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Development/Plasticity/Repair

Chondrolectin Mediates Growth Cone Interactions of Motor
Axons with an Intermediate Target

Zhen Zhong,1 Jochen Ohnmacht,1 Michell M. Reimer,1,2 Ingolf Bach,3,4 Thomas Becker,1* and Catherina G. Becker1*
1Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom, 2Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom, and 3Program in Gene Function and Expression and 4Program in Molecular Medicine,
University of Massachusetts Medical School, Worcester, Massachusetts 01605

The C-type lectin chondrolectin (chodl) represents one of the major gene products dysregulated in spinal muscular atrophy models in
mice. However, to date, no function has been determined for the gene. We have identified chodl and other novel genes potentially involved
in motor axon differentiation, by expression profiling of transgenically labeled motor neurons in embryonic zebrafish. To enrich the
profile for genes involved in differentiation of peripheral motor axons, we inhibited the function of LIM-HDs (LIM homeodomain factors)
by overexpression of a dominant-negative cofactor, thereby rendering labeled axons unable to grow out of the spinal cord. Importantly,
labeled cells still exhibited axon growth and most cells retained markers of motor neuron identity. Functional tests of chodl, by overex-
pression and knockdown, confirm crucial functions of this gene for motor axon growth in vivo. Indeed, knockdown of chodl induces
arrest or stalling of motor axon growth at the horizontal myoseptum, an intermediate target and navigational choice point, and reduced
muscle innervation at later developmental stages. This phenotype is rescued by chodl overexpression, suggesting that correct expression
levels of chodl are important for interactions of growth cones of motor axons with the horizontal myoseptum. Combined, these results
identify upstream regulators and downstream functions of chodl during motor axon growth.

Introduction
Motor axons make complex pathway decisions during their
growth to their eventual muscle targets (Landmesser, 2001;
Guthrie, 2007). At the same time, neurodegenerative diseases of
the spinal cord often affect motor neurons. Recognition mole-
cules, necessary for axonal navigation, have been implicated in
the disease process (Schmidt et al., 2009). Thus, to identify po-
tential therapeutic targets, there is a need to better understand
axonal differentiation of motor neurons and the molecules in-
volved (Bonanomi and Pfaff, 2010).

The zebrafish is ideally suited for such studies because of the
unique development of primary motor neurons in the trunk that
allows functional analyses of development at the single-cell level
(Lewis and Eisen, 2003). In each hemisegment of the trunk, three
to four primary motor neurons send out pioneer axons on a joint
trajectory to the horizontal myoseptum, an intermediate target.

From here, the axon of the caudal primary motor neuron (CaP)
continues to grow ventrally, the middle primary motor neuron
(MiP) forms a dorsal collateral from a more dorsal position along
the axon, and the rostral primary motor neuron (RoP) grows its
axon laterally. The CaP axon is the first to grow out, followed by
MiP and RoP (Eisen et al., 1986; Myers et al., 1986).

A number of factors have been found that specifically affect
interactions of growing motor axons with the horizontal myosep-
tum choice point (Bernhardt and Schachner, 2000; Rodino-
Klapac and Beattie, 2004; Zhang et al., 2004; Schweitzer et al.,
2005; Schneider and Granato, 2006; Hilario et al., 2010). Many of
these factors are either extracellular matrix (ECM) components
at the horizontal myoseptum or genes that modify the ECM.
However, relatively little is known about the potential receptors
on the axons.

Motor neuron identity, as well as axonal pathfinding, depend
on LIM-domain containing transcription factors [LIM home-
odomain factors (LIM-HDs)] in vertebrates (Tsuchida et al.,
1994; Pfaff et al., 1996; Bhati et al., 2008), including zebrafish
(Inoue et al., 1994; Appel et al., 1995; Tokumoto et al., 1995;
Hutchinson and Eisen, 2006; Hutchinson et al., 2007). LIM-HDs
control the expression of axon pathfinding genes in motor
neurons (Kania and Jessell, 2003) and sensory neurons (Mi-
yashita et al., 2004; Yeo et al., 2004) and function in complexes
with cofactors, such as CLIM (also known as NLI and Ldb)
(Lee and Pfaff, 2003; Güngör et al., 2007). Overexpression of a
dominant-negative form of CLIM in zebrafish (DN-CLIM)
prevents motor neurons from forming correct projections
(Segawa et al., 2001; Becker et al., 2002). Indeed, motor neu-
rons in the ventral spinal cord that overexpress DN-CLIM can
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still grow axons, but only inside the spinal cord (Segawa et al.,
2001; Zhong et al., 2011).

Here, we use these neurons for expression profiling to find
genes involved in motor axon navigation. We identify the motor
neuron-specific C-type lectin gene chondrolectin (chodl), previ-
ously found to be dysregulated in mouse spinal muscular atrophy
(SMA) models (Zhang et al., 2008; Bäumer et al., 2009), as an
important regulator of motor axon/choice point interactions
during development.

Materials and Methods
Animals. All fish are kept and bred in our laboratory fish facility accord-
ing to standard methods (Westerfield, 2000), and all experimental
procedures have been approved by the British Home Office. We used
wild-type (wik) and Tg(mnx1:GFP)ml2 (Flanagan-Steet et al., 2005) and
Tg(vsx1:GFP)nn5 (Kimura et al., 2008) embryos of either sex. For
simplicity, Tg(mnx1:GFP)ml2 is designated HB9:GFP throughout this
manuscript.

Gene knockdown. We purchased splice site-directed morpholinos to
chodl (MO1: exon 2–intron 2 splice site, TATGAAACTCCTCATCTCAC
CTGAA; MO2: intron 1– exon 2 splice site, CTGACCTGGAGAGACA
AAATTCACA), a start codon directed morpholino (MO3: CGCATCCT
CGTGTTTCCCTTGAGTC), and standard control morpholino from
Gene Tools. For injections, rhodamine dextran (0.8%; Mr � 10 � 10 3;
Invitrogen) was added to morpholino solutions. A glass micropipette was
filled with morpholino solution. A volume of 0.5 nl per egg (one- to
four-cell stage) was injected as described previously (Feldner et al., 2007).
Generally, the morpholino concentration was 1 mM, if not stated other-
wise. Control morpholino injections were performed with every experi-
ment on embryos taken from the same clutch or pool of clutches as the
embryos receiving specific morpholinos, to avoid any influence of
developmental differences. For rescue and synergy experiments, the
total morpholino load per egg was kept constant between groups by
supplementing with control morpholino. For long-term labeling of sin-
gle CaP axons, specific or control morpholinos (0.4 mM) were coinjected
with the pG1-HB9:mmGFP plasmid (0.4 �g/�l) (Flanagan-Steet et al.,
2005) at the single-cell stage. Successful gene knockdown after injection
of splice site-directed morpholinos was determined by PCR for chodl
(primer 1: forward, 5�-GTGTAAGCCCAGCTCGTTG-3�; reverse
primer, 5�-CTATCTTTGGCGTCTTGGAG-3�). To detect an aberrant
splice product containing intronic sequences, we used primer 2 (forward,
5�-TACGTATTTGGCTGCCAGTG-3�) located in intron 2 together with
a reverse primer in exon 7 (reverse, 5�-GCTAGCAGGAAGGT
GCAGAC-3�).

Gene overexpression. DN-CLIM was overexpressed as described previ-
ously (Becker et al., 2002; Zhong et al., 2011) using the myc epitope-
tagged DN-CLIM in the CS2-MT plasmid to generate the mRNA. The
CS2-MT-NLS plasmid that contains a nuclear localization sequence
served to generate the control mRNA.

To overexpress chodl, we amplified full-length chodl from embryonic
cDNA (primers: forward, 5�-CTCTCTCCGCATTTCAGAGG-3�; re-
verse, 5�-GCTAGCAGGAAGGTGCAGAC-3�) and inserted the product
into the vector pcDNA3-IRES-GFP (a gift from Dr. Lee Tan, Key Labo-
ratory of Molecular Medicine, Ministry of Education, Fudan University,
Shanghai, China) that also drives GFP expression from its second ribo-
somal entry site. The same vector without the chodl insert was used to
generate control mRNA.

We synthesized mRNA with the mMessage mMachine Kit (Ambion)
followed by extension of the poly(A) tail with the poly(A) tailing kit
(Ambion), each according to the manufacturer’s instructions. The
mRNA (typically 1–2 �g/�l) was injected in the same way as morpholi-
nos. Successful overexpression was indicated by ubiquitous GFP fluores-
cence for chodl mRNA or myc immunoreactivity for DN-CLIM
overexpression at 24 h postfertilization (hpf).

Immunohistochemistry. We used the following antibodies: Islet-1/-2
(40.2D6; 1:1000), which labels motor neuron nuclei and Rohon–Beard
cells (Feldner et al., 2005), the 4D9 antibody (1:100) to engrailed, which
labels muscle pioneer cells at the horizontal myoseptum (Patel et al.,

1989), anti-HB9 (MNR2; 81.5C10-a; 1:400), labeling motor neurons
(Reimer et al., 2008), and anti-znp1 (1:400), labeling motor axons (Tre-
varrow et al., 1990), were all obtained as concentrates from the Develop-
mental Studies Hybridoma Bank maintained by Department of
Biological Sciences, University of Iowa (Iowa City, IA). We also used
anti-GABA (A 2052; 1:1000; Sigma-Aldrich), anti-Pax2 (PRB-276P;
1:300; Covance), anti-choline acetyltransferase (ChAT) (AB144P; 1:500;
Millipore), anti-GFP (A 11122; 1:200; Invitrogen), and anti-Chx10
(Kimura et al., 2008) antibodies. Secondary Cy2- and Cy3-conjugated
antibodies were purchased from Jackson ImmunoResearch Laborato-
ries. Immunohistochemistry on embryos was performed as described
previously (Feldner et al., 2007). For each experiment, control embryos
were labeled in parallel for direct comparison.

In situ hybridization. We used the indicated primers to generate probes
for chodl (forward, 5�-AGTCGTGTTGCGTTCTGGGA-3�; reverse, 5�-
CTGTCTATCTTTGGCGTCTTGG-3�), tachykinin 1 (tac1) (forward,
5�-AAGGGAAAGTTACTGGGAGC-3�; reverse, 5�-GGGAGCGAATGT
GAAGATGA-3�), calcitonin/calcitonin-related polypeptide, � (calca)
(forward, 5�-CCTACGCTCTGATTATTTGCC-3�; reverse, 5�-TTCCTC
CCTCCTTCGGTTC-3�), and NK1 transcription factor-related 2-like, b
(nkx1.2lb) (forward, 5�-ATCACACGATCGAGCACAAG-3�; reverse, 5�-
TTAGCACGTATTGCCGAATG-3�). Nonradioactive in situ hybridiza-
tion was performed as described previously (Feldner et al., 2007). In
some cases, in situ hybridization was followed by GFP immunohisto-
chemistry for transgene visualization, as above.

FACS and expression profiling. All fish embryos (26 hpf; n � 200 per
group) were dechorionated and washed with calcium-free Ringer’s buf-
fer for 15 min. Embryos or tails only were then mechanically dissociated
in 0.25% trypsin in 1 mM EDTA in PBS and incubated for 30 – 60 min at
28.5°C. Embryo digestion was stopped by adding an equal volume of 2
mM CaCl2 with 20% fetal calf serum and centrifugation at 300 � g for 5
min at room temperature. The tissue was resuspended in 500 �l of L-15
medium, and sorted by a BD FACSAria II Flow Cytometer (BD Biosci-
ences). Viability was tested by propidium iodide staining and found to be
�90%. Sorted cells were immediately frozen in lysis buffer at a concen-
tration of 1000 cells/�l and volumes of at least 10 �l. A typical yield for
100 embryo tails was 2.5 � 10 5 cells, 19% of which were GFP positive.
Samples were then sent to Miltenyi Biotech for RNA isolation and gene
expression profiling on one-color chip hybridization on zebrafish gene
expression microarrays (V2) provided by Agilent Technology. These ar-
rays contain 43,803 probes per chip. From the pool of isolated RNA,
cDNA was amplified twice, fluorescently labeled, and separately hybrid-
ized on a chip (details available from Agilent Technology). Significance
was calculated using the ratio error model (Weng et al., 2006). Regulation
was assumed with p � 0.01 and a cutoff of at least twofold upregulation
or downregulation.

Time-lapse video microscopy. Dechorionated 18 hpf embryos were
mounted on coverslips with 2% low-melting agarose prepared in E3
embryo medium with 0.02% w/v 3-aminobenzoic acid ethyl ester
(MS222) (Sigma-Aldrich). Image stacks were taken by confocal micros-
copy (LSM710; Zeiss) with a 20� lens at 28°C every 10 min between 18
and 27 hpf. CaP axon growth speed (axon length quantification) was
analyzed based on time-lapse still picture series prepared with the
ZEN2009 software (Zeiss).

Quantifications and statistical analyses. To quantify double-labeled
neurons in control and DN-CLIM-injected embryos, specimens were
fixed at 24 hpf, and their trunk region was scanned with a 20� objective
by confocal microscopy. All fluorescent neurons in trunk segments 8 and
9 were counted in z-projections of confocal image stacks.

The number of trunk segments in which ChAT immunoreactivity was
detectable in the ventral spinal cord was determined for segments 7–14
on one side of the embryo.

To correlate axonal differentiation with the onset of gene expression in
the tail segments 16 –26, the last 10 segments were assessed for in situ
hybridization signal and presence of a motor axon.

The length of ventral motor axons in segments 7–14 after morpholino
or overexpression manipulations was assessed in znp-1-labeled embryos
or HB9:GFP transgenic embryos by determining whether an axon was
shorter than in wild-type embryos, in which axons had reached the ven-
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tral edge of the ventral myotome. Additional
categories were as follows: shorter than the po-
sition of the horizontal myoseptum (HM�), at
the horizontal myoseptum (HM), or grown
beyond the horizontal myoseptum but still
shorter than wild-type length (HM�). The
horizontal myoseptum was either identified by
4D9 immunoreactivity (znp-1-labeled prepa-
rations) or by the characteristic thickening of
the CaP axon at the horizontal myoseptum
(HB9:GFP transgenic embryos). The observer
was always blinded to the treatment of the
embryos.

Data are presented as mean, and error bars
indicate the SEM. Groups were compared by
Mann–Whitney U test (for two groups), one-
way ANOVA, or two-way ANOVA followed by
the Holm–Sidac post hoc test (SigmaStat 3.5)
for multiple comparisons.

Results
To identify new genes that are involved in
motor axon growth, we decided to use ex-
pression profiling of transgenically la-
beled primary trunk motor neurons (Fig.
1A) in which LIM-HD signaling is com-
promised. LIM-HD transcription factors
are pivotal regulators of motor neuron
development during embryogenesis of
many species (Tsuchida et al., 1994; Pfaff
et al., 1996; Bhati et al., 2008). To exert
these functions, LIM-HDs require the as-
sociation of CLIM cofactors (Lee and
Pfaff, 2003). Inhibition of LIM-HDs was
achieved via overexpression of a DN-
CLIM protein. While lacking motifs that
mediate interactions with other classes of
proteins, DN-CLIM only contains the
LIM-interaction domain (LID) and a nu-
clear localization signal, thus specifically
targeting LIM-HD transcription factors
(Segawa et al., 2001; Güngör et al., 2007)
(Fig. 1B). Overexpression of DN-CLIM in
HB9:GFP transgenic zebrafish resulted
in axons emerging from GFP-positive
neurons, but these axons grew along the
ventral edge of the spinal cord instead of
exiting it (Fig. 1C) (Segawa et al., 2001;
Zhong et al., 2011). The presence of
GFP-expressing neurons in these em-
bryos indicated that the HB9 promoter
fragment used to generate this fish was
still active and suggested that GFP �

cells might have retained motor neuron
characteristics. Hence, expression pro-
files from motor neurons versus GFP �

cells in DN-CLIM-treated embryos could
be enriched for genes that are involved specifically in motor
axon pathfinding and not in cell fate decisions or axon growth
per se. A similar approach has led to the identification of genes
involved in formation of the midbrain– hindbrain boundary
downstream of LIM-HDs (Hirate et al., 2001). However,
transfating of motor neurons into interneuron cell types has
been described after compromising LIM-HD signaling

(Segawa et al., 2001), warranting further investigations into
the identity of HB9:GFP � cells in control and DN-CLIM-
treated animals.

Identity of HB9:GFP � cells in DN-CLIM-injected embryos
In control embryos, the HB9:GFP transgene was clearly ex-
pressed in motor neurons in the ventral spinal cord with axons
exiting the spinal cord. Furthermore, HB9 immunoreactivity was

Figure 1. DN-CLIM overexpression inhibits LIM-HD-dependent gene transcription and prevents HB9:GFP � motor neurons
from growing axons out of the spinal cord. A, Schematic presentation of axon growth by the primary motor neurons CaP, MiP, and
RoP. Axons grow ventrally out of the spinal cord on a joint pathway and diverge at the horizontal myoseptum (hm) choice point
[modified after the study by Westerfield and Eisen (1988) with permission from Elsevier]. B, Structures of typical LIM-HDs,
containing LIM domains and homeodomain (HD), and CLIM, containing dimerization domain (DD), Ldb1/Chip conserved domain
(LCCD), nuclear localization sequence (NLS), and LIM interaction domain (LID) are shown. DN-CLIM lacks the DD and LCCD domains
and inhibits the formation of transcriptionally active LIM-HD complexes. C, Lateral trunk views of control mRNA or DN-CLIM
mRNA-injected HB9:GFP transgenic embryos are shown (orientation as in A). In rostral and caudal segments, HB9:GFP � cells with
axons are visible, but axons do not manage to grow out of the spinal cord after DN-CLIM injection. The ventral border of the spinal
cord is indicated by arrows; the approximate position of the horizontal myoseptum is indicated by arrowheads. Scale bar, 50 �m.
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found in 61% of HB9:GFP� cells, and 60% of the cells showed
immunoreactivity for Islet-1/-2 (Fig. 2A–D). Some of the GFP�

cells in each hemisegment were positive for ChAT, indicating a
mature motor neuron phenotype for some of the HB9:GFP�

motor neurons (Fig. 2E,F). The cells that were not labeled for
HB9 or Islet-1/-2 antibodies displayed generally weaker GFP ex-
pression. To determine whether these cells could be interneu-
rons, we used double labeling with markers of interneurons.
However, nkx1.2lb mRNA (Bae et al., 2004), Chx10 protein
(Kimura et al., 2008), Pax2 protein (Batista and Lewis, 2008), and
GABA (Segawa et al., 2001) revealed no or little overlap with GFP

labeling (Fig. 3). Thus, the majority of HB9:GFP� cells were
likely motor neurons on the basis of axonal projections out of the
spinal cord and expression of motor neuron markers (HB9; Islet-
1/-2). Some cells that expressed lower levels of GFP might have
been interneurons of undetermined identity or developing motor
neurons in which incipient transgene expression was detectable,
but immunohistochemistry was not sufficiently sensitive to de-
tect low levels of endogenous protein.

In DN-CLIM-injected embryos, 29% fewer HB9:GFP� cells
were observed (control: 25.5 � 1.59 cells, n � 6 embryos; DN-
CLIM: 18.2 � 0.65 cells, n � 6 embryos; p � 0.01). This could

Figure 2. DN-CLIM treatment differentially affects motor neuron marker expression in spinal HB9:GFP � cells at 24 hpf. Trunk views are shown; for orientation see Figure 1 A. Double-labeled cells
are indicated by arrowheads. HB9:GFP � cells do not show a significant reduction in the proportion of HB9 (A, B)- or Islet-1/-2 (C, D)-immunolabeled cells. The insets depict double-labeled cells with
intraspinal axons at higher magnification. The proportion of segments with ChAT-expressing HB9:GFP � cells is significantly reduced (E, F ). ***p � 0.001. Scale bar: 50 �m; insets, 25 �m. Error
bars indicate SEM.
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indicate that some cells adopted a different fate. However, these
cells would not skew a further analysis of gene expression, as they
would not be sorted into the pool of fluorescent cells. The cells
that still expressed GFP also retained immunoreactivity for the

motor neuron markers HB9 (56%) and Islet-1/-2 (56%) both to
an extent that was not significantly different from controls (Fig.
2A–D). This is consistent with the hypothesis that fate changes of
GFP� cells were rare. Single HB9:GFP� cells were observable in

Figure 3. DN-CLIM treatment differentially affects interneuron marker expression in HB9:GFP � cells. Trunk views are shown; for orientation, see Figure 1 A. Double/triple-labeled cells are
indicated by arrowheads. A, B, Double labeling of Islet-1/-2 and GABA in HB9:GFP � cells indicates a small, but significant increase in HB9:GFP/GABA and Islet-1/-2/GABA double-labeled cells after
DN-CLIM treatment. The arrow indicates a cell that is only labeled by the transgene and GABA antibody; the open arrow indicates a cell that is only labeled by Islet-1/-2 and GABA antibodies. The
dorsal location of this cell suggests interneuron identity. C, D, The proportion of HB9:GFP � cells that are colabeled with Chox10 immunolabeling remains very small after DN-CIM treatment. E, F,
There is no apparent overlap of nkx1.2lb mRNA, nor Pax2 immunoreactivity, and HB9:GFP transgene in control and DN-CLIM-treated animals. *p � 0.05 (one-sided); **p � 0.01. Scale bar, 50 �m.
Error bars indicate SEM.
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the ventral spinal cord that could be colabeled with HB9 or
Islet-1/-2 antibodies and grew an axon within the spinal cord
of DN-CLIM-treated embryos (Fig. 2 A, C), indicating that
motor neuron-like cells still grew (intraspinal) axon. How-
ever, the proportion of segments that contained motor neu-
rons expressing the mature marker ChAT was reduced by 65%
(Fig. 2 E, F ), suggesting that motor neuron maturation was
attenuated by DN-CLIM.

After DN-CLIM injection, the proportion of HB9:GFP� cells
that were colabeled by Chx10 antibodies remained unchanged
(4% in controls and 5% in DN-CLIM-treated embryos), suggest-
ing that HB9:GFP� cells did not change their fate into interneu-
rons that express Chx10 (Fig. 3C,D). Moreover, HB9:GFP� cell
did not acquire expression of nkx1.2lb mRNA (Fig. 3E) or Pax2
immunoreactivity after DN-CLIM injection (Fig. 3F). However,
it has previously been shown that Islet-2� motor neurons acquire
the interneuron marker GABA when cofactor interactions of
LIM-HDs are disrupted (Segawa et al., 2001). Therefore, we
quantified coexpression in triple-labeling studies of HB9:GFP,
Islet-1/-2, and GABA. Indeed, the proportion of Islet-1/-2� cells
in the ventral spinal cord that were also GABA� was significantly
increased from 1% in controls to 14% in DN-CLIM-treated em-
bryos. Likewise, the proportion of HB9:GFP� cells that were also
GABA� was significantly increased from 2 to 12% (Fig. 3A,B). In

summary, the majority of HB9:GFP� cells retained motor neu-
ron identity to some extent, as indicated by HB9 and Islet-1/-2
immunoreactivity, whereas full maturation into ChAT� motor
neurons was attenuated and some HB9:GFP� cells acquired in-
terneuron characteristics (i.e., GABA immunoreactivity).

Expression profiling reveals motor neuron expressed genes
that are downstream of LIM-HDs
Since most HB9:GFP� cells in DN-CLIM-injected embryos re-
tained at least some characteristics of motor neurons, we next
used DN-CLIM-injected versus uninjected HB9:GFP transgenic
embryos for successful FACS of HB9:GFP� cells (Fig. 4A) fol-
lowed by expression profiling. Thus, we obtained a list of �160
sequences that were downregulated at least twofold in GFP� cells
in DN-CLIM-injected embryos compared with GFP� motor
neurons in uninjected embryos. Comparing expression of GFP�

motor neurons with GFP� cells in wild-type embryos from em-
bryonic trunks and tails yielded �2100 at least twofold overrep-
resented sequences in HB9:GFP� motor neurons (data not
shown). The intersection of these two lists contained 28 se-
quences that were both downregulated after DN-CLIM treat-
ment and overrepresented in GFP� cells of the trunk and tail of
uninjected embryos (Table 1). Among the top 10 regulated genes,
we found chodl, tac1, and calca to be expressed in clusters in the

Figure 4. Expression profiling reveals LIM-HD-dependent genes expressed in motor neurons. Orientations of photomicrographs are as in Figure 1 A. A, FACS shows a population of cells (boxed in
the far right of each panel) that are only present in control or DN-CLIM-injected HB9:GFP embryos, but not in wild-type, and can be successfully sorted (right column). B, chodl, tac1, and calca are
expressed specifically in motor neuron clusters and expression is abolished in DN-CLIM-injected embryos. C–H, Lateral views of the tail region of in situ hybridizations in HB9:GFP transgenic embryos
are shown. HB9:GFP � motor neurons in caudal, younger, segments without axons (no CaP axons) are indicated by white arrowheads, and motor neurons with axons by white arrows in fluorescence
illumination. Expression of mRNA is indicated by black arrows in light microscopic and merged images. All motor neurons express chodl (C, D). tac1 expression coincides with axon growth (E, F ). calca
is only expressed by motor neurons with longer axons (G, H ). Scale bars: B, 100 �m; C, E, G, 50 �m. Error bars indicate SEM.
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ventral spinal cord in the position of motor neurons, using the
available online expression patterns (ZFIN.org). In situ hybrid-
ization for these genes in HB9:GFP transgenic embryos at 24 hpf
confirmed expression in motor neurons with axons growing out
of the spinal cord and absence of a signal in DN-CLIM-injected
embryos (Fig. 4B–H). These results showed that expression of
chodl, tac1, and calca is downstream of LIM-HDs in motor neu-
rons and validated these screen results.

chodl, tac1, and calca regulation could be relatively proximal
to the LIM-HD regulatory network or their lack of expression
after DN-CLIM overexpression could be a consequence of axons
not exiting the spinal cord and therefore not receiving inductive
signals. To determine whether such inductive signals could play a
role, we determined the onset of chodl, tac1, and calca expression
relative to axon outgrowth. To do this, we analyzed the caudal
trunk segments of 22 hpf embryos, because trunk segments and
their motor neurons are progressively younger toward the tail
(Sato-Maeda et al., 2008). chodl expression was detectable in al-
most all segments with HB9:GFP� motor neurons, including the
most caudal ones that did not yet show axon outgrowth (Fig.
4C,D). tac1 expression was detectable in all segments with visible
HB9:GFP� motor axon, and in none of the segments with HB9:
GFP� neurons without axons in more caudal segments (Fig.
4E,F). calca expression was only detectable in more rostral seg-
ments, in which motor axons were of some length. In more cau-
dal HB9:GFP� motor neurons with shorter or no axons, calca
mRNA was not detectable (Fig. 4G,H). Thus, chodl is expressed
very early during motor neuron differentiation, whereas tac1 ex-
pression correlates with axon outgrowth and calca is only detect-
ably expressed after motor axons have grown for some distance

into the muscle periphery. These data indicated that chodl regu-
lation is most likely to be proximal to the LIM-HD network,
whereas extrinsic inductive signals could play a more prominent
role for expression of tac1 and calca.

chodl is a C-type lectin gene expressed in developing
motor neurons
Because chodl has been implicated in motor neuron disease, but
its function has not been elucidated (Zhang et al., 2008; Bäumer
et al., 2009), we focused our further analysis on this gene. Cloning
of a zebrafish cDNA encoding chodl in full length revealed a se-
quence coding for a predicted protein of 296 aa with a signal
peptide (amino acids 1–20), a C-type lectin domain (amino acids
30 –187), and a transmembrane domain (amino acids 238 –260),
suggesting cell surface localization (Fig. 5A). Comparisons with
other vertebrate groups revealed a high degree of overall conser-
vation (e.g., 94% identity with Xenopus and chicken and 92%
with mouse and human; Fig. 5B).

Whole-mount in situ hybridization indicated no expression of
chodl at 8 and 10 hpf, but at 12 hpf expression was detected in
lateral cells of the head and ventral cells in the midtrunk region,
consistent with the positions of the trigeminal ganglia and motor
neurons, respectively. At 20 hpf, expression was detected in cra-
nial ganglia, motor neurons, and a row of cells in the dorsal spinal
cord. By 24 hpf, this expression was downregulated again, and in
the spinal cord expression of chodl appeared to be restricted to
HB9:GFP� motor neurons, many of which had axons that left
the spinal cord. Vsx1 is a marker for interneurons that emerge
from the ventricular zone adjacent and directly dorsal to motor
neurons. In transgenic fish, in which GFP expression is driven by
the vsx1 promoter (Kimura et al., 2008), no overlap of GFP label-
ing with chodl mRNA expression was observed at 24 hpf (data not
shown), lending further support to expression of chodl in the
trunk mainly in motor neurons. In addition, cranial ganglia and
neurons in the forebrain were labeled by the probe (Fig. 5C–H).
Thus chodl expression is restricted to specific cells types in the
nervous system and is expressed in primary motor neurons from
early stages of their differentiation to at least 24 hpf.

chodl is important for motor axon growth
To determine the function of chodl, we designed two splice-
blocking morpholinos, both targeting exon 2. MO1 (1 mM), tar-
geting the exon 2/intron 2 boundary, and MO2 (1 mM), targeting
the intron 1/exon 2 boundary, modestly reduced the intensity of
the wild-type PCR band in injected embryos at 24 hpf. Combin-
ing the two morpholinos at one-half the concentration each (0.5
mM) had a more profound reducing effect on the wild-type band
and produced an extra band, potentially due to a cryptic splice
site being revealed (Draper et al., 2001) (Fig. 6A). Sequencing this
ectopic band indicated precise excision of exon 2, leading to pre-
mature stop codons, such that it is unlikely that the aberrantly
spliced message led to translation of functional protein. Using
another primer combination, in which the upstream primer was
located in intron 2, 49 bp upstream of exon 3, amplified a tran-
script when MO2 was used. This transcript was much more abun-
dant, when MO1 and MO2 were injected together. Sequencing of
this band revealed that it indeed contained intronic sequences.
This aberrant splice product could potentially interfere with
chodl gene function.

The differences in the degrees of alterations of the wild-type
transcript by these different treatments were reflected in the pen-
etrance of the phenotype. MO1 (1 mM) alone had no significant
effect on motor axon growth at 24 hpf, and MO2 (1 mM) led to

Table 1. Sequences that are downregulated after DN-CLIM treatment and enriched
in HB9:GFP � neurons of wild-type embryos (sorted by fold downregulation after
DN-CLIM treatment)

Fold downregulation after
DN-CLIM treatment

Fold higher in HB9:GFP �

versus HB9:GFP �
Sequence designation
on gene array Gene name

�4.0901 3.0531 vsx2 vsx2
�3.3734 18.8099 nkx1.2lb nkx1.2lb
�3.2371 8.68663 TC285423 chodl
�3.127 2.79665 flj13639 36k
�2.9492 7.22032 tal2 tal2
�2.8507 8.51966 zgc:92886 calca
�2.8159 3.47611 wu:fk57g06 —
�2.7056 7.35989 hlxb9 mnx1
�2.6079 34.3453 BC083533 tac1
�2.5928 12.2849 slc6a5 glyt2
�2.5894 7.01896 BI864161 syt6
�2.5822 2.78151 TC282185 lmo1
�2.5659 2.06127 try try
�2.4778 2.22156 TC299721 zgc:165474
�2.4615 7.0457 BI476673 —
�2.3383 2.90834 ENSDART00000013302 slc6a17
�2.3125 2.26726 CK397088 —
�2.2928 10.3374 CK705301 st18
�2.2926 2.30332 tpbgl tpbgl
�2.2236 7.93957 ENSDART00000022233 —
�2.1145 13.2798 zgc:101108 nxph1
�2.1115 2.11138 zgc:92208 mllt10
�2.0953 2.05984 BC055562 tada2
�2.0502 26.233 gad1 gad1
�2.0441 3.32192 tlx1 tlx1
�2.0315 3.02975 BI840491 —
�2.0157 2.3796 AL725137 eif3ha
�2.0045 2.13384 TC273590 cbx1b
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only a small (13%) but significant proportion of motor axons
that were shorter than in control morpholino-injected embryos
(2.4%). However, the combination of MO1 and MO2 at one-half
the concentration each (0.5 mM) led to a synergistic and signifi-
cant effect of 34% shorter motor axons, supporting that knock-
down of chodl impaired motor axon growth.

Since even the combination of MO1 and MO2 did not fully
reduce the transcription of wild-type mRNA, we designed a

translation-blocking morpholino, MO3. This morpholino
showed a significant and dose-dependent shortening of axons
with a very high penetrance of up to 95% of motor axons at a 1
mM concentration (Fig. 6B,C). This morpholino was used in all
following experiments.

To determine whether morpholino treatment could nonspe-
cifically retard general development, we analyzed the segmental
position of the primordium of the lateral line nerve, because this

Figure 5. Cloning and expression of chodl. A, Domain analysis of the chodl sequence predicts the presence of a signal peptide, a C-type lectin domain and a transmembrane domain. B, The
predicted amino acid sequence of chodl shows conservation with chodl of other vertebrates (m, mouse; h, human; c, chicken; x, Xenopus laevis). C–H, Whole-mount in situ hybridization indicates a
signal from 12 hpf. The arrows depict the trigeminal ganglion in D–H. The arrowheads in D indicate cells in the trunk. The arrowheads in F indicate a row of cells in the trunk dorsal to the motor
neurons. In H, the arrowheads point to motor neurons. Scale bar, 500 �m.
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Figure 6. Knockdown of chodl leads to shorter motor axons and reduced innervation of myotomes at later developmental stages. A, A primer pair located in exons 1 (primer 1) and 7 yields a
weaker wild-type band for chodl after application of two splice-site directed morpholinos in PCR. Coapplication of the morpholinos additionally leads to an ectopic band (MO1, 1 mM; MO2, 1 mM; MO1
plus MO2, 0.5 mM each). Using a primer pair in intron 2 (primer 2) and exon 7 reveals a transcript that includes intronic sequences after treatment with MO2. In embryos injected with both
morpholinos, this abnormal transcript is amplified much more strongly. B, Quantification of axonal aberrations shows different magnitudes of effects on CaP axons that depend on morpholino
combinations and concentrations (numbers of embryos are given on top of bars). C, Examples of morpholino actions on znp-1-labeled motor axons at 24 hpf are shown (orientation as in Fig. 1 A).
Shorter axons are indicated by arrowheads (control, 1 mM control morpholino; MO1 plus MO2, 0.5 mM each; MO3, 1 mM). D, Lateral trunk views at 33 hpf are shown; orientation as in Figure 1 A. Many
znp-1-labeled MiP axons do not reach the level of the dorsal border of the spinal cord in morphants. MiPs of normal length are pointed out by arrows. Shorter CaP axons in (Figure legend continues.)
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nerve grows continually from rostral to caudal along the trunk
and is, therefore, also used to stage embryonic development
(Kimmel et al., 1995). Trunk segment 4.8 � 0.18 was reached in
control morpholino-treated embryos and trunk segment 4.4 �
0.15 in chodl morphants at 24 hpf (n � 40 for each group; p �
0.05). Thus, the position of the lateral line primordium in mor-
phants did not show a statistically significant difference from
controls. Moreover, the shape and size of trunk segments was not
altered compared with control morpholino-injected embryos
(data not shown). In our hands (Feldner et al., 2005, 2007;
Schweitzer et al., 2005), a number of specific and control mor-
pholinos have never produced the present phenotype, which
consists of unbranched shorter motor axons. Thus, a number of
observations strongly suggest that morpholino effects were spe-
cific (Eisen and Smith, 2008): (1) different morpholinos elicited
the same very specific phenotype; (2) they acted synergistically;
(3) general morphology and developmental progress were undis-
turbed; (4) importantly, morpholino effects were rescued by
mRNA overexpression (see below).

To elucidate whether MiP axons were also affected by chodl
knockdown, we determined the trajectories of MiP axons in
whole-mounted znp-1-labeled embryos at 33 hpf. Almost all
(98%) dorsally growing wild-type axons reached or exceeded the
dorsal edge of the medially located spinal cord, whereas signifi-
cantly fewer axons (54%) reached the dorsal edge of the spinal
cord in morphants (Fig. 6D,E). As a control, we measured the
thickness of the spinal cord, which could have skewed our quan-
tification. Morpholino treatment did not affect the thickness of
the spinal cord at 33 hpf (uninjected control, 49.3 � 1.15 �m, n �
6; morphant, 49.8 � 1.66 �m, n � 6; p � 0.8). Thus, MiP axon
growth was impaired. This suggests that chodl is important for
CaP as well as MiP axon growth.

To assess later effects of chodl knockdown, we analyzed
branching of motor nerves onto the myotomes in HB9:GFP
transgenic animals at 48 hpf (data not shown) and 72 hpf (Fig.
5F), when motor nerves consist of many axons from primary and
secondary motor neurons. Even though the main motor nerves
formed, the density of motor branches on trunk muscles was
reduced compared with control morpholino-injected animals at
both time points.

To determine whether this phenotype was a consequence of
reduced axon growth or missing motor neurons, we followed
individual CaP axons over time by coinjection of morpholino
and an HB9:GFP plasmid, which randomly labels few individual
motor neurons. In controls injected with the plasmid and control
morpholino (n � 4 embryos), all 10 observed CaP axons had
grown beyond the horizontal myoseptum region at 33 hpf,
reached the ventral edge of the trunk and started to branch at 48
hpf, and were still present at 72 hpf (Fig. 6G). In experimental
animals (n � 6), we observed eight axons at different time points.
Only one of eight CaP axons displayed the growth patterns ob-
served in controls. Some axons were still at the level of the hori-
zontal myoseptum at 33 hpf (three of seven axons) and only two

of eight axons had reached the ventral edge of the trunk at 48 hpf.
At 72 hpf, axons were still short (two of seven axons; Fig. 6G) or
showed signs of degeneration, such as axon retraction, or loss of
cells (four of seven axons). Thus hypo-innervation of myotomes
in chodl morphants at 72 hpf was due to long-term impairment of
axon growth and/or eventual degeneration.

CaP motor axons are specifically affected at the horizontal
myoseptum in chodl morphants
Motor axons pause at the horizontal myoseptum during their
growth and in the case of the CaP axon later continue to grow into
the ventral myotome (Eisen et al., 1986). To determine which of
the different phases of axon growth were affected by the knock-
down resulting in shorter axons, we categorized axon lengths.
Already at 24 hpf almost all axons had grown ventrally beyond the
horizontal myoseptum. At 24 hpf (4.3%) and 33 hpf (1.7%), few
axons had not reached the horizontal myoseptum in morphants.
Strikingly, 34.6% of the axons had extended only to the position
of the horizontal myoseptum, significantly more than in control
morpholino-injected embryos (0.2%) at 24 hpf. At 33 hpf, 31.3%
of the segments still showed axons at the level of the horizontal
myoseptum. This was not significantly different from the propor-
tion at 24 hpf, suggesting that almost one-third of the CaP axons
were completely arrested at the horizontal myoseptum over the
observation period. At 24 hpf, 54% of the axons had grown be-
yond the horizontal myoseptum but were not of wild-type length
and only 8% appeared to be of normal length. At 33 hpf, 39% of
the axons—almost five times more than at 24 hpf—were of nor-
mal length, suggesting that axons grew relatively quickly once
they passed the horizontal myoseptum. Combined, this distribu-
tion of axon lengths indicates that axons reach the horizontal
myoseptum similar to controls and then spend a disproportion-
ally long time at the horizontal myoseptum to either continue
growth or stop at the horizontal myoseptum (Fig. 7A,B).

To directly test this hypothesis, we visualized growth of ven-
tral motor axons by time-lapse analysis in morpholino-injected
HB9:GFP transgenic embryos (Fig. 7C,D). Results revealed that,
up to 21 hpf, morphant and wild-type axons grew at comparable
velocities (control: 7.1 � 0.7 �m/h, n � 4 axons; morphant: 8.3 �
1.2 �m/h, n � 8 axons; p � 0.54), similar to previously reported
growth speeds (7.1 � 1.3 �m/h) (Myers et al., 1986). After that
time, wild-type and morphant axons slowed down at the hori-
zontal myoseptum (growth velocity wild-type: 5.4 � 1.3 �m/h,
n � 4; morphant: 4.1 � 0.8 �m/h, n � 6; p � 0.359). Around 24
hpf, wild-type axons continued to grow into the ventral myotome
at a velocity of 9.6 � 1.2 �m/h (n � 4), whereas morphant axons
displayed two types of behaviors. Either axons stalled at the hor-
izontal myoseptum until 27 hpf, the end of the observation pe-
riod, or they resumed growth and entered the ventral myotome a
short time (	1.5 h) after the wild-type axons. When morphant
axons entered the ventral myotome, their growth speed (10.5 �
2.6 �m/h; p � 0.7) was again comparable with that of wild-type
axons. Both types of morphant axon behaviors resulted in signif-
icantly shorter axons when compared with controls after the hor-
izontal myoseptum was reached (Fig. 7D). Thus, histology and in
vivo time-lapse analysis showed normal growth velocity of mor-
phant axons before and after the horizontal myoseptum was
reached. However, the normal stalling period at the horizontal
myoseptum was either significantly prolonged or axons were
completely arrested at the horizontal myoseptum.

4

(Figure legend continued.) morphants are indicated by arrowheads (control, 1 mM control
morpholino; morphant, 1 mM MO3). E, The number of shorter MiP axons is significant in mor-
phants (control, 1 mM control morpholino; morphant, 1 mM MO3). F, Lateral trunk views at 72
hpf are shown; orientation is as in Figure 1A. Motor axons exhibit reduced myotomal branching
in morphants. Two examples of myotome branches are depicted by arrows in the control (con-
trol, 1 mM control morpholino; morphant, 1 mM MO3). G, Single CaP axon labeling reveals a
shorter ventral axon at 72 hpf. *p � 0.05; **p � 0.01; ***p � 0.001. Scale bars: C, 50 �m; D,
50 �m; F, 80 �m; G, 50 �m. Error bars indicate SEM.
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Overexpression of chodl leads to shorter motor axons and
rescues knockdown effects
Next, we determined whether increasing the levels of chodl ex-
pression would perturb motor axon growth. After injection of
mRNA transcribed in vitro from a bicistronic vector coding for
chodl and GFP, we observed ubiquitous GFP expression in the
embryo. In control RNA-injected embryos, 75% of the axons
were of wild-type length, whereas significantly fewer axons (31%)
were of wild-type length in mRNA-injected embryos (Fig. 8A,B).
This result indicates that overexpression of chodl impairs growth
in a proportion of axons and suggests that specific levels of chodl
expression are important for optimal axon elongation.

If specific levels of chodl expression were necessary for correct
interactions of motor axons with the horizontal myoseptum,
mRNA overexpression should rescue effects of gene knockdown.
Indeed, when the highly efficient start codon-directed morpho-
lino MO3 was injected at a concentration of 0.5 �M, together with
control RNA, only 16.5% of the axons were of wild-type length.
In contrast, coinjection with chodl mRNA led to approximately
three times more axons of wild-type length (57%), which was
statistically highly significant (Fig. 8C,D). It is unlikely that the
morpholino inadvertently interacted directly with the injected

RNA, since a sequence of only 5 bases of the morpholino matched
the sequence of the injected RNA and morpholinos become in-
effective when as few as 5 of their 20 –21 bases are not matched to
the target RNA (Eisen and Smith, 2008). Combined, these results
indicate that levels of chodl expression are critical for correct
interactions of motor axons with the horizontal myoseptum.

Discussion
Here, we used a novel expression profiling paradigm to find fac-
tors expressed by motor neurons necessary for correct axon
growth. We find the C-type lectin chodl as crucial for interactions
of motor axons with the horizontal myoseptum, an important
navigational choice point. Our study is the first to demonstrate a
developmental function of chodl, which has been implicated in
SMA (Zhang et al., 2008; Bäumer et al., 2009).

chodl has a specific role in intermediate target recognition
chodl knockdown leads to a very specific phenotype in motor
neurons. Motor axons exit the spinal cord and approach the hor-
izontal myoseptum correctly and at normal velocity, as deter-
mined in histological preparations and by time-lapse video
analysis. Axon growth was even unimpeded for those growth

Figure 7. Axons stall preferentially at the horizontal myoseptum in chodl morphants. (control, 1 mM control morpholino; morphant, 1 mM MO3, for all panels). A, Lateral trunk views at 24 and 33
hpf are shown (orientation as in Fig. 1A). The position of the horizontal myoseptum is revealed by engrailed immunolabeled muscle pioneer cells and axons are labeled by znp-1. The position of the
horizontal myoseptum is indicated by the white arrows. At 33 hpf, muscle pioneer cells are not always visible because they are located in a different focal plane. Axons that are stalled at the horizontal
myoseptum are indicated by black arrows. Axons that have grown beyond it, but are still shorter than in controls, are indicated by arrowheads. B, Categorizing axon lengths (HM�, not reaching the
horizontal myoseptum in histological preparations; HM, at the horizontal myoseptum; HM�, grown beyond the horizontal myoseptum, but still shorter than wild-type axon; normal, wild-type
length) reveals a high proportion of axons that stall at the horizontal myoseptum in morphants at 24 and 33 hpf. Significances are tested against control morpholino, except for bracketed
comparisons. C, Time-lapse analysis shows that chodl morphant axons stall for a disproportionally long time at the horizontal myoseptum. Two behaviors are observed, either axons stall longer than
controls at the horizontal myoseptum (stalling), or they do not grow beyond the horizontal myoseptum during the observation period (stopping). D, Quantification of CaP axon lengths indicates that
morphant axons grow toward the horizontal myoseptum at a velocity that is similar to that of control axons, but stall longer in the horizontal myoseptum. Those axons that manage to grow beyond
the choice point grow again at similar velocity as control axons. *p � 0.05; **p � 0.01; ***p � 0.001. Scale bars: A, 50 �m; C, 20 �m. Error bars indicate SEM.
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cones that were able to pass the horizontal myoseptum. It was
only in the position of this choice point that axons stalled for a
disproportionally long time or stopped altogether, supporting
that chodl is necessary for axons to correctly interpret guidance
cues in the horizontal myoseptum. The fact that overexpression
of chodl induced a similar phenotype as knockdown supports that
the level of chodl expression needs to be optimal for efficient
interactions with the horizontal myoseptum. Similarly, loss of
function and gain of function for the ECM component collagen
XIXa1 (colXIX) (also known as stumpy) at the horizontal myo-
septum both elicit the same phenotype—shorter motor axons
(Hilario et al., 2010). Although motor nerves eventually form in
chodl morphants, the observation that muscle innervation is still
sparse at later time points of development indicates that chodl
might be important not only at the horizontal myoseptum choice
point, but at choice points or intermediate targets that exist at
more distal positions along motor axon pathways (Beattie, 2000).
The observation in single CaP axon tracing that some axons that
managed to navigate the horizontal myoseptum did not show
normal extension at 48 and 72 h support this interpretation. To
our knowledge, chodl is the first C-type lectin to be implicated in
axon pathfinding in vertebrates. In C. elegans another C-type
lectin, CLEC-38, has been shown to be involved in dorsal axon
guidance (Kulkarni et al., 2008).

What are the potential ligands of Chodl?
The chodl structure carries the hallmarks of an ECM receptor,
with a signal peptide, a transmembrane domain, and a C-type
lectin domain, shown to interact with ECM molecules (Lundell et
al., 2004). Interestingly, the phenotypes of chodl morphants and
mutants for the ECM molecule colXIX at the horizontal myosep-
tum are quite similar (Beattie et al., 2000; Hilario et al., 2010).
Both conditions show normal growth of axons along the com-
mon pathway, stalling and stopping of axons at the horizontal
myoseptum, impaired growth of the CaP and MiP axon, and
reduced innervation of the musculature at later developmental

stages. However, there need not be direct physical interactions
between Chodl and ColXIX, as the ECM at the horizontal myo-
septum is complex and ColXIX could simply anchor other po-
tential interaction partners to the horizontal myoseptum. For
example, Tenascin-C (Schweitzer et al., 2005) and chondroitin
sulfates (Bernhardt and Schachner, 2000) are accumulated at the
horizontal myoseptum and play a role in motor axon growth. In
the mutant for the muscle-specific tyrosine kinase unplugged, in
which deposition of Tenascin-C and chondroitin sulfates is de-
fective, motor axons make inappropriate pathway decisions at
the horizontal myoseptum (Zhang et al., 2004; Schweitzer et al.,
2005). Interestingly, C-type lectin domains, such as that in Chodl,
have been shown to interact with Tenascin-C (Lundell et al.,
2004). Moreover, enzymatic modification of glycosylation of the
myotome-derived type XVIII collagen is also important for mo-
tor axon extension (Schneider and Granato, 2006). Finally, the
topped mutation represents an unknown muscle-derived activity
(Rodino-Klapac and Beattie, 2004), which also leads to stalling of
CaP axons at the horizontal myoseptum. While it is obvious that
motor axons encounter a complex ECM at the horizontal myo-
septum, the identity of specific interaction partners of chodl are
presently unclear.

Possible connection of chodl to SMA
We show here that chodl is evolutionarily highly conserved, with
an amino acid identity of �92% across vertebrate classes. chodl is
specifically expressed in fast motor neurons in mice (Enjin et al.,
2010). SMA is caused by reduced levels of the “survival of motor
neurons” (SMN) genes, which are involved in RNA splicing
among other functions (for recent review, see Sleigh et al., 2011).
Using exon profiling in mouse models of SMA, specific isoform
changes for chodl have been found already at early symptomatic
stages, whereas most genes were dysregulated only at late symp-
tomatic stages (Zhang et al., 2008; Bäumer et al., 2009). Reduced
expression of SMN leads to shorter mouse motor axons in vitro
(Rossoll et al., 2003), and one of the phenotypes in developing

Figure 8. chodl overexpression affects axon growth and rescues morphants. Lateral trunk views of HB9:GFP transgenic embryos are shown (orientation as in Fig. 1A; short axons are indicated by
arrowheads; categories in B and D are the same as in Fig. 7). A, B, Injection of chodl mRNA alone induces shorter CaP axons. C, D, Shorter axons induced by chodl MO3 (0.5 mM; C, arrowheads) are
rescued by chodl RNA. *p � 0.05; ***p � 0.001. Scale bar: C, 50 �m. Error bars indicate SEM.
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zebrafish (McWhorter et al., 2003) and mice (Liu et al., 2010) is
also shorter axons. Thus, part of the phenotypes could be medi-
ated through altered chodl expression, which when missing also
leads to arrested or delayed motor axon growth, as we show here.
Almost one-third of the CaP motor axons appear to be com-
pletely arrested in the horizontal myoseptum in chodl morphants.
Such a defect could eventually lead to degeneration of these mo-
tor neurons, possibly due to a lack of trophic support from the
muscle targets (Gould and Oppenheim, 2011). Indeed, retracted
axons and missing CaP neurons observed at later developmental
stages suggest that some motor neurons that are depleted in chodl
expression eventually degenerate. Notably, in the colXIX mutant,
showing a similar phenotype as our chodl morphants, CaP axons
that are permanently stalled at the horizontal myoseptum also
show signs of degeneration at 72 hpf (Beattie et al., 2000). How-
ever, studies in other mouse SMA models do not find abnormal
development of motor axons, but degeneration of axons once
axonal connections are established (McGovern et al., 2008; Mur-
ray et al., 2010). Hence, chodl could have roles in axon mainte-
nance as well as pathfinding.

Expression profiling of HB9:GFP � cells from
DN-CLIM-injected embryos reveals genes potentially
involved in motor axon differentiation
Our gene array expression profiling has revealed three genes that
are specifically expressed in motor neurons, and we demonstrate
a role in axon growth for one of these. This supports that this
screening approach identifies axonal factors that may be involved
in motor axon growth.

In our approach, we reasoned that HB9:GFP� neurons may
retain expression of genes needed to maintain motor neuron
identity to a certain degree and general axon growth after DN-
CLIM treatment. Thus, genes involved in motor axon navigation
should be enriched in the list of downregulated genes after DN-
CLIM treatment. The fact that many HB9:GFP� cells retained
HB9 and Islet-1/-2 immunoreactivity and only few acquire in-
terneuron marker expression supported this notion. However,
we confirm here that some motor neurons acquire the interneu-
ron marker GABA when LIM-HD signaling is blocked (Segawa et
al., 2001), and we show that many motor neurons lose expression
of the mature motor neuron marker ChAT and fewer cells ex-
pressed GFP in DN-CLIM-injected embryos. Given that combi-
natorial expression of LIM-HD factors controls motor neuron
fate in vertebrates (Tsuchida et al., 1994; Pfaff et al., 1996), in-
cluding zebrafish (Inoue et al., 1994; Appel et al., 1995; Toku-
moto et al., 1995; Hutchinson and Eisen, 2006; Hutchinson et al.,
2007), it is likely that HB9:GFP� neurons lose some aspects of
their motor neuron identity under DN-CLIM treatment.

Nevertheless, using our approach, we identified chodl, tac1,
and calca with motor neuron-specific expression, which are
downstream of the LIM-HD regulatory network. The fact that
chodl is expressed very early during motor neuron differentiation
supports relatively proximal regulation of the gene by the
LIM-HD network. Although the promoter regions of all three
genes contain putative recognition motifs for LIM-HDs (data not
shown), it is presently unclear whether direct regulation occurs.
Future research will have to show whether tac1, coding for the
neuropeptides substance P/neurokinin A (Nawa et al., 1984), and
calca, coding for calcitonin and the calcitonin-related neuropep-
tide (Amara et al., 1982), have specific roles in motor axon navi-
gation or synapse formation.

We conclude that our newly designed expression profiling
approach to motor axon pathfinding has revealed the LIM-HD

regulated C-type lectin chodl as pivotal in choice point interac-
tions for growing motor axons. Discovering the genes involved in
axonal differentiation and analyzing their function in zebrafish
may ultimately lead to a better understanding of motor neuron
diseases such as SMA.
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tner M (2003) Smn, the spinal muscular atrophy-determining gene
product, modulates axon growth and localization of beta-actin mRNA in
growth cones of motoneurons. J Cell Biol 163:801– 812.

Sato-Maeda M, Obinata M, Shoji W (2008) Position fine-tuning of cau-
dal primary motoneurons in the zebrafish spinal cord. Development
135:323–332.

Schmidt ER, Pasterkamp RJ, van den Berg LH (2009) Axon guidance pro-
teins: novel therapeutic targets for ALS? Prog Neurobiol 88:286 –301.

Schneider VA, Granato M (2006) The myotomal diwanka (lh3) glycosyl-
transferase and type XVIII collagen are critical for motor growth cone
migration. Neuron 50:683– 695.

Schweitzer J, Becker T, Lefebvre J, Granato M, Schachner M, Becker CG
(2005) Tenascin-C is involved in motor axon outgrowth in the trunk of
developing zebrafish. Dev Dyn 234:550 –566.

Segawa H, Miyashita T, Hirate Y, Higashijima S, Chino N, Uyemura K, Ki-
kuchi Y, Okamoto H (2001) Functional repression of Islet-2 by disrup-
tion of complex with Ldb impairs peripheral axonal outgrowth in
embryonic zebrafish. Neuron 30:423– 436.

Sleigh JN, Gillingwater TH, Talbot K (2011) The contribution of mouse
models to understanding the pathogenesis of spinal muscular atrophy.
Dis Model Mech 4:457– 467.

Tokumoto M, Gong Z, Tsubokawa T, Hew CL, Uyemura K, Hotta Y, Oka-
moto H (1995) Molecular heterogeneity among primary motoneurons
and within myotomes revealed by the differential mRNA expression of
novel islet-1 homologs in embryonic zebrafish. Dev Biol 171:578 –589.

Trevarrow B, Marks DL, Kimmel CB (1990) Organization of hindbrain seg-
ments in the zebrafish embryo. Neuron 4:669 – 679.

Tsuchida T, Ensini M, Morton SB, Baldassare M, Edlund T, Jessell TM, Pfaff
SL (1994) Topographic organization of embryonic motor neurons de-
fined by expression of LIM homeobox genes. Cell 79:957–970.

Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE (2006) Rosetta
error model for gene expression analysis. Bioinformatics 22:1111–1121.

Westerfield M (2000) The zebrafish book: a guide for the laboratory use of
zebrafish (Danio rerio), Ed 4. Eugene, OR: University of Oregon.

Westerfield M, Eisen JS (1988) Neuromuscular specificity: pathfinding by
identified motor growth cones in a vertebrate embryo. Trends Neurosci
11:18 –22.

Yeo SY, Miyashita T, Fricke C, Little MH, Yamada T, Kuwada JY, Huh TL,
Chien CB, Okamoto H (2004) Involvement of Islet-2 in the Slit signal-
ing for axonal branching and defasciculation of the sensory neurons in
embryonic zebrafish. Mech Dev 121:315–324.

Zhang J, Lefebvre JL, Zhao S, Granato M (2004) Zebrafish unplugged re-
veals a role for muscle-specific kinase homologs in axonal pathway choice.
Nat Neurosci 7:1303–1309.

Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, Kasim M, Dreyfuss G (2008)
SMN deficiency causes tissue-specific perturbations in the repertoire of
snRNAs and widespread defects in splicing. Cell 133:585– 600.

Zhong Z, Ma H, Taniguchi-Ishigaki N, Nagarajan L, Becker CG, Bach I,
Becker T (2011) Regulation of LIM-HDs complexes by SSDP1 during
early zebrafish nervous system development. Dev Biol 349:213–224.

Zhong et al. • Chodl in Motor Axon Growth J. Neurosci., March 28, 2012 • 32(13):4426 – 4439 • 4439


