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Understanding of eukaryotic ribosome synthesis has been

slowed by a lack of structural data for the pre-ribosomal

particles. We report rRNA-binding sites for six late-acting

40S ribosome synthesis factors, three of which cluster

around the 30 end of the 18S rRNA in model 3D structures.

Enp1 and Ltv1 were previously implicated in ‘beak’ struc-

ture formation during 40S maturation—and their binding

sites indicate direct functions. The kinase Rio2, putative

GTPase Tsr1 and dimethylase Dim1 bind sequences

involved in tRNA interactions and mRNA decoding, indi-

cating that their presence is incompatible with translation.

The Dim1- and Tsr1-binding sites overlap with those of

homologous Escherichia coli proteins, revealing conserva-

tion in assembly pathways. The primary binding sites for

the 18S 30-endonuclease Nob1 are distinct from its cleavage

site and were unaltered by mutation of the catalytic PIN

domain. Structure probing indicated that at steady state the

cleavage site is likely unbound by Nob1 and flexible in the

pre-rRNA. Nob1 binds before pre-rRNA cleavage, and we

conclude that structural reorganization is needed to bring

together the catalytic PIN domain and its target.
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emboj.2010.86; Published online 7 May 2010

Subject Categories: RNA; structural biology

Keywords: CRAC; pre-ribosome; ribosome synthesis; RNP

structure; yeast

Introduction

Biogenesis of the mature 40S and 60S ribosomal subunits is

an exceptionally complex process in eukaryotes, which

requires the activities of roughly 200 synthesis factors for

rRNA maturation and subunit assembly (reviewed in Henras

et al, 2008). In the nucleolus, RNA polymerase I generates a

polycistronic precursor rRNA (35S pre-RNA) that contains

the sequences for the mature 18S, 5.8S and 25S rRNA,

flanked by the external transcribed spacers (50-ETS and

30-ETS) and separated by the internal transcribed spacers

(ITS1 and ITS2; Supplementary Figure 1). The 35S pre-

rRNA is cleaved at processing sites A0, A1 and A2, within a

large, B90S complex, to yield a pre-40S particle that contains

the 20S pre-rRNA and a pre-60S particle containing the 27SA2

pre-rRNA. The pre-60S particles undergo a complex matura-

tion pathway in the nucleolus, nucleoplasm and cytoplasm

(reviewed in Henras et al, 2008). In contrast, the pre-40S

particles are rapidly exported to the cytoplasm. Here, the 20S

pre-rRNA is modified close to the 30 end of the 18S rRNA

sequence by the dimethylase Dim1 (Lafontaine et al, 1994),

before cleavage by the PIN-domain endonuclease Nob1 to

generate the mature 18S rRNA (Pertschy et al, 2009)

(Supplementary Figure 1). Notably, both Dim1 and Nob1

bind the nuclear 90S pre-ribosomes and are exported to the

cytoplasm together with the pre-40S particles (Schafer et al,

2003). This implies a mechanism that inhibits the premature

activity of these enzymes on the substrates with which they

are associated, possibly involving structural reorganization of

the pre-40S particles. Dim1 is essential for viability, but its

essential function is not 18S rRNA methylation, but pre-rRNA

cleavage at sites A1 and A2 (Lafontaine et al, 1995). The basis

of this requirement was, however, unclear. Structural reorga-

nization of the pre-40S particle does occur, most notably in

formation of the beak structure; a prominent feature of the

mature subunit that is absent from pre-40S particles (Schafer

et al, 2006). This reorganization involves phosphorylation of

Enp1 and Ltv1 by the kinase Hrr25, and subsequent dephos-

phorylation of Rps3 but the roles of Enp1 and Ltv1 in this

process were unclear. Late pre-40S particles contain a differ-

ent protein kinase, Rio2, the targets for which are unknown,

and a putative GTPase, Tsr1. Both are needed for 20S–18S

processing but, again, their actual roles are unclear.

Affinity purification and mass spectrometry allowed the

composition of many pre-ribosomal complexes to be deter-

mined, whereas genetic analyses showed that loss of ribo-

some synthesis factors impeded pre-rRNA processing at

specific stages (see Fromont-Racine et al, 2003; Henras

et al, 2008). However, in few cases it was clear how these

factors actually participated in pre-rRNA processing.

Numerous sub-complexes and other protein–protein interac-

tions between ribosome synthesis factors have been identi-

fied (reviewed in Henras et al, 2008; Tarassov et al, 2008) but

little is known about the architecture and structure of these

RNP complexes. EM structural analyses of pre-ribosomes

have given important insights (Nissan et al, 2004; Schafer

et al, 2006; Ulbrich et al, 2009) but these studies are techni-

cally challenging, due in part to instability and heterogeneity

of purified particles.

The most informative single piece of data that could be

provided (short of actual crystal structures of pre-ribosomes)

would be the locations of the binding sites for the proteins on
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the pre-rRNAs. This information would be of key importance

in establishing a detailed blueprint for ribosome assembly

and lend focus to all future characterization of these proteins.

With the aim of generating a map of protein–RNA interac-

tions within pre-ribosomes, we performed a systematic UV

cross-linking and cDNA analysis (CRAC) (Granneman et al,

2009) as outlined in Supplementary Figure 2.

The best characterized, and simplest, pre-ribosomes are

the late pre-40S particles. Here, we report the rRNA-binding

sites for six factors that are retained in late pre-40S subunits.

The findings provide insights into the 40S ribosome synthesis

pathway and offer many avenues for future analyses.

Results

UV cross-linking of pre-40S-associated proteins

We tested eight factors known to associate with late pre-40S

complexes; Dim1, Dim2/Pno1, Enp1, Ltv1, Nob1, Rio1/

Rrp10, Rio2 and Tsr1 and identified binding sites for all

except Dim2 and Rio1 (see Supplementary Table 1 for refer-

ences). Rio1 was poorly cross-linked, whereas Dim2 was

cross-linked but numerous attempts failed to reproducibly

identify a clear RNA target sequence (data not shown). None

of the C-terminal HTP fusions detectably impaired cell

growth (Supplementary Figure 3A). Pre-rRNA processing

was also unaffected in all strains except Nob1-HTP, which

conferred a mild 20S-processing defect (Supplementary

Figure 3B). HTP-tagging Nob1 at the N-terminus did not

noticeably affect Nob1 function (Supplementary Figure 4C).

CRAC experiments were performed 2–5 times, and we mon-

itored the enrichment of tagged proteins in TEV and nickel

eluates by western blot analysis (data not shown). To be

considered a bona fide RNA-binding site, a nucleotide

sequence had to be significantly enriched in every experiment.

The locations of identified cross-linked RNA sequences are

plotted in Figure 1. Sanger sequences of 50–80 cDNA clones

obtained from independent experiments were aligned to a

yeast non-coding RNA database using both Blast and

Novoalign to align the fragments to the reference sequences

and Novoalign was used to locate mutations and calculate

percentage of mutations (see Materials and methods). The

locations of the hits obtained for each protein using

Novoalign are shown aligned against the 18S rRNA sequence,

annotated with the predicted secondary structure, in

Supplementary Tables 4–9. Cross-linking sites were precisely

identified by the presence of multiple point deletions or

substitutions at a specific position in sequence reads, or a

minimal RNA-binding site was determined from overlapping

sequences. Except for Tsr1 and Dim1 (see below), there was

little overlap between major peaks in the histograms for

each protein, showing that these peaks represent unique

RNA-binding sites. Figure 1B shows the results of three

independent CRAC experiments performed with an untagged

strain, which served as a negative control. The most abun-

dant contaminants (asterisks in Figure 1; Supplementary

Figure 3B) were derived from regions near the 30 end of the

25S rRNA (position B5800 in rDNA). These were almost

always observed in CRAC experiments (Granneman et al,

2009), but generally represented a larger fraction of the

sequences recovered with proteins that cross-linked less

efficiently to RNA.

Enp1 and Ltv1 bind the rRNA near the beak structure

A major structural rearrangement in pre-40S complexes is the

formation of the characteristic ‘beak’ structure, which is

shaped by protrusion of helix 33 (H33). Cryo-EM and bio-

chemical studies revealed that beak formation requires a

cascade of phosphorylation and dephosphorylation events

in the cytoplasm, leading to the stable association of Rps3

and release of assembly factors Ltv1 and Enp1 (Schafer et al,

2006). Premature formation of the rigid beak structure is

likely to hinder nuclear export of pre-40S complexes, as

complexes lacking Ltv1 or Hrr25, the kinase responsible for

Enp1, Rps3 and Ltv1 phosphorylation, are not efficiently

exported to the cytoplasm (Schafer et al, 2006; Seiser et al,

2006). Regulation of the timing of beak structure formation is

therefore important.

Among all Enp1-associated sequence reads mapped to the

rDNA, 64% included the sequence of H33 (Figure 1A;

Supplementary Table 5). Deletions and point mutations

were found in the internal loop of H33 (nt 1256–1259),

pinpointing a cross-linking site (Figure 2B) and positioning

Enp1 directly in the beak. Cross-linking to the adjacent H34

was observed less frequently (Figures 1A and 2B). Cryo-EM

reconstruction images indicated that in pre-40S particles H33

was flipped sideways (Schafer et al, 2006) and it seems

probable that this correlates with the binding of Enp1 to H33.

Most RNAs cross-linked to Ltv1 mapped to H16 and H41/

41A (Figures 1A and 2B; Supplementary Table 6). Mutations

identified in the terminal loop of H16 and in a bulge near

H41A reveal the precise cross-linking sites (Figure 2B, nt 453–

454, 1490–1491). Cross-links to H21, H39 and H40 were

found less frequently (Figure 1A).

In the yeast 40S structure model (Figure 3A), H41A is

located in close proximity to the beak and to Rps3, consistent

with two-hybrid interactions reported between Rps3 and Ltv1

(Ito et al, 2001), whereas H16 is more distantly located in the

shoulder region. Simultaneous binding of Ltv1 to both H16

and H41A would require that Ltv1 span the gap between the

head and the shoulder (Figure 3C). Although we cannot

exclude the possibility that these sites are not occupied

simultaneously, it is notable that the cryo-EM structure

does indeed show appropriate density to correspond to Ltv1

bound across this region (Figure 3B) (see Discussion).

Collectively, these CRAC results are in good agreement

with previously published biochemical and genetic data, and

support the model that release of Enp1 and Ltv1 is directly

linked to beak structure formation (see Figure 3C).

Rio2 binds the 18S rRNA at the mRNA tunnel in pre-40S

complexes

Rio1 and Rio2 are serine kinases involved in processing of

20S pre-rRNA in the cytoplasm. Rio2, but not Rio1, is stably

associated with pre-40S complexes (Vanrobays et al, 2003),

probably explaining why only Rio2 was detectably cross-

linked to pre-rRNA (Supplementary Table 1). Rio2 preferen-

tially cross-linked to a terminal loop in H31 (nt 1194–1196)

(Figures 1A and 2B; Supplementary Table 8). Loss of mod-

ification of residue U1191 in the H31 loop was recently

reported to inhibit site D cleavage (Liang et al, 2009),

suggesting that this may influence the binding or activity

of Rio2.

H31 is located in the head of the mature 40S subunit, in a

region also likely occupied by Rps15, Rps16, Rps18, Rps20

Towards a structural framework for 40S assembly
S Granneman et al
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and Rps29 (Figures 2B and 3D) (Spahn et al, 2001; Brodersen

et al, 2002). The Rio2 cross-linking sites are located in the

cleft that, in the 80S ribosome, is occupied by the P-site tRNA

and the C-terminal domains of Rps16 and Rps18 (Spahn et al,

2001). This makes it very likely that the association of Rio2

with the pre-40S particles is incompatible with tRNA binding.

Dim1 and the putative GTP-binding protein Tsr1 interact

with the central pseudoknot and the decoding centre

Dim1 dimethylates two adenosines in the loop of H45 (in-

dicated as ‘-m’ in Figure 2B) (Lafontaine et al, 1994) and the

methylation sites were recovered in several sequence reads.

However, a major Dim1 cross-linking site was located in the

adjacent H44 region (nt 1753–1794) (Figures 1 and 2B;

Supplementary Table 4). A second major peak covered se-

quences over H2 and the adjacent H28 region (nt 1137–1156).

H2 base pairs with the 50 end of 18S rRNA to form the central

pseudoknot. Strains lacking Dim1 are unable to cleave site A1

at the 50 end of 18S rRNA (Lafontaine et al, 1995), and we

predict this requirement reflects its interaction with the

central pseudoknot. H28 is required for recruitment of the

initiator methionine tRNA (Dong et al, 2008) and Dim1

binding here would be incompatible with tRNAiMet associa-

tion. Cross-linking to H11, near the Rps11-binding site

(Dresios et al, 2005), was also reproducibly observed but

with fewer hits (Figures 1A, 2B and 3E).

Tsr1 is required for cleavage of the 20S pre-rRNA at site D

to generate 18S rRNA (Gelperin et al, 2001) and has a region

related to the GTPase domain of elongation factor Tu,

although GTP binding and hydrolysis have not yet been

reported. The major binding site for Tsr1 was located in the

central domain of the 18S rRNA over H19 and H26–29

(Figures 1A and 2B; Supplementary Table 9). These se-

quences form a large domain within the platform and neck

regions of 40S subunits (Spahn et al, 2001) (Figure 2B). The

average read-length for H19–H26–29 sequences associated

Figure 1 Overview of CRAC results. Shown are the results from independent CRAC experiments performed on pre-40S-associated proteins
(A). Results from untagged strains are shown in (B). Sequences were aligned to the rDNA reference sequence using blast and plotted using
gnuplot. The locations of mature rRNA sequences, spacers and cleavage site are indicated below the x axis. The y axis shows the total number
of times each nucleotide within an RNA fragment was mapped to the rDNA sequence. The location of the peaks in the secondary structure of
the rRNA (see Figure 2A, B) is indicated with helix (H) numbers. The asterisks indicate frequent contaminants.

Towards a structural framework for 40S assembly
S Granneman et al
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with Tsr1 was 41 nt, against an overall average of 28 nt for

other pre-40S proteins. This indicates that this region is

relatively resistant to RNase digestion, suggesting a stable

structure. Shorter fragments were also identified in helices 26,

27 and in the region spanning helices 2 and 28, with the latter

overlapping the Dim1-binding site (Figure 2B). Among the Tsr1

reads derived from the H28 region, 25% contained mutations

in a single-stranded sequence located between H2 and H28 (nt

1143–1146), precisely defining the Tsr1-binding site in this

region. Notably, these mutations were not found in the Dim1-

binding site in the H28 region (Supplementary Table 4).

Twenty five per cent of Tsr1 hits mapped to the 30 minor

domain of 18S rRNA, in H44 and H45 (Figure 1A), close to

the cleavage site at the 30 end of the 18S rRNA (site D) and

partially overlapping the major Dim1-binding site (Figure 2A

and B). Among the H45 hits, 44% contained mutations (nt

1765–1771, Figure 2B), identifying the direct binding site.

Tsr1 binding near site D is consistent with a proposed direct

role in 18S rRNA processing (Gelperin et al, 2001).

In the crystal structure of the 30S Thermus thermophilus

ribosomal subunit, H26 and H27 loop around H45 in the

vicinity of the 30 end of the 16S rRNA (see Figure 3E). In

addition, the hairpin loop of H27 makes extensive minor

groove contacts with H44 just below the decoding centre (see

Figure 3E) (Clemons et al, 1999; Voorhees et al, 2009). Tsr1

could therefore bind simultaneously with the H27–28 and

H44–45 regions.

A lower frequency of Tsr1 cross-linking was recovered with

H34 (Figure 1A), close to the Rps5-binding site in regions

involved in P-site tRNA interactions (Figure 2A) (Spahn et al,

2001). The Tsr1 hits in this region are not the same as the

negative control, indicating that this interaction is specific.

We conclude that both Dim1 and Tsr1 bind to sequences in

the 18S rRNA that includes the decoding centre and regions

required for tRNA association with the ribosome. These

binding sites are incompatible with the formation of a trans-

lation initiation complex. For example, the Dim1-binding

sites in H44 overlap with translation initiation factor eIF1

(Lomakin et al, 2003; Passmore et al, 2007), whereas binding

of Tsr1 and Dim1 to H28 would interfere with association of

the initiator tRNA (Dong et al, 2008). Thus, Tsr1 and Dim1

are likely to prevent pre-40S complexes from participating in

translation. In addition, the Tsr1- and Dim1-binding sites

enclose the 30 end of the 18S rRNA (Figure 3E), suggesting

that their association would impede access of the Nob1

endonuclease to site D (see below).

Figure 2 Locations of protein–RNA interaction sites in the 18S rRNA secondary structure. (A) Overview of the yeast 18S rRNA secondary
structure (obtained from http://www.rna.ccbb.utexas.edu/). The stem including the D-cleavage site was added separately. The 18S rRNA
domains are indicated as dashed boxes. Functionally, important elements (central pseudoknot, decoding centre, P-site tRNA interactions,
D-cleavage site (coloured red)) are marked with circles. (B) Overview of RNA-binding sites for pre-40S-associated proteins. Specific nucleotides
cross-linked to proteins are indicated as coloured circles. For cases where no or few mutations were found in cross-linked RNAs (Tsr1 H26 and
H27, Dim1 H28 and the Enp1-binding site in H34), the binding sites are indicated by dashed lines. Dashed boxes indicate predicted ribosomal
protein (Rps) interaction sites on the 18S rRNA, based on the locations of homologous T. thermophilus ribosomal proteins in the 30S crystal
structure, the yeast 40S structure model and various other studies performed on ribosomal proteins in yeast (Spahn et al, 2001; Brodersen et al,
2002; Antunez de Mayolo and Woolford, 2003; Dresios et al, 2005). Helix numbering was adopted from Brodersen et al (2002). RNA-binding
sites for the RNA helicase Prp43 (Bohnsack et al, 2009) are also included.

Towards a structural framework for 40S assembly
S Granneman et al

&2010 European Molecular Biology Organization The EMBO Journal VOL 29 | NO 12 | 2010 2029



The region surrounding cleavage site D is flexible and

not stably associated with Nob1 in pre-40S ribosomes

Nob1 is a PIN-domain endonuclease that cleaves site D at the

30 end of mature 18S rRNA in vivo and in vitro (Fatica et al,

2003; Pertschy et al, 2009). Unusually for a nuclease, Nob1 is

stably associated with its substrate. Nob1 interacts with early

pre-ribosomal complexes (90S pre-ribosomes) in the nucleo-

lus but remains associated with the pre-40S particles during

their export to the cytoplasm, where site D cleavage takes

place. This raises the question of what prevents premature,

nuclear pre-rRNA cleavage by Nob1?

In CRAC analyses, the most frequent site of Nob1 cross-

linking was not at site D, but over helix 40 in the head

domain, over 300 nt upstream (Figures 2B and 3F). Of these

sequences, 84% contained micro deletions in the terminal

loop of H40, precisely identifying the cross-linked nucleotides

(Figure 2B, nt 1396–1398). In addition, a few sequences

were mapped to H28 (Figure 1A). This indicates that Nob1

Figure 3 Modelling of protein–RNA interaction sites into 3D structures. (A) Modelling of protein–RNA-binding sites in the 40S structure model
(pdb 1s1h; Spahn et al, 2001). Shown is the model structure of the 18S rRNA. Characteristic structural features are indicated as head, beak,
neck, shoulder and platform. Enp1- and Ltv1-binding sites are located near the beak formed by H33. Shown in wheat colour is the 18S rRNA
tertiary structure superimposed with ribbon structure models for Rps3 (light blue), Rps9 (green) and Rps20 (yellow). H16 and H41A that
interact with Ltv1 are shown in black. Enp1 cross-linking sites in H33 are depicted as red dots. (B) Ltv1 may correspond to the extra density
near the head and the shoulder in the head domain. The docked molecular model of the yeast 40S subunit is shown for the 40S cryo-EM map
(cage) superimposed on the pre-40S cryo-EM map (transparent blue). Helices 16 and 41 surfaces (Ltv1-binding sites) are indicated in yellow,
Enp1-binding site surface is indicated in red, Rps3 is indicated in blue and Rps16 is indicated in orange. (C) Model for beak formation in pre-
40S complexes. On the schematic representation of pre-40S cryo-EM reconstruction images (Schafer et al, 2006) the predicted location of Rps3
is indicated in blue. In the model, Hrr25-dependent phosphorylation of Rps3 and subsequent dephosphorylation trigger a structural change
leading to repositioning of Rps3, releasing of Enp1 and Ltv1 and beak formation (Schafer et al, 2006). Included are the predicted locations of
Ltv1 (spanning the head and shoulder domain) and Enp1 (in the centre next to Rps3) in the pre-40S pre-ribosome. (D) Rio2, Ltv1 and Nob1-
binding sites cluster around Rps16. The surface density of Rps15 and Rps16 in the head domain of the small subunit is shown in green and
orange, respectively. The cross-linking sites for Ltv1 (black), Nob1 (red) and Rio2 (blue) are indicated as dots. (E) Tsr1 and Dim1 interact with
rRNA near the decoding centre. The Tsr1- and Dim1-binding sites were modelled in the T. thermophilus 30S crystal structure with bound mRNA
(PDB 2wgd) (Voorhees et al, 2009). Shown are helices 44, 45 and the RNA segments containing the Tsr1- and Dim1-binding sites (helices
11,26,27,28). The decoding centre is roughly marked with a dashed circle. (F) Nob1 binds the head domain in close proximity to the 30 end of
the 18S rRNA. Shown is the tertiary structure model of the 18S rRNA. Nob1 and Prp43 cross-linking sites are indicated as coloured dots. Helix
44 is indicated in black. The arrows indicate the distance (33 Å) between the Nob1 cross-linking site and the modelled 30-end of the 18S rRNA.

Towards a structural framework for 40S assembly
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primarily binds over the loop of H40, with only transient

interactions at cleavage site D.

The PIN domain is characterized by three Asp residues that

coordinate a divalent metal ion. Previous analyses showed

that mutation of one of these, D15N inhibits site D cleavage

in vivo and in vitro (Fatica et al, 2003; Pertschy et al, 2009).

This mutation does not disrupt Nob1 binding to the 20S pre-

rRNA in vivo and CRAC analysis on HTP-Nob1 D15N showed

that the active site mutation did not dramatically affect

association with the 20S pre-rRNA or cross-linking to H40

in vivo (Supplementary Figure 4B and C), indicating that the

nuclease activity is not required for binding to H40. The HTP-

Nob1 D15N mutant is dominant negative and causes accu-

mulation of 20S pre-rRNA (Supplementary Figure 4C), pre-

sumably because the mutant protein binds to pre-ribosomes

but does not catalyse cleavage. However, the D15N mutant

also failed to show significant cross-linking at the D-site

region (Supplementary Figure 4B).

Nob1-directed cleavage at site D is a late step in subunit

maturation, so the structure of the cytoplasmic pre-40S

particle is probably close to the final conformation. In the

3D model of the Saccharomyces cerevisiae 40S subunit (Spahn

et al, 2001), the Nob1 cross-linking site lies B33 Å away from

the 30 end of the 18S rRNA, equivalent to a stretch of about 10

nucleotides (Figure 3F). However, the model structure lacks

the last 8 nt of 18S rRNA, so the actual distance to site D may

be less. The dimensions of the dimer of the hSmg6 PIN

domain are 36–71–181 Å (Glavan et al, 2006). Nob1 is

predicted to have similar dimensions and was reported to

bind RNA in vitro as a tetramer (Lamanna and Karbstein,

2009). We therefore predict that Nob1 bound to H40 could

simultaneously interact with site D.

The CRAC data indicated that the majority of pre-40S

ribosomes do not have Nob1 bound at site D. To confirm

that this does not simply reflect inefficient cross-linking

because of RNA structure or other features, dimethyl sulfate

(DMS) chemical foot-printing experiments were performed

in vivo on total pre-ribosomes and in vitro on pre-40S com-

plexes (Figure 4). DMS methylates adenines in single

stranded or flexible RNA unbound by proteins. The pre-40S

particles were purified by precipitation of plasmid expressed

HTP-tagged Nob1, which substantially enriched for 20S

pre-rRNA (Supplementary Figure 4C).

Primer extension analysis of pre-ribosomes modified with

DMS in vitro (Figure 4B, lane 4) or in vivo (Figure 4C)

revealed an almost identical pattern of primer extension

stops in the region containing the D cleavage site. The high

degree of methylation in the D-site stem indicates that this

region is flexible, consistent with previous results (Lamanna

and Karbstein, 2009). In contrast, most adenosines in helix 45

and domain I were largely protected from chemical modifica-

tion, consistent with a stem structure. The DMS probing

results were confirmed by in vitro modification of the 20S

rRNA in purified pre-40S complexes with 1-methyl-7-nitro-

isatoic anhydride (1M7; Figure 4B, lane 2), which modified

20-OH residues in single-stranded or flexible regions

(Mortimer and Weeks, 2007), and 1-cyclohexyl-(2-morpholi-

noethyl)carbodiimide metho-p-toluene sulfonate (CMCT)

(Figure 4B, lane 3), which modifies unpaired uridines not

bound by proteins. Collectively, the cleavages observed are

consistent with a largely open structure and indicate that, at

least in a subset of particles, Nob1 does not contact the D-site

region in purified pre-40S complexes. To substantiate these

results we probed the D-site region in Nob1-depleted cells.

A glucose repressible Nob1 strain (GAL-3HAHnob1) was

grown to exponential phase, shifted to glucose containing

medium and grown for 8 h at 301C. Nob1 protein levels were

significantly reduced after 8 h in glucose containing medium

(Figure 4D) and a substantial accumulation of 20S was

detected in these cells (Figure 4E). To quantify the chemical

probing data (Figure 4C), signal intensities for each band

were normalized to remove differences between lanes. This

revealed no significant changes in the intensity or pattern of

modifications near the D-site region in Nob1-depleted cells

(Figure 4F). We conclude that in pre-40S pre-ribosomes, site

D region is very flexible and at steady-state Nob1 is likely not

stably associated with the D-cleavage site. The region con-

taining the D-site is normally drawn as a stem structure (Yeh

et al, 1990) (Figure 4A); however, these data and recent

in vitro and in vivo analyses (Lamanna and Karbstein,

2009) do not support this stem structure.

These observations suggest that alterations in pre-ribo-

some structure facilitate site D cleavage. Release of Tsr1

and Dim1 may be required for access of Nob1 to the 30

minor domain. Alternatively, the conformational change in

the head domain might bring Nob1 into the correct position

for cleavage at site D, and these possibilities are by no means

mutually exclusive.

Discussion

Here, we have presented a protein–RNA interaction map for

the late pre-40S ribosomes, providing insights into their

architecture and maturation. Importantly, we found a good

correlation between the CRAC data and previous protein–

protein interaction and biochemical data, underlying the

reliability of the method. We can now significantly extend

the interaction maps as shown in Figure 5.

No crystal structures are available for eukaryotic ribo-

somes, and the best available structure model for the yeast

ribosome was generated using cryo-EM reconstructions and

homology modelling (Spahn et al, 2001). To relate the binding

sites identified in the primary sequence to the 3D structure,

we first identified the corresponding sequence in the archaeal

rRNA and its position in the crystal structure, which was used

to locate the binding site in the yeast structure model.

A striking finding was that cross-linking sites for five of the

late-acting 40S synthesis factors Rio2, Tsr1, Dim1, Nob1 (this

work) and Prp43 (Bohnsack et al, 2009) are located in close

proximity to functionally important sequence elements in the

30 region of the 18S rRNA. Intriguingly, the rRNA-binding

sites appear to be located in proximity to ribosomal proteins

previously shown to be required for D-site cleavage and/or

efficient nuclear export of the pre-40S complex (Rps2, Rps3,

Rps15 and Rps20, Rps0 and the C-terminus of Rps14) (Tabb-

Massey et al, 2003; Jakovljevic et al, 2004; Leger-Silvestre

et al, 2004; Ferreira-Cerca et al, 2005). This could reflect a

general mechanism by which assembly factors prevent stable

binding of ribosomal proteins before rRNA maturation steps

are completed, as has been proposed for the association of

Enp1 and Ltv1 with Rps3.

Notably, the binding sites identified predominately lie

in the mature 18S rRNA region, rather than in the trans-

cribed spacers, and are far more common over evolutionarily
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conserved regions than over the eukaryotic-specific insertion

elements.

In Escherichia coli, the emphasis in research into ribosome

synthesis has been on the analysis of in vitro reconstitution

rather than in vivo assembly. However, binding sites have

been characterized for some factors. The RNA-binding sites

for the bacterial orthologue of Dim1 (KsgA) bound to the 30S

ribosomal subunit were determined by in vitro directed

hydroxyl radical cleavage and footprinting experiments

(Xu et al, 2008). In E. coli, KsgA contacts rRNA regions in

the 30S subunit that surrounds the modification sites in H45

including H11, 24, 27, 28 and 44 (Supplementary Figure 5)

and these interactions are proposed to be important in

preventing premature interactions of pre-30S particles with
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the translation machinery. Yeast Dim1 can complement an

E. coli ksgAD mutant (Lafontaine et al, 1994) and Dim1 cross-

linking sites on the 18S rRNA included analogous positions

(Supplementary Figure 5). We conclude that both the methyl

transferase function of Dim1 and its interactions with the

rRNA are conserved in evolution.

Ribosome biogenesis in bacteria involves several different

GTPases, which are proposed to act as ‘molecular switches’,

regulating the stepwise assembly and maturation of RNA–

protein subcomplexes (reviewed in Culver, 2001; Karbstein,

2007; Connolly and Culver, 2009). Two bacterial GTPases

required for 16S rRNA processing (Era and RsgA/YjeQ) are

genetically linked to KgsA (Inoue et al, 2006; Campbell and

Brown, 2008). Cryo-EM microscopy studies revealed that

some sites of Era interaction with the 16S rRNA are at

positions analogous to the Tsr1-binding sites in yeast (H26,

H28, H44, H45) (Sharma et al, 2005). Similarly, RsgA also

contacts the 30 minor domain and GTP-bound RsgA causes

structural rearrangements in H44 (Kimura et al, 2008).

The overlap in RNA-binding sites observed for Dim1 and

Tsr1 strongly suggest that they interact directly in pre-40S

complexes. We predict that Tsr1 and Dim1 together fulfill

functions in ribosome assembly that are equivalent to KsgA

and Era/RsgA in bacteria.

The Rio2 protein kinase is required for 20S–18S proces-

sing, but its targets are unknown. In the 40S structure model,

the Rio2-binding site is located close to Rps15, (Figure 3D)

and pre-40S ribosomes that lack Rps15 fail to efficiently

incorporate Rio2 and are not efficiently exported to the

cytoplasm (Leger-Silvestre et al, 2004; Zemp et al, 2009).

This suggests that these proteins interact directly. Human

Rio2 kinase activity is required for release of hNob1, hLtv1

and hDim2 from pre-40S ribosomes (Zemp et al, 2009) and

the binding sites for yeast Rio2, Ltv1 and Nob1 are closely

located in the head domain. These sites are also close to

Rps16 and Rps18 (Figure 3D). The bacterial Rps18 homo-

logue (S13) is phosphorylated at serine and threonine

residues (Soung et al, 2009) and this may also be the case

for bacterial Rps16 (S9) (Traugh and Traut, 1972), suggesting

Rps16 and Rps18 as potential Rio2 substrates.

Pre-40S particles lack the prominent beak structure present

in the mature subunit, implying large-scale structural reorga-

nization during 40S maturation (Schafer et al, 2006). Two 40S

synthesis factors, Enp1 and Ltv1, were implicated in this

reorganization but their actual roles were unclear. We report

that Enp1 directly binds sequences in H33 that will form the

beak. Ltv1 binds sequences in H41, which are located close to

the beak, but also binds H16, which is more distantly located

in the shoulder region of the 40S particle. If Ltv1 binds both

sequences simultaneously, it would need to span the head–

shoulder gap—a distance of some 87 Å in the mature 40S

subunit. Ltv1 is B53 kDa and, assuming a monomer with

cylindrical shape and an average density of 0.73 cm3/g, an

87 Å long Ltv1 protein would have a diameter of B30 Å.

Comparison of the cryo-EM maps for pre-40S and mature 40S

Figure 5 Overview of known and predicted protein–protein inter-
actions in pre-40S complexes. The interaction map depicts interac-
tions between the various assembly factors and ribosomal proteins
in pre-40S complexes. Black lines, physical interactions among
proteins shown to be part of subcomplexes or interacting as
recombinant proteins (Krogan et al, 2004; Vanrobays et al, 2004;
Schafer et al, 2006; Tarassov et al, 2008; Lamanna and Karbstein,
2009). Dashed red lines, yeast two-hybrid interactions (Ito et al,
2001; Tone and Toh, 2002). Red lines, interactions from protein–
fragment complementation assays (PCA), which detect proteins
within 80 Å distance from each other (Tarassov et al, 2008).
Dashed black lines, protein–protein interactions predicted from
our CRAC data. Blue lines, physical interactions among bacterial
homologues of the indicated proteins (Brodersen et al, 2002).

Figure 4 At steady state the stem structure containing the D-cleavage site is highly flexible and unbound by proteins. (A) Overview of the
chemical foot-printing results on a secondary structure of ITS1, including the 50 end of the 18S rRNA, adopted from Yeh et al (1990). Red
nucleotides indicate the location of the reverse transcriptase primer. Adenosines in H45 dimethylated by Dim1 in vivo are indicated with ‘-m’.
Green circles indicate the nucleotide modified by DMS. Yellow and purple dots indicate the CMCTand 1M7-modified nucleotides, respectively.
(B) The D-site region in purified 20S pre-rRNA is flexible and unbound by proteins. DMS, CMCTand 1M7 modification of RNA was performed
at 301C on purified pre-40S complexes isolated using plasmid-expressed HTP-tagged Nob1 as bait. All chemicals primarily modified nucleotides
in the D-site stem region, indicating it is flexible or single stranded, whereas other regions predicted to be double stranded (i.e. H45 and
Domain I) were largely protected from chemical modification. Adenosines in H45 dimethylated by Dim1 in vivo are indicated with ‘-m’. (C–F)
The D-site helix is highly flexible and likely unbound by Nob1 in vivo. In vivo DMS was performed at 301C on total RNA purified from
GAL::3HA-nob1 cells (E) grown in glucose for 8 h (C, lanes 1 and 2) or galactose (C, lanes 3 and 4). Depletion of Nob1 was confirmed by
western blotting (D) using an HRP-conjugated anti-HA antibody (Santa Cruz) and accumulation of 20S pre-rRNA was detected by ethidium
bromide staining of total RNA in an agarose gel. Pgk1 antibodies (Santa Cruz) were used to confirm loading of equal amounts proteins on each
lane (D). After primer extension, radiolabelled cDNAs were resolved on 12% polyacrylamide/7 M urea gels and visualized by autoradiography.
Adenosines in H45 dimethylated by Dim1 in vivo are indicated with ‘-m’. Quantification of chemical probing data (F) was performed as
described in the main text.

Towards a structural framework for 40S assembly
S Granneman et al

&2010 European Molecular Biology Organization The EMBO Journal VOL 29 | NO 12 | 2010 2033



revealed extra density the side of the head domain in pre-40S

particles, close to the location predicted for Ltv1 (Figure 3B)

(Schafer et al, 2006). The volume of this region would be in

good agreement with the presence of a protein of B53 kDa

(B Böttcher, personal communication).

To better facilitate the interpretation of the cryo-EM

images, we manually docked the 40S structure model

(1s1h) (Spahn et al, 2001) onto the 40S cryo-EM map

(mesh model in Figure 3B) (Schafer et al, 2006) and overlaid

this with the pre-40S cryo-EM map (transparent blue). This

provided a reasonable estimation of location of ribosomal

proteins and RNA structures in pre-40S pre-ribosomes. In the

pre-40S EM map, the shoulder formed by H16 is absent or

poorly defined, however, the extra density appears to be

located parallel to Rps3 and just above H16. We therefore

predict that this density corresponds to Ltv1, although we

cannot exclude the possibility that multiple copies of Ltv1 are

present.

The CRAC data revealed that Dim1, Tsr1 and Rio2 bind 18S

rRNA regions that are important for the association of

translation factors, tRNAs and 60S subunit joining. In the

case of Dim1 and Tsr1, these are conserved to E. coli and in

both bacterial and eukaryotic ribosomes are incompatible

with binding to the mRNA, 60S subunit, initiator tRNA and

translation factors. Dissociation of each of these proteins

from the pre-40S particles would therefore be required for

translation to commence. Pre-40S complexes were recently

reported to associate with polysomes (Soudet et al, 2010),

particularly after depletion of Nob1 or the Rio1 kinase. These

conditions prevent 18S maturation, resulting in a very sub-

stantial 20S pre-rRNA accumulation, which is readily visible

by ethidium bromide staining of total RNA. We predict that

not all of this large pool of accumulated pre-40S particles can

be associated with the ribosome synthesis factors, and their

absence may explain the ability of the defective pre-40S

ribosomes to engage with the translation machinery

(Soudet et al, 2010).

Nob1 is the PIN-domain endonuclease that cleaves site D

at the 30 end of 18S rRNA (Fatica et al, 2003; Pertschy et al,

2009). Unexpectedly, the major binding site identified for

Nob1 was located in H40, distinct from the cleavage site.

Binding to and cleavage of site D requires the PIN domain

(Fatica et al, 2004; Lamanna and Karbstein, 2009; Pertschy

et al, 2009). This indicates that H40 recognition involves a

different region of Nob1, most likely the C-terminal,

Zn-ribbon putative RNA-binding domain, potentially leaving

the PIN domain free to recognize the cleavage site.

Nob1 associates with 90S pre-ribosome early in 40S sub-

unit synthesis pathway, but cleaves site D only in very late

pre-40S particles after nuclear export (Fatica et al, 2003;

Pertschy et al, 2009). Structure probing revealed that the

region containing the D-cleavage site is readily accessible to

chemical modification within pre-ribosomes, both in vitro

and in vivo. This indicates that it is largely unstructured and

unbound by proteins, and should therefore be accessible to

the nuclease. What then prevents Nob1 from cleaving site D

in early pre-ribosomes? The pre-40S cross-linking data

reported here and by Bohnsack et al (2009) identified four

putative enzymes interacting with the decoding centre and

with H44 (Tsr1, Rio2, Dim1 and Prp43), strongly implying

that this region undergoes restructuring; as does the homo-

logous region in bacteria. Notably, Dim1 also binds early,

nuclear pre-ribosomes, but methylates the 30 end of 18S rRNA

much later in the pathway, after export to the cytoplasm.

Restructuring might not only be essential for the correct

folding of the 30 domain of the 18S rRNA, but also to allow

cleavage at site D to occur. On the basis of 3D modelling, we

speculate that only when the structure of 30 domain of 18S is

close to its final conformation, can Nob1 access and cleave

site D. In 3D models, the Tsr1- and Dim1-binding sites are in

close proximity to the 30 end of the 18S rRNA in the pre-40S

and it is conceivable that both proteins could interfere with

D-site cleavage by sterically hindering Nob1 binding to the

cleavage site. We therefore predict that both RNA restructur-

ing and protein remodelling steps in the 30 region of the 18S

rRNA are necessary for Nob1-dependent cleavage at site D.

Cryo-EM studies showed that binding of yeast translation

initiation factors eIF1-eIF1A to the small subunit induces a

conformational change that leads to a connection between

the head and the shoulder, mediated by Rps3 and H16

(Passmore et al, 2007). This interaction stabilizes the head

domain and prevents the ‘mRNA latch’ from forming prema-

turely, making the mRNA-binding channel more accessible to

the large cap-binding protein complex attached to the 50 end

of the mRNA (Passmore et al, 2007). We propose that Ltv1

binding to both Rps3 and H16 locks the head into the pre-

ribosome conformation, whereas Enp1 binding to Rps3 and

H33 directly prevents formation of the beak structure

(Figure 3C). The 40S subunit is characterized by structural

changes during the translation cycle, and it appears that

large-scale structural changes also feature it its maturation.

Materials and methods

Yeast strains and media
S. cerevisiae strain BY4741 (MATa; his3D1; leu2D0; met15D0;
ura3D0) was used as the parental strain (Brachmann et al, 1998).
The HTP carboxyl-tagged strains (Supplementary Table 3) were
generated by PCR as described (Rigaut et al, 1999) using
oligonucleotides listed in Supplmentary Table 2. Strains were
grown in YPD (1% yeast extract, 2% peptone, 2% dextrose) or
YPG/R (YP with 2% galactose and 2% raffinose) at 301C.

Cross-linking and analyses of cDNA (CRAC)
In vivo CRAC, western and northern blot analyses were performed
as described earlier (Granneman et al, 2009) with the following
modifications: for the Ltv1 and Tsr1 CRAC experiments TEV eluates
were incubated with lower amounts of RNase (0.1–0.5 units of
RNaceIT (Stratagene), depending on the batch used) for 5 min at
371C. For cloning the 50 Solexa and miRCat-33 linkers were used
(Integrated DNA technologies, UK) (Granneman et al, 2009).

Sequence analysis
Sanger sequencing of cDNAs was performed as described (Granne-
man et al, 2009). Sequences were analysed with Blast (http://
blast.ncbi.nlm.nih.gov). The sequences (inserts) located between
pairs of linkers were extracted and analysed for homology with
yeast RNAs. The choice of blast parameters did not qualitatively
affect the results; we typically used word size, 8; expectation value,
0.1; other parameters were set to default. We then computed, for
each position along the sequence of interest, the number of inserts
covering that position. The Blast output was used to generate
histograms shown in Figure 1 and Supplementary Figure 3. To map
the substitutions and deletions and generate sequence alignments,
fasta files containing the insert were aligned to the rDNA reference
sequence using Novoalign 2.04 (http://www.novocraft.com) as
described earlier (Granneman et al, 2009). The Novoalign output
was used to generate the multiple sequence alignments shown in
Supplementary data online. A set of Awk and Perl scripts for
automated sequence analysis in Windows, Mac or Linux environ-
ments is available on request.
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Immunoprecipitation experiments
Cells were grown in 50 ml of YPD to an OD600 of 0.5, collected and
washed with phosphate-buffered saline. Extracts were prepared in
500ml of Buffer A (50 mM Tris pH 7.5, 1.5 mM MgCl2, 150 mM NaCl,
0.1% NP-40, 5 mM b-mercaptoethanol and protease inhibitors
(Roche)) using Zirconia beads as described earlier (Granneman
et al, 2009). RNA extractions and northern blot analyses were
performed as described earlier (Tollervey, 1987) using oligonucleo-
tides listed in Supplementary Table 2. Supplementary Figure 1
shows the regions to which the oligonucleotides hybridize.

In vitro chemical modification of purified pre-40S complexes
One litre of BY4741 cells containing the pADH-HTP-Nob1 plasmid
(a generous gift from Brigitte Pertschy) was grown to an OD600 of
0.5. Extracts were prepared in 4 ml of Buffer B (50 mM Hepes–KOH
pH 7.5, 100 mM NaAc, 5 mM MgCl2, 5 mM b-mercaptoethanol,
0.1% NP-40 and protease inhibitors (Roche)). For each purification,
1 ml of extract was incubated with 50ml of IgG beads for 1 h at 41C.
IgG beads were washed three times with Buffer B and resuspended
in 50ml of Buffer B for chemical modification reactions. DMS
modification was performed in Buffer B for 10 min at 301C using
10 ml of 20% DMS (diluted into ethanol). The reaction was
quenched by addition of 40ml of mix 0.5 M b-mercaptoethanol
and 0.5 M sodium acetate pH 5.5. One-methyl-7-nitroisatoic
anhydride (1M7; Fisher Scientific) modification reactions were
performed in Buffer A at 301C for 1 min in the presence of 8 mM
1M7. CMCT modification reactions were performed in Buffer C (50
sodium borate pH 7.5, 100 KCl, 5 mM MgCl2), for 10 min at 301C
using 30ml of 80 mg/ml CMCT, freshly prepared in water. To map
the modified nucleotides, primer extension reactions were per-
formed using oligonucleotide ITS1 RT (Supplementary Table 2) as
described earlier (Granneman et al, 2009) using B100 ng of purified
RNA or 1 mg of total RNA. CDNAs were resolved on 12%/7 M urea
gels and visualized by autoradiography.

In vivo structural probing with DMS was performed essentially as
described earlier (Ares and Igel, 1990). The YAF34 strain (Gal::3HA-
nob1 ;(Fatica et al, 2003) was grown in YPG/R to logarithmic phase,
shifted to YPD and then grown for 8 h at 301C. Subsequently, 10 ml
of cells was incubated at 301C for 2 min with 200ml of 33% DMS
(diluted in ethanol). The reaction was quenched by addition of 5 ml
0.7 M b-mercaptoethanol and 5 ml water-saturated isoamyl-alcohol.

Modified nucleotides were identified by primer extension as
described above. Quantification of chemical modification reactions
was performed using the Fuji-FLA-5100 phospho-imager scanner
and the AIDA software package according to the manufacturers
procedures.

Modelling of RNA-binding sites
To visualize the RNA-binding sites in the S. cerevisiae 3D model
structure (Spahn et al, 2001) or the T. thermophilus 70S crystal
structure (Voorhees et al, 2009), we determined corresponding
regions in the T. thermophilus 16S rRNA and Haloarcula marismortui
23S rRNA. Using Pymol we then visualized the locations in the
model structures (PDBs 1s1h, 1s1i and 2wdg). We used chimaera
(http://www.cgl.ucsf.edu/chimera/) (Goddard et al, 2007) to
manually dock the 40S model structure (Spahn et al, 2001) in
cryo-EM reconstructions (emd_1211 and end_1212) according to the
chimaera documentation.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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