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Summary

WldS (slow Wallerian degeneration) is a remarkable protein
that can suppress Wallerian degeneration of axons and

synapses [1], but how it exerts this effect remains unclear
[2]. Here, using Drosophila and mouse models, we identify

mitochondria as a key site of action forWldS neuroprotective
function. Targeting the NAD+ biosynthetic enzyme Nmnat to

mitochondria was sufficient to fully phenocopy WldS, and
WldS was specifically localized to mitochondria in synaptic

preparations from mouse brain. Axotomy of live wild-type
axons induced a dramatic spike in axoplasmic Ca2+ and

termination of mitochondrial movement—WldS potently

suppressed both of these events. Surprisingly, WldS also
promoted increased basal mitochondrial motility in axons

before injury, and genetically suppressing mitochondrial
motility in vivo dramatically reduced the protective effect

of WldS. Intriguingly, purified mitochondria from WldS mice
exhibited enhanced Ca2+ buffering capacity. We propose

that the enhanced Ca2+ buffering capacity of WldS+ mito-
chondria leads to increasedmitochondrial motility, suppres-

sion of axotomy-induced Ca2+ elevation in axons, and
thereby suppression of Wallerian degeneration.

Results and Discussion

Mitochondria as a Key Site of WldS Neuroprotective

Function
Remarkably, the distal fragments of severed axons survive for
weeks after axotomy in theWldS (slowWallerian degeneration)
mouse [3–6]. TheWldSmutation resulted from the fusion of two
neighboring genes and led to the production of a novel hybrid
protein (WldS) composed of the 70 NH-terminal amino acids of
the E4 ubiqutin ligase Ube4b, a novel 18 amino acid linker
domain, and the NAD+ biosynthetic enzyme Nmnat1 [7]. We
previously found that expression of mouse Nmnat3 in
Drosophila olfactory receptor neuron (ORN) axons provided
protection equivalent to WldS 5 days after axotomy [8]. Recent
work has shown that Nmnat3 expression in mouse neurons
also robustly protects axons [9]. We coexpressed mouse
*Correspondence: marc.freeman@umassmed.edu
UAS-Nmnat3::Myc and the mitochondrial marker UAS-mi-
to::GFP in DrosophilaORNs. We found Nmnat3::Myc localized
in a punctate pattern in ORN axons that precisely overlapped
with mito::GFP (Figure 1A), indicating that Nmnat3 localized
predominantly, if not exclusively, to mitochondria. We next
assayed ORN axon preservation at 10, 20, and 50 days after
axotomy. We found that Nmnat3 protected axons at levels
indistinguishable from WldS at all time points tested (Fig-
ure 1B). Thus the N70 and W18 domains of WldS are dis-
pensable for axon protection if Nmnat activity is targeted to
mitochondria. By contrast, expression of Nmnat2 in ORN
axons failed to suppress Wallerian degeneration, despite the
fact that Nmnat2::Myc was localized throughout the axonal
compartment (see Figure S1A available online).
Recently Yahata et al. [9] reported that in mouse neurons,

WldS protein is located in mitochondria, cytosol, perosix-
ome/lysosome, and endoplasmic reticulum (ER) and/or
Golgi-enriched cell fractions. We revisited WldS localization
in isolated mouse striatum from control and WldS mice by
separating the tissues into three fractions: nonsynaptic striatal
tissue, striatal synaptosomes without mitochondria, and
synaptic mitochondria. We found that WldS was detectable
in the nonsynaptic fraction, as would be expected from its
predominantly nuclear localization. In addition, we detected
WldS in synaptic mitochondria, but not in mitochondria-free
synaptic preparations (Figure S1B). These data are consistent
with a primarilymitochondrial localization ofWldS in axons and
synapses in vivo in mouse brain.

WldS Suppresses Termination of Mitochondrial Motility
after Injury and Axotomy-Induced Increases in Axonal Ca2+

We assayed mitochondrial dynamics in live Drosophila axons
using the Tdc2-Gal4 driver, which is expressed in only three
axons per segment of larval peripheral nerve, by driving
UAS-mCD8::mCherry (to label axonal membranes) and UAS-
mito::GFP (to label mitochondria; Figure 3A). In uninjured
axons, we found no differences in the total number of mito-
chondria, mitochondrial morphology, or mitochondrial size
when we compared control and WldS-expressing axons
(Figures S1A and S1B). In control animals we found that
w35% of mitochondria were motile before injury, but all
motility terminated after laser axotomy (Movie S1). In striking
contrast, we found that laser axotomy of WldS-expressing
axons had no effect on mitochondrial movement (Movie S2;
Figure 1C).
Axon injury in mammals leads to extracellular Ca2+ entry,

which is necessary and sufficient for Wallerian degeneration
[10]. Mitochondrial motility is known to be potently modulated
by Ca2+ [11, 12]. We therefore sought to determine whether
Drosophila axons showed axotomy-induced changes in
axonal Ca2+, and whether axonal Ca2+ signaling was modu-
lated by WldS. We drove the expression of the genetically
encoded Ca2+ indicator GCaMP3 in axons and measured
changes in GCaMP3 signals in distal axon segments after
laser-induced axotomy. In control animals, we found a rapid
increase in Ca2+ levels within seconds after axotomy, with
Ca2+ levels peaking within 1 min after cut, and then returning
toward baseline levels over the next hour (Figures 2A–2C;

http://dx.doi.org/10.1016/j.cub.2012.02.043
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Figure 1. Mitochondria as a Focal Point for

WldS-Mediated Axon Protection

(A) Mouse Nmnat3::Myc localizes to mitochon-

dria in Drosophila axons. 22a-Gal4 was used to

drive UAS-Nmnat3::Myc and UAS-mito::GFP.

Insets show boxed region.

(B) Mitochondrial Nmnat3 fully mimics WldS in

axon protective function. 22a-Gal4 was used to

driveUAS-Nmnat3 orUAS-WldS in a background

where axons were labeled with membrane-

tethered GFP (UAS-mCD8::GFP). n R 20 an-

tennal lobes for each. ***p < 0.001. Error bars

represent 6 SEM.

(C) WldS suppresses axotomy-induced termina-

tion of mitochondrial motility. Mitochondrial

movement was assessed in live open-filet

preparations of third-instar Drosophila larvae

immediately after axotomy for 5 min. Axotomy was induced by severing axons with a Micropoint laser ablation system and confirmed by a breakage

of mCD8::mCherry-labeled axons. n R 10 live samples for each genotype and time point. ***p < 0.001.
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Movie S3). However, >1 hr after axotomy, axonal Ca2+ levels
remained significantly elevated above baseline (w20%
increase). Strikingly, whereas baseline Ca2+ levels in WldS+

axons were indistinguishable from those in controls (Fig-
ure S3C), in WldS+ axons, injury-induced Ca2+ bursts were
almost completely eliminated: Ca2+ levels only rose to w15%
control levels and returned to baseline within 1.5 min (Fig-
ure 2C; Movie S4).

In previous work, we generated a collection of UAS-regu-
lated WldS-derived molecules that suppress Wallerian degen-
eration to varying degrees [8] (Figure S1C). We assayed
axotomy-induced changes in GCaMP3 fluorescence in axons
expressing each of these molecules in live larval preparations.
As with WldS, we found no evidence for changes in axonal
mitochondrial number, morphology, or size in these back-
grounds (Figures S2A and S2B). However, we found a striking
correlation between axon protective function and suppression
of axotomy-induced increases in axonal Ca2+: WldS and
Nmnat3 strongly suppressed Wallerian degeneration and
postinjury axonal Ca2+ increases; Nmnat1, DN16::WldS,
A B
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and WldS-dead partially suppressed Wallerian degeneration
and postinjury axonal Ca2+ increases; Nmnat1dead, which lacks
NAD+ biosynthetic activity and provided no protection from
Wallerian degeneration [8], did not affect postinjury axonal
Ca2+ increases. These changes were evident in both the distal
and proximal axon segment and affected both peak axonal
Ca2+ intensities and recovery times to baseline Ca2+ levels
(Figures 2C–2E; Figures S3A and S3B).

WldS Enhances Mitochondrial Movement, which Is

Essential for Maximal Axonal Protection after Injury
Because mitochondrial motility is Ca2+-modulated, we
reasoned that changes in axonal Ca2+ buffering might affect
axonal mitochondrial motility. We therefore assayed mito-
chondrial flux in axons expressing WldS-derived neuroprotec-
tive molecules. Surprisingly, we found a significant change in
basal mitochondrial motility: in control animals,w35% of total
axonal mitochondria were motile; however, w65% of mito-
chondria were motile in WldS+ axons. Moreover, we found
that molecules that provide partial suppression of Wallerian
P3 (Ca2+)

3 min 10 min

control

Nmnat1dead

WldS-dead

Nmnat1

WldS

Nmnat3

Figure 2. In Vivo Laser Axotomy Induces

a Dramatic Rise in Axonal Ca2+ that Is Sup-

pressed by WldS

(A) tdc2-Gal4 labels three axons in each periph-

eral nerve; only one segment is illustrated.

(B) Axons were labeled with mCD8::mCherry, and

axonal Ca2+ was monitored by coexpressing

GCaMP3 in the tdc2-Gal4+ subset of neurons.

Note the breakage of the axon after laser axot-

omy (red, mCherry). Axonal Ca2+ levels 1min after

axotomy (green, GCaMP3).

(C and D) Representative traces showing Ca2+

responses in axon fragments distal to the injury

site over time. Genotypes as indicated.

(E) Quantification of peak Ca2+ intensities and

time to one-half recovery from average peak

intensity for each genotype listed. n R 5 live

samples for each genotype and time point versus

control. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 3. WldS Increases Mitochondrial Flux,

which Is Essential for Neuroprotective Function

(A) Mitochondrial flux was assayed in tdc2-Gal4-

expressing neurons in live preparations of third-

instar larvae. Representative kymographs of

mitochondrial movement are shown for control

and WldS-expressing axons. Anterograde is to

the right, retrograde is to the left.

(B) Mitochondrial flux was assayed in axons ex-

pressing each of the following molecules:

Nmnat1, DN16-WldS, WldS-dead, WldS, N16-

Nmnat1, and Nmnat3. n R 10 live samples for

each genotype. *p < 0.05; ***p < 0.001.

(C) Quantification of the movement of individual

mitochondrial by binning into mobile, docked,

or pausing and/or releasing during a 5 min

window. n = 5 movies for each genotype.

(D) ORN axotomy assays in WldS backgrounds

and miro mutants. A single antennal lobe where

ORN axons were severed is shown.

(E) Quantification of data from (D). Age-matched

uninjured controls at the same time points are

shown at right. nR 15 samples for each genotype

and time point. **p < 0.01; ***p < 0.001.
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degeneration (Nmnat1, DN16::WldS, and WldS-dead) led to
a modest, but significant, increase in the number of motile
mitochondria, whereas molecules that maximally suppress
Wallerian degeneration (WldS, N16::Nmnat1, and Nmnat3) led
to a robust increase in the number of motile mitochondria (Fig-
ure 3B). This change in mitochondrial flux in WldS axons
appears to represent a decrease in docked mitochondria, an
increase in motile mitochondria, but no significant change in
pause and/or release rates for individual mitochondria
(Figure 3C).

Is increased mitochondrial flux critical for WldS-mediated
axon protection? The adaptor protein Miro functions to
tether mitochondria to cytoskeletal motor proteins and
modulate mitochondrial movement in a Ca2+-dependent
fashion [12]. Impressively, mutations in miro dominantly
decrease mitochondrial motility [13]. We therefore crossed
strong alleles ofmiro (miroSD32 andmiroSD26) and aUAS-regu-
lated version of Miro (UAS-myc::Miro), which when overex-
pressed acts as a dominant-negative [13], into the WldS

background and assayed mitochondrial flux. We found that
miro mutants or expression of Myc::Miro dominantly sup-
pressed mitochondrial movement in controls. In addition, we
found that loss of Miro function also decreased mitochondrial
movement in the presence of WldS to levels found in control
animals (Figures S2C and S2D). Remarkably, reduced miro
function also dominantly suppressed the neuroprotective
effects of WldS in ORN axotomy assays. In animals with
reduced miro function, axon loss was evident by 5 days after
axotomy, with synaptic regions showing significant degenera-
tion, and by 30 days after axotomy, the protection afforded by
WldS is almost completely blocked (Figures 3D and 3E).

Mitochondria from WldS-Expressing Axons Show

Enhanced Ca2+ Buffering Capacity and Resistance to
Formation of the Permeability Transition Pore

Mitochondria are major sinks for cellular Ca2+ in both axons
and synapses [14]. A powerful mechanism by which WldS
could exert all of these effects would be by altering mitochon-
drial Ca2+ buffering capacity. We therefore assessed mito-
chondrial Ca2+ cycling and/or buffering capacity in cortical
mitochondria isolated from young (wp25) wild-type (WT) (NJ)
and WldS mice. Mitochondrial isolations [15, 16] from both
control and WldS animals yielded healthy, well-coupled mito-
chondria (Figures 4A and 4B). No apparent difference was
observed in the Ca2+ uptake rates in mitochondria isolated
fromWldS versus control mice (Figures 4A and 4B). In contrast,
the threshold for mitochondrial permeability, indicated by the
loss of membrane potential (Figure 4A) and mitochondrial
release of Ca2+ (Figure 4B), was significantly greater in mito-
chondria from WldS mice (Figure 4C). Thus, following
increases in cytoplasmic Ca2+, WldS mitochondria isolated
from mouse brain buffer higher loads of Ca2+ before releasing
it back into the cytoplasmic compartment via themitochondria
permeability transition pore (PTP).

Conclusions

The mechanistic action of WldS has remained controversial,
but recent work has established a nonnuclear role for WldS

[2] after injury [17]. In this study, we show thatWldS is localized
to mitochondria in vivo. It is important to note that protein
localization studies with WldS must be interpreted
cautiously—the primarily nuclear localization of WldS sug-
gested a nuclear role for WldS and initially misled the field
[2]. However, we also find that WldS increases mitochondrial
Ca2+ buffering capacity and results in maintained mitochon-
drial motility after axotomy. Taken together, these data argue
strongly that the mitochondrial compartment is a key site of
action for WldS in vivo.
We have shown that axonal injury in liveDrosophila prepara-

tions leads to a dramatic and transient rise in axonal Ca2+.
Increased axonal Ca2+ has been observed in mammals after
acute nerve crush [18] and entry of extracellular Ca2+ is neces-
sary and sufficient for Wallerian degeneration [10]. Impres-
sively, WldS expression resulted in a striking suppression of



Figure 4. WldS Brain Mitochondria Display Higher Ca2+ Load Capacity than

Age-Matched Wild-Type (NJ) Controls

(A and B) TMRE (tetramethylrhodamine, ethyl ester; membrane potential

indicator) and CaG5N (extramitochondrial Ca2+ indicator) fluorescence

were monitored over time simultaneously for each sample of nonsynaptic

mitochondria. As illustrated in TMRE traces for the first 3 min, the addition

of pyruvate andmalate (PM) an oxidative substrate, causes amarked down-

ward deflection at 1 min due to increased mitochondrial membrane poten-

tial (Dcm). Following ADP (A) addition, the loss of Dcm is indicated by

upward deflection at 2 min as Dcm is utilized to phosphorylate ADP to

ATP via proton flow thru the ATP synthase. The ATP synthase inhibitor,

oligomycin (O) addition at 3 min results in maximum Dcm as proton flow

is inhibited. The Ca2+ infusion began at 5 min (infusion rate 160 nmol of

Ca2+/mg protein/min) and was monitored by CaG5N fluorescence and is

illustrated by the initial upward deflection followed by constant signal due

to mitochondrial Ca2+ uptake into the matrix. The subsequent rise in

CaG5N fluorescence accompanied by a loss of membrane potential

signifies mitochondrial permeability transition and subsequent release of

mitochondrial Ca2+.

(C) Quantification of mitochondrial Ca2+ buffering capacity (nmols/mg

protein) indicates that WldS nonsynaptic mitochondria sequestered signifi-

cantly higher amounts of Ca2+ compared to the control group (n = 6/group, *

p < 0.05, unpaired t test).
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this axotomy-induced rise in axonal Ca2+. The most plausible
explanation for this enhanced buffering is that increased
ATP and energy production observed in WldS+ mitochondria
[9]—presumably via increased mitochondrial NAD+ produc-
tion, though we cannot formally exclude essential roles for
other substrates of Nmnat—is linked to increased mitochon-
drial membrane potential (Dcm), and thereby increased Ca2+

entry through the Dcm-regulated mitochondrial Ca2+ uniporter
[19]. This model is supported by our observation that WldS-ex-
pressing mitochondria isolated from mouse brain exhibit an
enhanced ability to maintain their membrane potential and
avoid PTP formation in the face of increasing extramitochon-
drial Ca2+. In the future, it will be important to confirm that
such changes are also observed in Drosophila axonal mito-
chondrial physiology in vivo in WldS-expressing neurons.
Axonal Ca2+ spikes could result solely from entry of extracel-

lular Ca2+ into the axon after injury. This would be consistent
with the observation that blocking Ca2+ channels inhibits
Wallerian degeneration [10, 18]. Mitochondria are awell-estab-
lished sink for Ca2+ in axons [14] and here we show that WldS+

mitochondria exhibit enhanced Ca2+ buffering capacity and
resistance to Ca2+-induced formation of the permeability tran-
sition pore (PTP). Indeed PTP formation appears to be a key
final execution step in Wallerian degeneration [20–22]. We
therefore favor a model whereby extracellular Ca2+ enters
the axon after axotomy and normally acts as a switch to acti-
vate Wallerian degeneration. In WldS axons, this Ca2+ is
instead rapidly buffered by mitochondria, thereby blocking
induction of axonal destruction. Consistent with this model,
uncoupling mitochondria, which suppresses mitochondrial
Ca2+ uptake [23, 24], completely abrogates the protective
effect of WldS in vitro [25].
WldS-expressing neurons exhibit a roughly 2-fold increase

in the number of motile versus stationary mitochondria
compared to WT controls, which could result from changes
in mitochondrial Ca2+ buffering. Notably, genetic suppression
of enhanced mitochondrial flux using mutations in miro also
resulted in a remarkable suppression ofWldS-mediated axonal
protection in vivo. However, because this suppression was
only partial, additional factors beyond increases in mitochon-
drial motility must also contribute to WldS-mediated axonal
protection. For example, axonal energy supplies are likely
closely intertwined with mitochondrial transport and bioener-
getics. WldS+ mitochondria are known to exhibit an enhanced
ability to generate ATP [9]. This change in bioenergetics,
coupled with increased mitochondrial motility in WldS+ axons,
might enhance distribution of ATP or other mitochondrially-
derived metabolites. At the same time, enhanced mitochon-
drial motility could also speed the removal of metabolic
byproducts normally processed by mitochondria. Similarly,
increased mitochondrial motility in axons could further
enhancemitochondrial Ca2+ buffering inWldS+ axons because
motile mitochondria would be predicted to traverse more
‘‘axonal space’’ and perhaps be exposed to more Ca2+ than
stationary mitochondria. Together, these could have the
combined effect of increasing energy delivery, removing harm-
ful byproducts, and increased buffering of Ca2+, a signal that
can potently activate axonal degeneration.
A role for mitochondria in the WldS neuroprotective mecha-

nism is intriguing because defects in mitochondria respiration
and dynamics are emerging as critical underlying factors in
a number of neurological disorders [26]. For example, in
mouse models of ALS (SOD1 transgenics), anterograde [27]
and retrograde [28]mitochondrial transport is reduced, altered
mitochondrial trafficking has been observed in models of
Alzheimer’s disease [29], and mutant, but not WT Huntington,
protein blocks mitochondrial movement in cortical neurons
[30]. However, in the majority of models, whether these mito-
chondrial alterations are a cause or consequence of disease
remains an open question [26]. Our study shows, reciprocally,
that enhanced mitochondrial flux is associated with and is
required for maximal axon protection by WldS.
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