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Review Article

Different strokes for different folks:
the rich diversity of animal models
of focal cerebral ischemia

David W Howells1, Michelle J Porritt1, Sarah SJ Rewell1, Victoria O’Collins1, Emily S Sena2,
H Bart van der Worp3, Richard J Traystman4 and Malcolm R Macleod2

1National Stroke Research Institute and University of Melbourne Department of Medicine, Austin Health,
Melbourne, Victoria, Australia; 2Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK;
3Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre, Utrecht,
The Netherlands; 4University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA

No single animal model is able to encompass all of the variables known to affect human ischemic
stroke. This review highlights the major strengths and weaknesses of the most commonly used
animal models of acute ischemic stroke in the context of matching model and experimental aim.
Particular emphasis is placed on the relationships between outcome and underlying vascular
variability, physiologic control, and use of models of comorbidity. The aim is to provide, for novice
and expert alike, an overview of the key controllable determinants of experimental stroke outcome to
help ensure the most effective application of animal models to translational research.
Journal of Cerebral Blood Flow & Metabolism (2010) 30, 1412–1431; doi:10.1038/jcbfm.2010.66; published online
19 May 2010
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Introduction

Human stroke comes in many forms. We can classify
them by cause, location, size, and by functional
impact on the patient. Thus, there is no single
universally appropriate model of stroke. The purpose
of this review is to describe and critique the animal
models most pertinent to the most common broad
subtype of human stroke caused by occlusion of the
middle cerebral artery (MCA). Even this apparently
simple task is complicated by the need to consider
questions such as the occlusive mechanism (thrombo-
embolism from cardiac sources versus more proximal
embolic processes, such as carotid atheroma), under-
lying vascular anatomy (the gross anatomy of the

circle of Willis, the role of communicating arteries,
collateralization, and anastomotic connections within
the MCA and with adjacent vascular territories), and
the affect of premorbid factors, such as hypertension,
diabetes, obesity, and smoking habits on all of these.
Within the models themselves, we also need to
consider aspects of experimental design such as
animal gender, temperature control, blood gas con-
centrations, and anesthesia that impinge directly on
stroke pathophysiology.

Different Approaches to Induction of
Focal Ischemia

In this section, we describe the critical character-
istics of the most commonly used models rather than
their precise methodology, which is beyond the
scope of this review and has been described in detail
by others (Wang-Fischer, 2008).

Broadly, two surgical approaches are used to give
access to the cerebral vasculature to allow generation
of focal ischemia.

The first group of methods requires opening of the
skull to allow direct access to the cerebral arteries. In
most instances, this has involved small craniotomies
that allow distal branches of vessels such as the MCA
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to be ligated (Crowell et al, 1981), clipped (Tamura
et al, 1979, 1981), or sealed by photothrombosis
(Markgraf et al, 1993) or electrocoagulation (O’Brien
and Waltz, 1973). Although occlusion of the vessel
is usually permanent, ligatures can be released,
pneumatic cuffs deflated, and even thrombotic lesions
created by electrocoagulation, or photothrombosis can
recanalize to permit transient occlusion.

As there are no species-specific constraints on the
use of these techniques, they have been used not
only in standard laboratory animals such as rabbits
and rats but also in larger domesticated animals such
as cats, dogs, and pigs (Corkill et al, 1978; Imai et al,
2006; Tamura et al, 1979), as well as in both small
and large primates (Del Zoppo et al, 1986; Hudgins
and Garcia, 1970). The larger of these species offer
the significant advantages of large gyrencephalic
brains with gray/white matter proportions closer to
humans (Figure 1). A disadvantage of the variants
that require large craniotomies to expose more
proximal portions of vessels is the unavoidable
damage to structures, such as the eye, temporalis
muscle, and zygomatic arch. Moreover, with the
recent demonstration that hemicraniectomy can have
a profound beneficial effect on survival and func-
tion after space-occupying hemispheric infarction
(Hofmeijer et al, 2009), the value of methods

requiring large craniectomies to expose the vessels
at the base of the brain is uncertain.

The vasoconstrictor endothelin can also be used to
reversibly occlude an artery or vascular bed (Agnati
et al, 1991). Although this also requires craniotomy,
the opening in the skull needs to be just large enough
to introduce a fine cannula, which can be left in situ
and vasoconstriction initiated long after confounding
anesthesia has been withdrawn (Callaway et al, 1999).
It should be noted that endothelin is about four times
more potent in conscious rats than in anesthetized
rats (Bogaert et al, 2000), that control over ischemic
intensity and duration are limited, and that stimula-
tion of endothelin receptors may confound the study
of stroke by directly modifying the expression of key
molecules, such as matrix metalloproteinases and
growth factors (Koyama et al, 2003, 2007).

To avoid opening the skull, a second group of
methods has used intra-arterial access to occlude
cerebral arteries. The most commonly used of these
is thread occlusion of the MCA. Although this
method has many variants, particularly with respect
to the construction of the occluding thread and
closure of additional vessels to manipulate collateral
blood flow, the basic technique described originally
by Koizumi et al (1986) and modified by Longa et al
(1989) involves introducing an occluding thread into
the extracranial internal carotid artery (ICA) and
advancing it until its tip occludes the origin of
the MCA. Although most frequently applied to rats
and mice, the method has also been used in rabbits
(Kong et al, 2004), gerbils, (Baskaya et al, 1999)
and marmosets (Freret et al, 2008). In baboons, the
concept has been extended to the use of a balloon
catheter or wire coil introduced through either the
carotid (Gao et al, 2006) or femoral arteries (Hamberg
et al, 2002) to occlude the MCA.

The great advantage of these techniques is that the
thread can either be left in place for permanent
occlusion or withdrawn any time to permit con-
trolled reperfusion, and the presence of a significant
ischemic penumbra early after occlusion makes them
particularly suitable for studies of neuroprotection.
However, despite their utility, these are not simple
methods. The surgery to access and manipulate the
vasculature requires skilled and experienced hands,
and in practice, the results are often highly variable.
Moreover, the diameter and length of the occluding
proportion of the thread combine to determine which
vessels off the circle of Willis are blocked and to
what degree. Importantly, thread dimensions need
to be adjusted for specific animal strains. For
example, using a fixed-size silicone-coated 4-0 nylon
monofilament thread, blood flow reduction varied
markedly by strain with Long–Evans showing greater
reductions in flow than Sprague–Dawley (SD) or
Wistar rats (Prieto et al, 2005).

Uncoated monofilament threads and the poly-L-
lysine-coated threads, that were introduced to
increase the proportion of successful surgeries
(Belayev et al, 1996), are each prone to high rates ofFigure 1 Brain size and gyral complexity.
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subarachnoid hemorrhage (Schmid-Elsaesser et al,
1998), confounding the physiologic basis of the
model and leading to high mortality (Spratt et al,
2006). The use of silicone-coated threads is recom-
mended because these reduce the problems of
subarachnoid hemorrhage (Schmid-Elsaesser et al,
1998) and variability (Aspey et al, 1998), particularly
in in-bred strains, such as the spontaneously hyper-
tensive rat (SHR) (Spratt et al, 2006). Additional
coating of the silicone with poly-L-lysine may further
enhance their utility (Lourbopoulos et al, 2008).
Providing guidelines for selecting silicone-coated
thread dimensions suitable for all circumstances is
difficult because there are too many variables likely
to alter arterial dimensions. For example, in mice, a
15 g increase in body weight can result in a doubling
of the required thread diameter from 100 to 200 mm
(Hata et al, 1998). Eleven-week-old male SD rats are
100 g heavier than equivalent Fischer 344 rats, and in
both strains, the males are > 60 g heavier than the
females (Seidel et al, 2006). A rational approach
suitable for use across species and strains might be
the first to establish the length of silicone coating
desired by measuring the distance between the origin
of the MCA and hypothalamic artery if occlusion of
this vessel is to be avoided to minimize thermo-
regulatory disturbances (Li et al, 1999). This is easily
carried out after perfusing the brain with Evans blue
in gelatine (Crack et al, 2001). As the thread needs to
pass through the carotid canal, starting with this
measurement, the diameter is reduced to permit
smooth passage into the skull without reducing the
diameter beyond the point at which laser Doppler-
measured MCA-territory flow starts to increase
consistently.

Sprague–Dawley rats, the most widely used ani-
mals in stroke research (VO’C, personal communica-
tion), unfortunately give some of the most variable
results (Spratt et al, 2006), most likely because of
their highly variable MCA anatomy (Fox et al, 1993)
and are thus not recommended as a starting point.
Even the choice of vendor can alter outcome in the
SD (Oliff et al, 1995). At present, the Wistar Kyoto
(WKY) rat seems to be the best choice. It lacks the
vascular variability of the SD, and does not display
the extremes of inflammatory reactivity noted in the
Lewis and Fischer 344 strains (Morand and Leech,
2001). Its genetic relationship to the SHR and stroke-
prone SHR (spSHR) strains, which provide the most
commonly used models of hypertension and sponta-
neous stroke, make it an ideal stepping stone for later
preclinical evaluations.

In larger domestic animals (such as cats, dogs,
sheep, goats, pigs, cows, and horses) that would
otherwise offer significant advantages in size and
cortical complexity, direct intravascular access to
the MCA is prevented because blood is supplied to
the cerebral hemispheres through a carotid rete (or
rete mirabile), a plexus of fine freely anastomosing
arteries. In dogs, this problem has recently been
overcome by femoral artery catheterization and

fluoroscopically controlled introduction of a plati-
num coil through the vertebrobasilar system to
occlude the origin of the MCA (Rink et al, 2008).

Although thread occlusion and its variants effec-
tively model induction of ischemia at the site most
commonly occluded in humans, they do not model
the mechanism of occlusion. Approximately 80% of
human strokes are ischemic (Donnan et al, 2008),
and most of the larger (nonlacunar) infarcts are
caused by thromboembolism. Thus, the specific
advantage of thromboembolic methods is that the
mechanism of occlusion better matches that seen in a
large proportion of human strokes, and that they
permit the study of thrombolytic processes. How-
ever, success is highly dependent on the properties
of the introduced clot and, as in humans, the timing
of reperfusion can be uncertain.

Although the earliest embolic model of stroke was
described in dogs (Hill et al, 1955), it was not until
1982 that an embolic model was described in rats
(Kudo et al, 1982) using essentially the same surgical
approach as used for intraluminal thread occlusion.
The simplest embolic model injects a suspension of
small clot fragments into the common carotid artery
or ICA (Kudo et al, 1982). Reported mortality using
this approach was low, but the foci of infarction were
widely distributed and included significant numbers
in the contralateral hemisphere (Kudo et al, 1982).
With the aim of generating a more faithful model
of human thromboembolic stroke in which the
‘obstructing emboli should be located in the proximal
segment of a large feeder artery, the distal vascular
bed should be open’ (Busch et al, 1997), most
methods now in routine use introduce a single larger
clot of carefully controlled dimensions and consis-
tency close to the origin of the MCA. When the clot is
introduced into the ICA, there is little control over
where it lodges, allowing infarcts that can include
MCA, anterior, and posterior cerebral artery terri-
tories. By advancing the clot-introducing catheter
into the MCA itself, using laser-Doppler flowmetry
to verify the placement, and then withdrawing
the catheter slightly, it is possible to obtain a high
proportion of animals with only MCA occlusion
(MCAo) (DiNapoli et al, 2006). As one of the main
reasons for using embolic models is to be able to
study thrombolysis, consistency of the clot has
received much attention. Clots derived from unmo-
dified arterial blood (DiNapoli et al, 2006), arterial
blood mixed with thrombin (Wang et al, 2001), and
whole blood mixed with CaCl2 and thrombin and
subjected to ‘osmotic shock’ (Toomey et al, 2002)
have all been used. However, although both sponta-
neously formed and thrombin-induced clots seem to
provide similar levels of occlusion, thrombin-in-
duced clots appear more resistant to the effects of
tissue plasminogen activator (tPA) (Niessen et al,
2003). Although more data are required to confirm
this observation, it highlights an important choice
for the experimenter. If the experimental aim is to
provide a model system in which the beneficial
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effects of a new drug on infarct and behavioral
outcome can be studied together with embolic
blockade and tPA-mediated reperfusion, then the
more readily thrombolyzed ‘red’ spontaneously
formed clots have the advantage. With these, reper-
fusion occurs within a time frame that permits tissue
salvage. However, if the aim is to study the
mechanics of ‘clot busting’ and devise more effective
ways of breaking up the embolus, the thrombin-
induced and fibrin-rich ‘white’ emboli (Kirchhof
et al, 2002) which probably better represent the
emboli that cause human stroke (Jorgensen and
Torvik, 1969; Marder et al, 2006), have the advantage.
Marder et al (2006) report that the thromboemboli
retrieved from the MCA or the intracranial ICA of
patients with acute ischemic stroke have similar
histologic components, whether derived from pre-
sumptive cardiac or arterial sources. A disadvantage
of thromboembolic methods is that varying the timing
of occlusion and time to reperfusion is not a certain
art (as indeed is true in humans). With spontaneously
formed emboli, reperfusion can take more than an
hour; with thrombin-enriched emboli, this can extend
to 5 hours (Niessen et al, 2003). Thread occlusion
models offer much greater flexibility and certainty.

Although these models offer researchers the
opportunity to study a more realistic model of stroke,
even in experienced hands, poststroke mortality can
be as high as 30% to 40% within 24 hours (Toomey
et al, 2002) with reports of up to 85% mortality if
animals are maintained up to 72 hours (Alonso de
Lecinana et al, 2006). Although early reperfusion and
generally smaller infarcts in most thread occlusion
experiments probably contribute to this difference in
mortality between models, the persistence of high
mortality after embolism when early tPA therapy
successfully reduced infarct volume (Toomey et al,
2002) suggests this may not be the whole story.
Although there are obvious reasons for concern about
the practicality of using these methods, it should be
remembered that our only effective acute therapy,
tPA, shows similar profiles of activity in animal and
human thromboembolic stroke (Perel et al, 2007) and
that new agents will almost inevitably need to be
tested in the presence of tPA. Differences in the
efficacy of tPA in rodents and humans are also of
concern, but may lead to new avenues for therapy
(Zhu et al, 2010).

An alternative, although related, approach to
occlusion is direct induction of thrombus formation
at the origin of the MCA or its more distal branch
points. To this end, thrombin has been infused at the
origin of the MCA in rats (Zhang et al, 1997) and
rabbits (Jahan et al, 2008), by drawing blood into a
thrombin-filled catheter and then releasing the
freshly formed clot (Beech et al, 2001) or by injecting
thrombin directly into the distal MCA of mice (Orset
et al, 2007). In small animals in whom the skull is
thin and allows passage of sufficient light, noninva-
sive and highly reproducible and high-throughput
photothrombotic methods are also available (Watson

et al, 1985). However, thrombosis can occur in
any illuminated vessel containing a high enough
concentration of photo-activating agent. Although
proximal MCAo with these techniques is similar to
other occlusion methods (Watson et al, 1985),
illumination through the parietal cortex (Sugimori et
al, 2004) seems unlikely to allow study of penumbral
involvement if blood vessels are completely con-
gested with aggregated platelets (Haseldonckx et al,
2000). A perceived disadvantage of photothrombotic
methods is early vasogenic edema and blood–brain
barrier breakdown. However, recent examinations of
these phenomena have suggested similar marked
blood–brain barrier disruption within an hour in
both thread occlusion and photothrombotic models
(Chen et al, 2009; Stoll et al, 2009).

Table 1 provides an overview of the advantages
and disadvantages of the most commonly used
models of stroke, whereas Figure 2 shows the
frequency with which different model types were
used in a recent analysis of neuroprotection in stroke
(O’Collins et al, 2006). Of experiments using intra-
luminal sutures, 51.4% used heat-blunted or mecha-
nically formed sutures, 42.2% use silicone coated
sutures, and 6.4% used poly-L-lysine-coated sutures.

Vascular Anatomy and Concordance
with Human Disease

Stroke incidence and subtype proportion vary con-
siderably between communities (Feigin et al, 2006),
but overall, occlusion of (a branch of) the MCA is the
most commonly identified type of human ischemic
stroke (Olsen et al, 1985) and thus the most common
target for animal models.

Although the human brain sits at one end of the
spectrum of mammalian brain complexity, it still
adheres to the basic mammalian pattern of neural
and vascular organization. Thus, strokes induced in
laboratory animals look very similar to those in
humans. Blockage of the origin of the MCA in most
mammals studied results in infarcts, which incorpo-
rate the gray matter of the motor and somatosensory
cortex, the underlying white matter tracts, and the
basal ganglia (caudate-putamen and thalamus),
which have blood supplied by the small perforating
arteries that branch from the MCA or adjacent
segments of the circle of Willis.

Despite the broad similarities, there are important
differences between species and strains of animals
that can affect the experimental outcome. In humans,
a pronounced anterior communicating artery usually
completes the circle of Willis providing some
capacity to redistribute blood between hemispheres.
Although relatively uncommon (Kapoor et al, 2008),
when the anterior communicating artery is absent or
of reduced bore, ischemic stroke outcome may be
worse (Jaramillo et al, 2006). Similarly, patients
(B30%) who have absent or hypoplastic posterior
communicating arteries appear to be at a greater risk
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of stroke (Chuang et al, 2008). Cross-sectional studies
in humans also suggest that an incomplete circle of
Willis distinguishes patients with symptomatic and
asymptomatic ICA stenosis (Waaijer et al, 2007).

Similar anatomic variation is seen in most species
that have been used to model stroke. A recent
examination of the incidence of anatomic variation
in the circle of Willis in humans, cows, sheep, goats,
and pigs illustrates that although variation is greatest
in humans (probably because a deeper genetic pool
was sampled), it is also present in most other species
(Ashwini et al, 2008). Rats and mice, the animals
most commonly used to model stroke, exhibit simi-
lar variation. In rats, differences in the posterior

communicating artery bore influences of the outcome
of white matter injury induced by chronic cerebral
hypoperfusion, with Wistar rats with small-diameter
vessels more susceptible to ischemic damage than SD
rats (Kim et al, 2008). In mice, which are becoming
increasingly important because of the availability of
transgenic animals, it has been reported that only
10% of C57Black/6 mice have a complete circle of
Willis (McColl et al, 2004). In CD1 mice, patency of
the posterior communicating artery is not only highly
variable but also correlated with the extent of ischemic
injury (Zhen and Dore, 2007). Similarly, the increasing
sensitivity of BDF (F(1) hybrids of C57BL/6 and DBA/2
normal strains) < CFW (Swiss Webster) < BALB/C mice

Table 1 Overview of advantages and disadvantages of commonly used models of stroke

Model Advantages Disadvantages

Intraluminal thread
occlusion of the MCA

Avoids opening the skull and surgical injury
to the brain
Suitable for both permanent and transient MCAo
Recannalization can be timed precisely
High proportion of successful procedures in
experienced hands

Does not model thromboembolism or thrombolysis
Requires significant neck surgery with peri-surgical
morbidity
Lesion volume/variability highly dependent on the
anatomy of the circle of Willis and degree/duration
of occlusion achieved
Contribution of transient and permanent vessel
occlusion in the neck to overall outcome unclear
Not feasible in animals with rete mirabile

Heat-treated suture
Heat/poly-L-lysine treated
Silicone coated

Rarely used today, essentially of historical interest
Effective occlusion, high reproducibility for
permanent MCAo
Very effective occlusion, low mortality, good
reproducibility

Inconsistent occlusion
Firm anchoring to the endothelium leading to
bleeding on withdrawal
Coating can become detached and cause secondary
occlusion

Transcranial surgical
occlusion of MCA (e.g.,
ligation, clip, cautery)

Possible in any species, particularly suited
to large animals
High proportion of successful procedures

Does not model thromboembolism or thrombolysis
Significant surgical trauma can accompany the
stroke
Skull opened, dura breached, and CSF released

Proximal MCAoa

Distal MCAob

Approaching 100% successful induction of
infarction
Highly reproducible lesion size and behavioral
outcomes
Relatively little surgical comorbidity as skull
opening can be small

Requires significant surgical skill
Significant surgical comorbidity
Recannalization possible but not usual

Thromboembolic MCA
territory occlusion

Models most common cause of human stroke
Allows study of thrombolysis

Low rate of successful induction of stroke
Highly variable histologic and behavioral outcome
Timing of reperfusion dependent on thrombolysis
Rodent thrombolysis requires B10 times more tPA
than in humans

Spontaneous clotting
Thrombin-enhanced
clotting
Distal introduction
Proximal introduction

Easy to show effect as thrombolysis occurs early
Better model of usual consistency of human emboli
More certain occlusion of the origin of the MCA

Probably higher incidence of TIA-like events
Certainty of occlusion counterbalanced by difficulty
of reperfusion
Little control over site of clot lodgment and
infarction

Others:
Nonclot embolism
Endothelin
Photothrombosis
Balloon catheters

Simple to manufacture and introduce
Can be induced in the absence of anesthesia
Reproducible, possible without opening skull,
high throughput
Minimal surgery, occlusion assured, timed
recannalization

Little control over occlusion site, not amenable to
thrombolysis
Duration of occlusion uncertain, additional direct
effects on brain function
Thrombosis generally distributed over all vessels
illuminated
Expensive materials and currently confined to large
animals, requires fluoroscopy for catheter guidance

CSF, cerebrospinal fluid; MCA, middle cerebral artery; MCAo, MCA occlusion; TIA, transient ischemic attack; tPA, tissue plasminogen activator.
aOcclusion at the circle of Willis, or between the origin of MCA and the M1 branch of MCA.
bOcclusion after the M1 branch of MCA.
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to MCAo seems to be dependent on a decreasing
frequency of patent posterior communicating arteries
(Barone et al, 1993). It seems likely that possession of
a patent posterior communicating artery permits main-
tenance of residual cortical perfusion above the ischemic
threshold in territories that would otherwise die after
MCAo (Kitagawa et al, 1998). Restricting collateral blood
supply by occlusion of additional vessels can have a
profound effect on the regions infarcted and on experi-
mental variability (Chen et al, 2008). Indeed the gerbil
has been promoted as a model species for stroke studies,
specifically because their lack of posterior communicat-
ing arteries and an absence of an anterior communicat-
ing artery in B20% of the gerbil population leads to
more consistent infarct volumes (Oostveen et al, 1992).

Vascular variability and plasticity in more distal
parts of the cerebral circulation also has the potential
to alter human stroke outcome and animal modeling.
Sprague–Dawley rats (B60% of all neuroprotection
data come from this strain (VO’C, personal commu-
nication) display a much greater range of infarct sizes
in thread occlusion models than strains, such as the
SHR and WKY (Figure 3), probably because of the
highly variable origin and branching pattern of the
MCA in this strain (Fox et al, 1993). Similarly, although
changes in vascular contractility and blood–brain barrier
permeability undoubtedly contribute to the propensity
to stroke in SHR and spSHR strains (Knox et al, 1980),
the observation that anastomotic vessels linking the
anterior cerebral artery and MCA territories are narrower
in spSHR than in normotensive rats is probably a major
determinant of blood flow to the threatened territory and
of the amount of tissue that can be protected from infarc-
tion by collateral circulation (Coyle and Heistad, 1991).

Although it is possible to exploit these species/
strain differences to reduce experimental variability
in infarct volume, the relevance to human stroke

subtypes must always be considered if the aim is the
evaluation of a drug’s potential to treat human stroke.

Experimentally Controllable
Physiologic Variables that Affect
Outcome

In addition to differences in model construction and
the underlying vascular anatomy, controllable vari-
ables such as regulation of blood flow, temperature,
and blood gas concentration all have the potential to
affect experimental outcome.

Blood Flow

One of the most important variables is the reduction
of blood flow achieved by thread or embolus
occlusion. In most species studied, including hu-
mans, the evidence suggests that unless blood flow is
reduced to below a flow of B0.12 ml/g per min for a
significant period, infarction is not inevitable. Above
this threshold, electrical activity and normal func-
tion may be suppressed, but there is sufficient
metabolic reserve to preserve cellular integrity
(Astrup et al, 1981; Sakoh et al, 2000). It is not
uncommon for animals to have acute, but transient,
functional deficits upon waking from anesthesia,
which do not progress to frank infarction (Sicard
et al, 2006).

In laboratories without access to high-resolution
computed tomography or magnetic resonance ima-
ging, laser-Doppler flowmetry is widely used to
judge whether blood flow reduction has been suffi-
cient to induce infarction and reveal when sponta-
neous reperfusion is a cause of failed experiments

Figure 2 Proportion of stroke models used in 2,852 neuroprotection experiments.
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(DiNapoli et al, 2006; Schmid-Elsaesser et al, 1998),
emphasizing the need for frequent and long-term
monitoring. Moreover, it has been reported that
excessive and sustained reduction of cortical blood
flow (93.6%±5%) after thread occlusion suggests
subarachnoid hemorrhage (Woitzik and Schilling,
2002). When occlusion is successful, both thread and
embolic methodologies produce similar reductions
(70% to 85%) in blood flow detected over the
parietal cortex (Chen et al, 2008; DiNapoli et al,
2006; Schmid-Elsaesser et al, 1998; Woitzik and
Schilling, 2002). Endothelin-1-induced occlusion of
the MCA produces a similar reduction in blood flow
(Bogaert et al, 2000), but local induction of throm-
bosis by thrombin seems to be less effective, produ-
cing deficits of only 40% to 50% of baseline (Orset
et al, 2007). In most laboratories, laser-Doppler
flowmetry probes are placed over the parietal cortex
of rodents because the lack of musculature and
a relatively flat skull make probe attachment easy.
However, these sites sample a varying mixture of
MCA and anterior cerebral artery territory flow.
Harada et al (2005) have reported that sampling
MCA flow specifically by placing a flat probe
between the temporalis muscle and the lateral aspect
of the skull allows more successful induction of
stroke with smaller variation. Although the numbers
of animals studied were small (12 per cohort), the
suggestion warrants further attention.

Temperature

Temperature is an important determinant of mam-
malian cell function and survival. Our biochemistry

has evolved to function most effectively within
narrow temperature ranges, and we have evolved
specific mechanisms to help maintain an optimal
body temperature and to limit damage to our proteins
if we overheat.

In small mammals, a precipitous decrease in body
temperature is common during anesthesia because
their high-surface-area-to-mass ratio makes thermo-
regulation difficult, a phenomenon compounded by
the use of unwarmed gases during inhalational
anesthesia (Haskins and Patz, 1980). With agents
such as sodium pentobarbital, the core temperature
can decrease by 3.51C to 4.51C within an hour and
brain temperature can be 0.31C to 0.41C lower
(Kiyatkin and Brown, 2005). As cooling can be
profoundly neuroprotective (van der Worp et al,
2007), preclinical evaluation of neuroprotectants
should at some stage incorporate an evaluation of
the impact of body or brain temperature. Although
some recommend measuring both brain and body
temperatures (Busto et al, 1989), the observation that
for isoflurane, the differential between the two
measurements is constant (R2 = 0.9996) (Zhu et al,
2009) suggests that less-invasive measures of core
temperature may suffice. It would be foolish to
simply constrain animal temperature to the normal
range during experiments as the induction of
hypothermia, or other changes that lead to it, might
be the mechanism of action of a new drug. A number
of candidate pharmacological neuroprotectants such
as the AMPA (a-amino-3-hydroxyl-5-methyl-4-isoxa-
zole-propionate) receptor antagonist 2,3-dihydroxy-
6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione)
(NBQX) (Nurse and Corbett, 1996) and the sedative

Figure 3 Not all rats were created equal: infarct volume variability after thread occlusion in Sprague–Dawley (SD), Wistar Kyoto
(WKY), and spontaneously hypertensive rat (SHR) under a range of experimental circumstances. Blue bars represent the proportion of
animals with cortical infarction. Mean and s.d. plus individual data points.
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clomethiazole (Visser et al, 2005) probably involve
hypothermic effects in their mechanism of action,
whereas others such as Mg2 + (Campbell et al, 2008)
and tacrolimus (FK506) (Nito et al, 2004) are
reported to have their effects enhanced by even
mild hypothermia. Even the prototypical antiexci-
totoxic dizocilpine (MK-801) alters body tempera-
ture and can have its effects masked by concomitant
hyperthermia (Memezawa et al, 1995).

Hyperthermia is a common and significant com-
plication in stroke. In humans, a core temperature of
> 37.51C on the first day after stroke onset has been
reported in up to a third of patients and is a strong
predictor of poor outcome. Conversely, low body
temperature on admission is associated with good
short-term outcome (den Hertog et al, 2007). In rats,
increasing the body temperature to 401C 24 h after
stroke has been reported to cause up to a three-fold
increase in infarct volume (Kim et al, 1996).
Furthermore, there are fluctuations in endogenous
temperature of up to 1.31C which have been found
to correlate with differences in stroke size found
when surgery is conducted at different times of the
day (Vinall et al, 2000). In experimental stroke, hyper-
thermia is a particular problem when the thermo-
regulatory centers of the hypothalamus are damaged
by infarction. The body temperature can increase
quickly (within 15 minutes of the onset of ischemia),
reach 391C to 401C within an hour, and can be
sustained for > 24 hours (Reglodi et al, 2000). Because
of the mechanics of occlusion, this problem is usually
only seen when thread occlusion blocks the multiple
vessels which contribute to hypothalamic perfusion
(Li et al, 1999).

Anesthesia

Anesthesia is required at some stage in all models of
stroke, which require surgery for access to the
vasculature or the brain. For the most part, anes-
thetics act through two principal mechanisms: an
increase in inhibition through GABA A receptors
(such as barbiturates, benzodiazepines, propofol,
isoflurane, etomidate, enflurane, and halothane) or
a decreased excitation through NMDA (N-methyl-
D-aspartic acid) receptors (such as nitrous oxide,
ketamine, and xenon) (Traystman, 2010). However,
anesthesia itself seems to have both neuroprotective
and preconditioning effects mediated by the inhibi-
tion of spontaneous depolarization (Patel et al, 1998),
activity as antioxidants (Wilson and Gelb, 2002),
antagonism of NMDA receptors (Harada et al, 1999),
GABA potentiation (Harris et al, 1994), and altera-
tion of cerebral blood flow redistribution (Warner
et al, 1989). Early clinical observations that patients
under general anesthesia were more tolerant of
ischemia than were unanesthetized patients (Wells
et al, 1963) support this view.

Data obtained from animals are however difficult
to interpret. The impractibility of unanesthetized

surgery makes experimental control difficult, and the
precise mechanism is difficult to ascertain when
effects on the cerebrovasculature, brain metabolism,
brain electrophysiology, temperature, and blood
pressure can all interact (Traystman, 2010). Observa-
tions that some agents induce neuronal apoptosis
which can potentially make these agents neurotoxic
(Ikonomidou et al, 1999) confuse the picture further.
Importantly, anesthesia can interact with neuro-
protectants to increase apparent efficacy (Macleod
et al, 2005a, b). Whether this is caused by enhanced
induction of hypothermia, suppression of metabo-
lism, modulation of blood flow, or specific neuro-
chemical interactions is not always clear.

A practical approach is to avoid using anesthetics
with marked intrinsic neuroprotective properties
(Anderson and Sundt, 1983; Macleod et al, 2009)
such as barbiturates and ketamine, which also make
the depth and duration of anesthesia difficult to
control. Instead, inhalational anesthetics such as
isoflurane are recommended because of the ease
with which the depth of anesthesia can be controlled
and animals recovered, even though they also have
neuroprotective properties (Warner et al, 1993). If
mechanical ventilation and if possible continuous
pCO2 monitoring for dose adjustment are available,
this approach is recommended (Zausinger et al,
2002). Although spontaneous breathing of inhala-
tional anesthetics gives less experimental control
and larger infarcts (Zausinger et al, 2002), it provides
a practical solution for smaller laboratories. What-
ever the route of administration, overuse is to be
avoided, and with inhalational agents, the staff must
be protected from inadvertent exposure. As human
stroke patients are not routinely anesthetized, devel-
oping methods that avoid anesthesia during stroke
induction, as is possible with thromboembolic (Zivin
et al, 1985) and endothelin (Callaway et al, 1999)
models, should perhaps receive more attention. To
date, there does not seem to have been a formal
comparison of different drugs with or without
anesthesia at the time of stroke induction in the
thromboembolic or endothelin models.

Blood Gases, Blood Pressure, and pH

In an ideal world, changes in partial pressure of O2

and CO2, pH, as well as blood pressure and
anesthetic concentration would be monitored con-
stantly during stroke modeling and adjusted minute
by minute to ensure that blood and oxygen supply to
the tissue beds only changed because of the stroke,
and not by some inadvertent vasoconstriction or
dilation of collateral blood vessels caused by our
experimental machinery. We know that blood gas
concentrations influence experimental stroke out-
come (Browning et al, 1997; Zausinger et al, 2002),
that increasing blood pressure slightly improves
blood flow and oxygen metabolism (Shin et al,
2008), and that pH also influences outcome
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(Anderson and Meyer, 2002). However, we currently
lack the data and sophistication required to allow
us to effectively control all of these parameters.
Monitoring them is a starting point and many believe
this should be mandatory. However, to be of value,
the frequency of monitoring needs to be high enough
to detect a number of relatively short periods
of decompensation during occlusion. A similar
scenario is seen when laser Doppler measurements
of cortical flow velocity reveal transient periods
of premature reperfusion, which keep an animal
above the threshold for infarction (Schmid-Elsaesser
et al, 1998).

Effects of Comorbidities on Outcome

Perhaps the most powerful strategy in animal
modeling is to identify and analyze the key sub-
components of a problem and thus reduce the
complexity of human disease to manageable propor-
tions. Conversely, to evaluate the therapeutic poten-
tial of a new therapy, we may need, at some point, to
model those complexities. In the development of
stroke drugs, we have often failed to consider the
impact of risk factors such as hypertension and
diabetes that are present in a large proportion of
patients with ischemic stroke (Fisher et al, 2009a).

Co-morbidities in the Clinic

Hypertension can account for 30% to 40% of the risk
of stroke (Lawes et al, 2004). A 10 mm Hg increase in
arterial blood pressure increases stroke risk by 20%
to 30% (Alberts and Atkinson, 2004) and a blood
pressure above 120/80 mm Hg doubles the lifetime
risk of stroke (Kelly et al, 2007). Similarly, hypergly-
cemia and diabetes are common in stroke patients.
Approximately one-fourth of stroke patients have a
history of diabetes (Kaarisalo et al, 2005), whereas
hyperglycemia is detected in up to 40% of stroke
patients on admission (Williams et al, 2002). Both
type 1 and type 2 diabetes are associated with an
increased risk of stroke (Jeerakathil et al, 2007;
Sundquist and Li, 2006) with newly treated type 2
diabetes doubling the short-term risk of stroke in one
study (Jeerakathil et al, 2007). In the United States, it
has been estimated that 37% to 42% of all ischemic
strokes may be attributable to the effects of diabetes
alone or in combination with hypertension (Kissela
et al, 2005). Moreover, although hypertension and
type 2 diabetes increase stroke risk independently,
their combination appears to increase the risk
drastically (Hu et al, 2005). As for hypertension,
evidence is beginning to emerge which suggests
that better diabetic control reduces stroke risk
(Boden-Albala et al, 2008).

Although perhaps not strictly comorbidities, age
and gender have a profound influence on stroke
biology. Between 19 and 77 years of age, each
additional year of age increases stroke risk by 9%

in women and 10% in men (Asplund et al, 2009).
Although the risk is greater in men, because they
live longer, women are more likely to experience a
stroke and to have a more disabling stroke (Reeves
et al, 2008).

Clearly, it is important to know whether candidate
stroke drugs retain efficacy in the face of these
comorbidities and how they influence the pathophy-
siology of stroke. However, of 3,142 animal experi-
ments on neuroprotection abstracted from the
literature (O’Collins et al, 2006), only 11% involved
testing in hypertensive and only 1% in diabetic
animals.

Hypertension

At least 20 models of hypertension have been
reported. These range from surgical ligation of
arteries supplying a kidney, through pharmacologi-
cal or genetic manipulation of vascular reactivity, to
selective breeding of hypertensive rabbits and rats
(Lerman et al, 2005). Despite the range of available
methodologies, only a few have been used in stroke
modeling.

The Dahl salt-sensitive rat develops hypertension
dependent on the salt content of their diet (Meneely
and Ball, 1958). On a high-salt diet (8.7% NaCl2),
marked hypertension (B200 mm Hg systolic) devel-
ops in B4 weeks and blood–brain barrier disruption,
stroke, and death can quickly follow (Payne and
Smeda, 2002). At lower salt concentrations, the same
end is reached but over a longer time frame, with
animals fed a 1% NaCl2 diet starting to die at B5
months of age (Rapp and Dene, 1985). Arterial
lesions characterized by histiocytic, eosinophilic,
and neutrophilic infiltration and frank coagulation
are prominent in the mesentery, pancreas, intestine,
testis, heart, and kidney but absent from the brain
and lung (Rapp and Dene, 1985). When thread
occlusion for 120 minutes was used to occlude the
MCA of Dahl salt-sensitive rats after 5 weeks of high-
salt diet (8%), 80% died or experienced intracranial
hemorrhage within 24 hours. Reducing occlusion
time to 90 minutes still left 40% of the animals with
hemorrhage (Bright et al, 2007). These losses are
substantially higher than reported with similar
occlusion times in SHRs (21 or 3% using poly-L-
lysine- or silicone-coated filaments, respectively)
(Spratt et al, 2006).

The SHR and related spSHR, which were both
selectively bred from the WKY strain, are the most
widely used hypertensive animals in stroke research.
Although normotensive at birth, SHRs start to
develop hypertension in the first 2 to 4 months of
life and usually reach a stable systolic blood pressure
plateau of B200 mm Hg by 6 months. The phenotype
of the SHR and spSHR is complex. In addition to
hypertension, these animals have smaller brains
(Tajima et al, 1993), enlarged ventricles (Bendel
and Eilam, 1992; Tajima et al, 1993), hypertrophy
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(due to increased smooth muscle cell number) of the
large cerebral arteries (Mangiarua and Lee, 1992),
increased circulating monocyte number, increased
endothelial macrophage infiltration, and inflamma-
tory marker expression (Liu et al, 1996).

The spSHR was derived by inbreeding of the
offspring of SHRs that died of stroke until > 80%
of the population developed stroke characterized
by multifocal microvascular and spongy-cystic
parenchymal lesions (Fredriksson et al, 1988). Simi-
lar to the Dahl rat, spSHRs are prone to salt-sensitive
renal injury which precipitates hypertension
( > 240 mm Hg) and rapid onset of hemorrhagic stroke
(Lee et al, 2007). Approximately 70% of strokes occur
in the gray matter of the cortex (Yamori et al, 1976).
Magnetic resonance imaging studies confirming
vasogenic edema and blood–brain barrier breakdown
without metabolic impairment have confirmed the
absence of ischemia as a precipitating event (Guerrini
et al, 2002). The cortical focus for the lesions is
believed to reflect abnormal vascular structure and
vascular reactivity (Baumbach et al, 1989; Coyle,
1987). After MCAo, nitric oxide production is also
impaired and correlates with increased infarct size
(Kidd et al, 2000).

After induction of focal ischemia, blood flow
reductions are more pronounced and brain injury
as measured by infarct volume and behavior after
focal stroke in SHR and spSHR is significantly larger
and more reproducible than in normotensive rat
strains (Barone et al, 1992; Spratt et al, 2006). Unlike
the gerbil (Baskaya et al, 1999), this reproducibility is
not due to the absence of the posterior communicat-
ing arteries (Figure 4) (Ogata et al, 1976) and the
constraints on collateral blood flow this imposes.
However, larger than normal infarcts in the spSHR
are independent of blood pressure, age, or sex and
appear to result from inadequate cortical collateral
blood flow (Gratton et al, 1998). Moreover, because
SHRs have smaller body and brain weights than the
WKY strain throughout life and successful thread
occlusion is highly dependent on the relationship
between thread and vessel size, using the WKY as a
normotensive control for the SHR or spSHR presents
a significant challenge in its own right.

Of 493 drugs tested in 45,512 animals with focal
cerebral ischemia (VO’C, personal communication),
409 were tested only in normotensive animals, just
56 were tested in both normotensive and hyperten-
sive animals, whereas 28 appear to have been tested
only in hypertensive animals. The majority of this
testing was performed in the SHR. For six drugs
reviewed systematically, only 10% of publications
included the modeling of efficacy in animals with
high blood pressure or diabetes. Where efficacy was
reported in the context of comorbidity, it was
generally substantially lower. Disufenton sodium
(NXY-059) was less effective in SHRs than in healthy
animals (17.6% versus 47.8%; P < 0.001) (Macleod
et al, 2008). Tissue plasminogen activator had no
beneficial effect on either infarct volume or

neurobehavioral score but did increase the observed
odds of hemorrhage in SHRs (ESS, personal commu-
nication). Nicotinamide was less effective in animals
with diabetes or hypertension (21.8% versus 30%;
P < 0.01) (Macleod et al, 2004) as was FK506 (17%
versus 33.3%; P < 10�10) (Macleod et al, 2005b). In
contrast, hypothermia was slightly more effective
in SHR than in normotensive SD and Wister rats
(van der Worp et al, 2007). Melatonin was not tested
in hypertensive animals (Macleod et al, 2005a).

Of the many other models of hypertension,
renovascular models (induced by various combina-
tions of renal artery clipping and kidney removal) are
the next most commonly used. By keeping both
kidneys in place and clipping one renal artery (two-
kidney one-clip, 2K1C) only mild and relatively
unstable hypertension is achieved, yet this model
provided one of the earliest reports that hypertension
exacerbates ischemic injury (Fujishima et al, 1978).
When a kidney is removed and the other renal artery
clipped (one-kidney one-clip, 1K1C) animals often
die of acute renal failure accompanied by diffuse
edematous lesions in the brain (Nag, 1984). To avoid
these problems, Zeng et al described clipping both
renal arteries without kidney removal (two-kidney
two-clip) to model stroke in hypertension. All SD
rats developed stable hypertension without acute
renal failure or diffuse cerebral lesions. Within 40

Figure 4 Circle of Willis and posterior communicating arteries of
the spontaneously hypertensive rat (Ogata et al, 1976).
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weeks, 62% had developed spontaneous stroke,
significantly more than in 2K1C or 1K1C models.
The strokes, which were a mixture of small infarcts
with clear evidence of thrombotic occlusion and
hemorrhagic lesions caused by bleeding from the
arteriolar wall of fibrinoid necrosis or ruptured
microaneurysms, correlated with the presence of
vascular pathology in small arteries or arterioles
(Zeng et al, 1998). Using serial magnetic resonance
imaging to assess the consequences of inducing
hypertension by partial occlusion of both renal
arteries, showed a tight relationship between the
degree of hypertension and development of cere-
bral lesions. Below a mean systolic pressure of
210 mm Hg, rats never had brain lesions, but when
pressure exceeded 276 mm Hg, rats consistently
developed brain lesions (Del Bigio et al, 1999).

Similar to the spSHR and renovascular models, rats
made hypertensive by treatment with deoxycortico-
sterone (a mineralocorticoid receptor agonist) and salt
can also have spontaneous strokes when blood
pressure is high (Sukamoto et al, 1980), but they are
more readily protected by the antihypertensive capto-
pril against the effects of acute MCAo than spSHR
(Coyle, 1984). Experiments in young Wistar rats
suggest that these effects may be mediated in part by
remodeling of the cerebrovasculature as treatment
with deoxycorticosterone acetate alone (without salt)
for 6 weeks stiffens and narrows the MCA, induces
mild hypertension, and renders the rats more sensi-
tive to MCAo (Dorrance et al, 2006).

Little is known about the impact of most other
methods of inducing hypertension on stroke. For
example, the New Zealand, Milan hypertensive, and
Lyon hypertensive rats do not die due to strokes or
cardiovascular disease like the spSHR and do not
appear to have been used in the study of MCAo
(Bianchi et al, 1984; Phelan, 1968; Vincent et al,
1984). To date, no stroke studies seem to have been
undertaken in hypertensive transgenic rats expres-
sing an extra copy of the renin gene (Wagner et al,
1997). Ischemic stroke has been induced in Cyno-
molgus monkeys made hypertensive by surgical
coarctation of the aorta in animals fed an atherogenic
diet (Prusty et al, 1988), but this would not seem to
be a practical model for widespread use.

Diabetes and Hyperglycemia

As for hypertension, there are numerous models of
diabetes. Although surgical removal of the pancreas
has been used since the 1880s, diabetes is most
commonly induced by selectively poisoning pan-
creatic b-cells. This can be achieved using the uric
acid derivative alloxan, but streptozotocin which is
isolated from the soil bacterium Streptomyces achro-
mogenes is more widely used and mimics most of the
major hallmarks of clinical type 1 diabetes, including
hyperglycemia, elevated HbA1c concentration,
weight loss, polydipsia, and polyurea. Other models

including the Non-Obese Diabetic mouse, the Bio-
Breeding rat, and the Zucker Diabetic Fatty rat have
been generated by selective inbreeding (Rees and
Alcolado, 2005). Defects in the db gene on mouse
chromosome 4 and the fa gene on rat chromosome 5
both lead to leptin receptor defects (Chen et al, 1996;
Takaya et al, 1996). The db/db mouse develops
severe diabetes by 6 weeks of age, characterized
by hyperglycemia, hyperinsulinemia, and obesity
(Vannucci et al, 2001). Rats homozygous for an
amino-acid substitution in the fa gene become obese
(reaching B500 g at 6 months of age), hyperlipi-
demic, and develop insulin-resistant hyperglycemia
(400 to 500 mg/dL) when 7 to 10 weeks old. The
Goto-Kakizaki rat offers a model of spontaneous
type 2 diabetes generated by inbreeding glucose-
intolerant Wistar rats (Ergul et al, 2007).

Both diabetes as a metabolic condition and
hyperglycemia independently have been used in
conjunction with animal models of stroke. Intra-
peritoneal dextrose to increase blood glucose to
> 15 mmol/L accelerates and extends infarct devel-
opment after transient (thread occlusion) and perma-
nent (distal MCA cautery) MCAo (Liu et al, 2007).
Others have found that hyperglycemia enlarged
infarcts but only in the cortex (Martin et al, 2006).
In cats, hyperglycemia led to a three- to four-fold
increase in infarct size after permanent MCAo
and increased death due to edema upon reperfusion
(de Courten-Myers et al, 1989). Similar observations
have been made in dogs (Palmon et al, 1995), rabbits
(Kraft et al, 1990), and rats (Dietrich et al, 1993).
Damage to the blood–brain barrier may be relevant to
reports that hyperglycemia exacerbates injury after
tPA therapy (Ribo et al, 2007). Damage to the insular
cortex and hyperglycemia as a result of endogenous
stress responses further complicates our understand-
ing of the impact of hyperglycemia (Allport et al,
2004).

Although early attention focused on acidosis as the
mechanism of hyperglycemia-enhanced neuronal
injury, other targets have also gained favor. After
thread occlusion of the MCA in rats, hyperglycemia
was reported to lead to a progressive reduction in
cerebral blood flow and enhanced blood–brain
barrier permeability (Kawai et al, 1998). After
chemical poisoning of pancreatic b-cells with allox-
an or streptozotocin, the results are similar with
increased edematous change (Kamada et al, 2007),
exacerbation of transient and permanent ischemic
lesions with increased speed of lesion development,
and continued growth upon reperfusion (Huang
et al, 1996; Kittaka et al, 1996). Studies of the mecha-
nism of damage also implicate altered inflammatory
responses with exaggerated leukocyte-endothelial
cell adhesion (Panes et al, 1996), and increased
interlukin-1 and intercellular adhesion molecule-1
expression (Ding et al, 2005). Blood–brain barrier
dysfunction has also been attributed to increased
oxidative stress and matrix metalloproteinase-9
activation (Kamada et al, 2007). Interestingly, it has
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been reported that although acute hyperglycemia
has no effect on endogenous tPA expression, a similar
but persistent elevation of blood glucose (B15 mmol/L)
in streptozotocin-treated rats led to a complete deple-
tion of tPA protein and more than six-fold loss of tPA
mRNA expression (Kittaka et al, 1996).

In genetically determined models of diabetes, such
as the BioBreeding Rat and db/db mouse, the effects
of hyperglycemia on ischemic injury are gender
specific. In the BioBreeding rat, cortical injury is
the same in diabetic and control animals, but males
had larger and females smaller subcortical infarction
(Toung et al, 2000). Similar observations have been
made after unilateral common carotid artery ligation
combined with systemic hypoxia in the db/db mouse
wherein even though female diabetic mice were
more hyperglycemic and acidotic than the males,
they were more resistant to damage (Vannucci et al,
2001).

The recently described Goto-Kakizaki rat, gener-
ated by inbreeding of glucose-intolerant Wistar rats,
develops mild hyperglycemia at 6 weeks of age, but
is also unusual in producing significantly smaller
infarcts after extended (3-hour) thread occlusion of
the MCA (but high rates of subcortical hemorrhagic
transformation) than nondiabetic controls, which is
interpreted as the result of diabetes-induced vascular
remodeling (Ergul et al, 2007). However, the shape of
the infarcts is reminiscent of the hypothalamic
lesions that can be produced when only hypotha-
lamic-perforating arteries but not the MCA are
occluded (He et al, 1999), and suggests that reduced
effectiveness of thread occlusion in the more tortu-
ous vessels of the Goto-Kakizaki rat (Ergul et al,
2007) might provide an alternative explanation.

Using insulin to reduce blood glucose is reported
to induce marked neuroprotection (Hamilton et al,
1995). Similar protective effects on infarct volume
were reported when insulin was used together with
tPA in normoglycemic animals to treat thromboem-
bolic strokes. Others have reported that tight glyce-
mic control does not improve infarct size in male
BioBreeding rats (Toung et al, 2000). Moreover,
despite reduced infarct volumes, others have re-
ported that mortality was as high after insulin
treatment alone (47%) as it was when combined
with tPA (38%) (Meden et al, 2002).

Age and Gender

It is surprising that we perform almost all of our
testing in male animals and have little representation
of half the human population. The main reason for
this choice seems to be simply that lack of an estrus
cycle (in male rats) might reduce the overall experi-
mental variability. However, even in male rats, the
influence of testosterone seems to be age dependent,
with castration conferring protection in the young
and supplementation conferring protection in the
middle aged (Cheng et al, 2009) and the effects of

estrogens, which are far from clear (Strom et al,
2009), may be dependent on interactions with
specific elements of models of hypertension (Cars-
well et al, 2000, 2005) and diabetes (Vannucci et al,
2001), which may possibly be linked by differences
in vascular reactivity (Miller et al, 2007). Moreover,
as most strokes in women occur after menopause
(average age of menopause and average age of
incident stroke in women have been reported as 49
and 80 years, respectively) (Lisabeth et al, 2009),
ignoring half of our species because of a possibly
spurious advantage in the laboratory seems very
unwise.

Our understanding of the influence of animal age
in the laboratory is also limited. Although age-
dependent increases in infarct size are most often
reported (Davis et al, 1995; Driscoll et al, 2008;
Hachinski et al, 1992), others report reductions in
behavioral deficits in aged rats (Shapira et al, 2002).
Whether this reflects our lack of understanding of
stroke biology or of the models we use is unclear.
Differential responses to candidate therapeutics with
aging (Won et al, 2006) suggest that we would be
wise to learn more. Why has aging been studied so
little when the majority of stroke patients are old?
The answer would seem to be just the cost of
maintaining animals for longer periods. It is certainly
feasible to induce consistent strokes in aged animals
even when they are also diabetic and hypertensive
(Rewell et al, 2010).

Conclusions

The utility of animal models of stroke is governed by
many factors, and it is clear that no single model can
encompass all of the variables known to affect
human stroke. Which model we choose is deter-
mined by a series of compromises and questions
we have to ask about the aims of our experiments. Do
we wish to occlude single or multiple vessels, do we
need control of the timing of reperfusion, or do
we need to investigate how a drug interacts with the
natural process? Are we trying to determine whether
a drug has an effect or trying to define the limits of its
efficacy. If the later, we need to consider the common
comorbidities of age, atherosclerosis, hypertension,
and diabetes. Is limiting experimental variability
more important than demonstrating robust effects
across a range of genetic backgrounds? Does varia-
bility in vascular anatomy matter to your experi-
ment? Brain temperature can dramatically alter
infarct size but should we control it or monitor it,
do we lose valuable insight by performing all
experiments at a fixed temperature that might not
be relevant in the clinic? Owing to space limitations,
this article could not discuss all the possible
variables. For example, blood gas concentrations
are often measured and used as part of the physio-
logic work-up to show equivalence of experimental
cohorts or to exclude animals with hypoxia from
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further analysis. However, how do the subtleties of
blood gas concentration encountered during differ-
ent forms of ventilation and their interaction with
anesthesia impact on outcome? Hypertension, hyper-
glycemia, and diabetes have been considered where
specific stroke modeling has been performed, but the
broader implications of metabolic syndrome and

atherosclerosis remain largely unexplored in animal
stroke modeling. There is still much to learn and
every experimenter faces many choices. Figure 5
provides a guide to matching model characteristics to
experimental aim and an outline of the experiments
likely to be needed to move from identifying a
candidate drug through to clinical trial. These figures

Figure 5 Guidelines for stroke modeling. (A) A guide to matching model characteristics to experimental aim; (B) a guide to preclinical
stroke modeling required to move from a hypothesis to a clinical trial.
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provide only a framework for the questions that will
be encountered and decisions that will need to be
made as we learn more about stroke and move closer
to introducing new and more effective therapies. The
deliberations of the Stroke Therapy Academic In-
dustry Roundtable (Fisher et al, 2009b; STAIR, 1999)
and those of Macleod et al (2009) are recommended

for their insight into the problems of stroke transla-
tional medicine and avoidance of bias at the bench.

In conclusion, ‘The lack of translation between the
animal work and clinical benefits does not lie in the
animal models, but in how we use the models and
how we apply this knowledge to design of clinical
trials’ (Willing, 2009).

Figure 5 Continued.
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