SI(1) 0.0030(3) 0.0035(2) 0.0038(3) 0 0.0011(3) 0 
SI(2) 0.0046(3) 0.0041(2) 0.0038(3) 0 0.0018(3) 0 
SI(3) 0.0031(2) 0.0036(2) 0.0043(3) 0 0.0016(3) 0 
M(1) 0.0036(4) 0.0028(3) 0.0044(4) -0.0003(3) 0.0017(3) -0.0003(3) 
M(2) 0.0043(3) 0.0028(3) 0.0054(4) 0.0003(3) 0.0022(3) 0.0001(3) 
M(3) 0.0034(2) 0.0053(2) 0.0056(2) 0 0.0015(2) 0 
O(1) 0.0052(1) 0.0045(1) 0.0100(2) 0.0011(1) 0.0034(1) 0.0008(1) 
O(2) 0.0064(1) 0.0067(1) 0.0075(2) -0.0007(1) 0.0028(1) -0.0026(1) 
O(3) 0.0064(1) 0.0044(1) 0.0092(2) 0.0007(1) -0.0009(2) -0.0009(1) 
O(4) 0.0050(2) 0.0045(2) 0.0048(3) 0 0.0017(2) 0 
O(5) 0.0054(2) 0.0050(2) 0.0043(2) 0 0.0014(2) 0 
O(6) 0.0073(2) 0.0044(2) 0.0073(3) 0 0.0055(2) 0 
O(7) 0.0053(2) 0.0099(2) 0.0073(3) 0 0.0006(2) 0 
O(8) 0.0100(3) 0.0144(3) 0.0153(4) 0 0.0099(3) 0 
O(9) 0.0183(3) 0.0197(3) 0.0063(3) 0 0.0077(3) 0 
O(10) 0.0075(2) 0.0043(2) 0.0078(3) 0 0.0053(2) 0 
H(1) 0.0246(6) 0.0220(6) 0.0141(6) 0 0.0106(6) 0 

Site U11 U22 U33 U12 U13 U23 
CA(1) 0.041(4) 0.021(3) 0.037(4) 0 0.027(3) 0 
CA(2) 0.032(3) 0.050(5) 0.025(4) 0 0.010(3) 0 
SI(1) 0.008(2) 0.016(3) 0.017(3) 0 0.006(2) 0 
SI(2) 0.011(2) 0.011(3) 0.015(3) 0 0.006(2) 0 
SI(3) 0.013(2) 0.011(3) 0.013(3) 0 0.005(2) 0 
M(1) 0.016(2) 0.006(3) 0.018(4) -0.004(3) 0.006(2) -0.002(4) 
M(2) 0.012(2) 0.012(3) 0.017(3) 0.003(3) 0.005(2) 0.003(4) 
M(3) 0.012(1) 0.025(2) 0.022(2) 0 0.006(1) 0 
O(1) 0.017(1) 0.017(2) 0.032(2) 0.002(2) 0.012(1) 0.002(2) 
O(2) 0.021(1) 0.021(2) 0.023(2) -0.008(2) 0.009(1) 0.000(2) 
O(3) 0.017(1) 0.013(2) 0.029(2) -0.001(1) -0.001(1) -0.003(2) 
O(4) 0.017(2) 0.013(3) 0.013(3) 0 0.001(2) 0 
O(5) 0.018(2) 0.016(3) 0.019(3) 0 0.007(2) 0 
O(6) 0.022(2) 0.018(3) 0.018(3) 0 0.015(2) 0 
O(7) 0.012(2) 0.036(3) 0.022(3) 0 -0.003(2) 0 
O(8) 0.021(2) 0.038(3) 0.036(3) 0 0.020(2) 0 
O(9) 0.051(4) 0.055(4) 0.021(3) 0 0.024(3) 0 
O(10) 0.024(2) 0.018(3) 0.027(3) 0 0.017(2) 0 
H(1) 0.059(6) 0.043(7) 0.039(7) 0 0.026(6) 0 



 
 
 
Table 4a. Principal mean square atomic displacements (U1,U2 and U3, x104 Å2) and 
root-mean-square components (R1,R2 and R3, Å) based on the structural refinement 
at 298K. 
 
 
 
Site U1 U2 U3 R1 R2 R3 R1/R3 
Ca(1) 123(3) 84(3) 58(6) 0.110 0.091 0.076 1.458 
Ca(2) 161(3) 103(5) 68(4) 0.126 0.101 0.082 1.540 
Si(1) 42(5) 35(2) 30(2) 0.065 0.059 0.054 1.194 
Si(2) 46(3) 41(2) 38(4) 0.067 0.064 0.061 1.105 
Si(3) 43(4) 36(2) 31(3) 0.065 0.060 0.055 1.189 
M(1) 44(5) 37(5) 26(3) 0.066 0.060 0.051 1.297 
M(2) 54(4) 42(5) 27(3) 0.073 0.064 0.052 1.416 
M(3) 61(3) 53(2) 34(2) 0.077 0.072 0.058 1.331 
O(1) 102(2) 57(2) 37(1) 0.101 0.075 0.060 1.672 
O(2) 92(2) 76(2) 40(2) 0.095 0.087 0.063 1.526 
O(3) 157(3) 47(1) 42(1) 0.125 0.068 0.064 1.944 
O(4) 57(4) 46(2) 45(2) 0.075 0.067 0.067 1.119 
O(5) 62(4) 51(2) 42(2) 0.079 0.071 0.064 1.220 
O(6) 89(2) 44(2) 32(5) 0.094 0.066 0.057 1.658 
O(7) 102(5) 99(2) 46(2) 0.100 0.099 0.067 1.489 
O(8) 165(3) 144(3) 41(5) 0.128 0.119 0.064 2.000 
O(9) 197(3) 183(3) 38(5) 0.140 0.135 0.061 2.274 
O(10) 91(2) 43(2) 41(5) 0.095 0.066 0.064 1.492 
H(1) 246(6) 220(6) 117(10) 0.156 0.148 0.108 1.451 

 
 
 
 
 
Table 4b. Principal mean square atomic displacements (U1,U2 and U3, x104 Å2) and 
root-mean-square components (R1,R2 and R3, Å) based on the structural refinement 
at 1070K. 
 
 
Site U1 U2 U3 R1 R2 R3 R1/R3 
Ca(1) 458(30) 216(34) 215(69) 0.215 0.146 0.146 1.477 
Ca(2) 497(51) 344(50) 249(33) 0.222 0.185 0.158 1.403 
Si(1) 169(34) 161(31) 69(30) 0.130 0.126 0.083 1.573 
Si(2) 154(35) 114(28) 100(31) 0.124 0.106 0.099 1.250 
Si(3) 132(30) 125(37) 109(30) 0.115 0.112 0.104 1.099 
M(1) 194(55) 171(27) 46(33) 0.138 0.132 0.068 2.038 
M(2) 196(49) 148(43) 90(34) 0.139 0.122 0.095 1.470 
M(3) 250(21) 233(30) 123(14) 0.157 0.152 0.111 1.419 
O(1) 326(19) 182(25) 138(18) 0.181 0.134 0.117 1.546 
O(2) 299(26) 232(17) 129(21) 0.172 0.153 0.113 1.522 
O(3) 454(25) 155(15) 115(16) 0.212 0.125 0.107 1.977 
O(4) 250(39) 127(25) 111(19) 0.157 0.112 0.106 1.484 
O(5) 209(47) 179(17) 161(27) 0.144 0.134 0.126 1.136 
O(6) 252(17) 183(26) 88(49) 0.159 0.135 0.093 1.716 
O(7) 363(33) 362(40) 88(15) 0.189 0.189 0.094 2.015 
O(8) 381(34) 374(27) 119(40) 0.195 0.194 0.108 1.794 
O(9) 550(41) 516(33) 118(53) 0.234 0.228 0.108 2.157 
O(10) 297(21) 185(27) 140(49) 0.174 0.136 0.118 1.475 
H(1) 589(56) 428(71) 342(102) 0.243 0.206 0.184 1.318 

 
 
 
 
 



Table 5a. Relevant bond distances and angles based on the diffraction data collected 
at 293K. 
      

           
      

 
         
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      
 
 
 

CA(1) - O(1) x 2   2.459(1) Å O(1)-SI(1)-O(7)   111.83(5)° 
CA(1) - O(3) x 2   2.329(1) Å O(1)-SI(1)-O(9)   106.62(5)° 
CA(1) - O(5)       2.552(2) Å O(7)-SI(1)-O(9)   106.48(9)° 
CA(1) - O(6)       2.855(3) Å O(1)-SI(1)-O(1)   112.95(8)° 
CA(1) - O(7)       2.295(2) Å  
CA(1) - O(9) x 2   3.002(2) Å O(3)-SI(2)-O(3)   110.63(9)° 
 O(3)-SI(2)-O(9)   107.20(6)° 
 O(8)-SI(2)-O(9)   110.26(9)° 
CA(2) - O(2) x 2   2.788(2) Å O(3)-SI(2)-O(8)   110.72(6)°  
CA(2) - O(2)’x 2   2.528(2) Å  
CA(2) - O(3) x 2   2.646(2) Å O(2)-SI(3)-O(2)   107.05(8)° 
CA(2) - O(7)       2.246(2) Å O(2)-SI(3)-O(5)   111.72(6)° 
CA(2) - O(10)      2.530(2) Å O(2)-SI(3)-O(6)   112.43(6)° 
 O(5)-SI(3)-O(6)   101.58(8)° 
SI(1) - O(1) x 2   1.650(1) Å  
SI(1) - O(7)       1.570(2) Å O(1)-AL(1)-O(4)    93.67(4)° 
SI(1) - O(9)       1.634(2) Å O(1)-AL(1)-O(4)’   86.33(4)° 
<SI(1)-O>          1.626 Å O(5)-AL(1)-O(4)    84.13(6)° 
V(SI1)             2.197 Å3 O(5)-AL(1)-O(4)’   95.87(6)° 
M.P.Q.E.(SI1)      1.0032   O(5)-AL(1)-O(1)    89.22(5)° 
 O(5)-AL(1)-O(1)’   90.78(5)° 
SI(2) - O(3) x 2   1.617(1) Å  
SI(2) - O(8)       1.590(2) Å O(3)-AL(2)-O(6)    90.29(5)° 
SI(2) - O(9)       1.633(2) Å O(3)-AL(2)-O(6)’   89.71(5)° 
<SI(2)-O>          1.614 Å O(3)-AL(2)-O(10)   88.29(5)° 
V(SI2)             2.156 Å3 O(3)-AL(2)-O(10)’  91.71(5)° 
M.P.Q.E.(SI2)      1.0008 O(6)-AL(2)-O(10)   83.95(5)° 
 O(6)-AL(2)-O(10)’  96.05(5)° 
SI(3) - O(2) x 2   1.626(1) Å  
SI(3) - O(5)       1.665(2) Å O(1)-AL(3)-O(1)    80.59(6)° 
SI(3) - O(6)       1.641(1) Å O(1)-AL(3)-O(4)    76.56(5)° 
<SI(3)-O>          1.639 Å O(1)-AL(3)-O(8)   101.74(5)° 
V(SI3)             2.246 Å3 O(2)-AL(3)-O(4)    93.18(4)° 
M.P.Q.E.(SI3)      1.0048 O(2)-AL(3)-O(8)    88.29(5)° 
 O(1)-AL(3)-O(2)    89.62(6)° 
AL(1) - O(4) x 2   1.844(1) Å  O(2)-AL(3)-O(2)    98.75(7)° 
AL(1) - O(1) x 2   1.938(2) Å O(1)-Al(3)-O(2)   167.16(6)° 
AL(1) - O(5) x 2   1.958(1) Å O(4)-Al(3)-O(8)   177.74(7)° 
<AL(1)-O>          1.913 Å  
V(Al1)             9.264 Å3 SI(2)-O(9)-SI(1)  154.59(9)° 
M.P.Q.E.(Al1)      1.0064  
  
AL(2) - O(3) x 2   1.854(2) Å  
AL(2) - O(6) x 2   1.926(1) Å  
AL(2) - O(10) x 2  1.870(1) Å  
<AL(2)-O>          1.883 Å  
V(Al2)             8.850 Å3  
M.P.Q.E.(Al2)      1.0046  
  
AL(3) - O(1) x 2   2.225(1) Å  
AL(3) - O(2) x 2   1.986(2) Å  
AL(3) - O(4)       1.937(2) Å  
Al(3) - O(8)       1.855(2) Å  
<AL(3)-O>          2.036 Å  
V(Al3)             10.861 Å3  
M.P.Q.E.(Al3)      1.0287  
  
O(10) - H(1)       0.9763(24) Å  
O(10) - H(1)*      0.9943 Å  
  
O(10)···O(2)       2.8221(17) Å  
O(10)···O(2)*      2.8223 Å  
H(1)···O(2)        2.5921(23) Å  
O(10) – H(1)···O2  93.3(1)°  
  
O(10)···O(4)       2.9318(22) Å  
O(10)···O(4)*      2.9321 Å  
H(1)···O(4)        1.9731(28) Å  
O(10) – H(1)···O4  166.7(2)°  
* Bond distance corrected for “riding motion” following Busing and Levy (1964). 
M..P.Q.E. is the  “mean polyhedral quadratic elongation”  as defined by Robinson et al. (1971). 



Table 5b. Relevant bond distances and angles based on the diffraction data collected 
at 1070K. 
CA(1) – O(1) x 2   2.481(7) Å  O(1)-SI(1)-O(7)   111.5(3)° 
CA(1) – O(3) x 2   2.356(7) Å  O(1)-SI(1)-O(9)   106.4(3)° 
CA(1) – O(5)       2.581(9) Å  O(7)-SI(1)-O(9)   108.1(4)° 
CA(1) – O(6)       2.840(9) Å  O(1)-SI(1)-O(1)   112.5(4)° 
CA(1) – O(7)       2.317(8) Å   
CA(1) – O(9) x 2   3.016(6) Å  O(3)-SI(2)-O(3)   110.3(4)° 
  O(3)-SI(2)-O(9)   107.3(3)° 
  O(8)-SI(2)-O(9)   111.4(5)° 
CA(2) – O(2) x 2   2.770(8) Å  O(3)-SI(2)-O(8)   110.3(3)° 
CA(2) – O(2)’x 2   2.591(7) Å   
CA(2) – O(3) x 2   2.662(8) Å  O(2)-SI(3)-O(2)   107.2(4)° 
CA(2) – O(7)       2.248(10) Å  O(2)-SI(3)-O(5)   111.3(3)° 
CA(2) – O(10)      2.586(9) Å  O(2)-SI(3)-O(6)   112.5(3)° 
  O(5)-SI(3)-O(6)   102.2(4)° 
SI(1) – O(1) x 2   1.649(5) Å [1.6581 Å]  
SI(1) – O(7)       1.558(8) Å [1.5724 Å] O(1)-AL(1)-O(4)    93.5(2)° 
SI(1) – O(9)       1.621(8) Å [1.6458 Å] O(1)-AL(1)-O(4)’   86.5(2)° 
<SI(1)-O>          1.619 Å [1.6336 Å] O(5)-AL(1)-O(4)    83.7(2)° 
V(SI1)             2.171 Å3  O(5)-AL(1)-O(4)’   96.3(2)° 
M.P.Q.E.(SI1)      1.0028      O(5)-AL(1)-O(1)    89.2(2)° 
  O(5)-AL(1)-O(1)’   90.8(2)° 
SI(2) – O(3) x 2   1.623(6) Å [1.6341 Å]  
SI(2) – O(8)       1.600(8) Å [1.6159 Å] O(3)-AL(2)-O(6)    90.0(2)° 
SI(2) – O(9)       1.610(9) Å [1.6350 Å] O(3)-AL(2)-O(6)’   90.0(2)° 
<SI(2)-O>          1.614 Å [1.6298 Å] O(3)-AL(2)-O(10)   88.4(2)° 
V(SI2)             2.155 Å3  O(3)-AL(2)-O(10)’  91.6(2)° 
M.P.Q.E.(SI2)      1.0008  O(6)-AL(2)-O(10)   83.8(2)° 
  O(6)-AL(2)-O(10)’  96.2(2)° 
SI(3) – O(2) x 2   1.633(5) Å [1.6403 Å]  
SI(3) – O(5)       1.654(8) Å [1.6576 Å] O(1)-AL(3)-O(1)    79.9(3)° 
SI(3) – O(6)       1.649(7) Å [1.6517 Å] O(1)-AL(3)-O(4)    75.9(2)° 
<SI(3)-O>          1.642 Å [1.6475 Å] O(1)-AL(3)-O(8)   100.1(2)° 
V(SI3)             2.259 Å3  O(2)-AL(3)-O(4)    93.9(2)° 
M.P.Q.E.(SI3)      1.0041  O(2)-AL(3)-O(8)    89.6(2)° 
  O(1)-AL(3)-O(2)    89.7(2)° 
AL(1) – O(4) x 2  1.846(4) Å  [1.8476 Å] O(2)-AL(3)-O(2)    99.4(3)° 
AL(1) – O(1) x 2  1.948(3) Å [1.9541 Å] O(1)-Al(3)-O(2)   166.8(3)° 
AL(1) – O(5) x 2  1.982(4) Å [1.9850 Å] O(4)-Al(3)-O(8)   174.7(3)° 
<AL(1)-O>         1.925 Å [1.9289 Å]  
V(Al1)            9.433  Å3  SI(2)-O(9)-SI(1)  157.4(5)° 
M.P.Q.E.(Al1)     1.0072    
   
AL(2) – O(3) x 2   1.859(3) Å [1.8671 Å]  
AL(2) – O(6) x 2   1.951(4) Å [1.9533 Å]  
AL(2) – O(10) x 2  1.876(4) Å [1.8816 Å]  
<AL(2)-O>          1.895 Å [1.9007 Å]  
V(Al2)             9.013 Å3   
M.P.Q.E.(Al2)      1.0051   
   
AL(3) - O(1) x 2   2.289(5) Å [2.2903 Å]  
AL(3) - O(2) x 2   2.001(5) Å [2.0025 Å]  
AL(3) - O(4)       1.915(6) Å [1.9118 Å]  
Al(3) - O(8)       1.839(6) Å [1.8463 Å]  
<AL(3)-O>          2.056 Å [2.0573 Å]  
V(Al3)             11.160 Å3   
M.P.Q.E.(Al3)      1.0326   
   
O(10) - H(1)       0.951(16) Å   
O(10) - H(1)*      0.9826 Å   
   
O(10)···O(2)       2.863(8) Å   
O(10)···O(2)*      2.8643  Å   
H(1)···O(2)        2.595(12) Å   
O(10) – H(1)···O2  96.5(2)°   
   
O(10)···O(4)       3.005(10) Å   
O(10)···O(4)*      3.0072 Å   
H(1)···O(4)        2.067(16) Å   
O(10) – H(1)···O4  169.1(12)°   
* Bond distance corrected for “riding motion” following Busing and Levy (1964). 
M..P.Q.E. is the  “mean polyhedral quadratic elongation”  as defined by Robinson et al. (1971). 
In the squared brackets: bond distances corrected for “rigid body motions” following Downs et al. (1992) and Downs (2000). 



Fig. 1 The crystal structure of epidote viewed down [100] (above) and [100] (below), 

respectively, based on the atomic coordinates refined in this study at 298K (thermal 

ellipsoid probability factor: 50%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 2 Difference Fourier maps of the nuclear density (fm/Å3) of epidote (at 298K) at 

y=1/4, (above) before and (below) after the assignment of the H-sites. One intense 

negative residual peaks at x~0.05 and z~0.32 is evident before the assignment of the 

proton site. (Notes: the gray scale is different for the two maps; map orientation: x 

positive to the right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 3 (Above) Crystal structure of epidote based on the refinement at 298K (left side) 

and at 1070K (right side), respectively. Atomic site labels are in Figure 1. Thermal 

ellipsoid probability factor: 99%. (Below) Configuration of the hydrogen bond in 

epidote at 298K (left side) and 1070K (right side), respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


