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A Novel Protein Phosphatase 1-Dependent
Spindle Checkpoint Silencing Mechanism

Vincent Vanoosthuyse'-* and Kevin G. Hardwick'-*
1Wellcome Trust Centre for Cell Biology, Institute of Cell
Biology, University of Edinburgh, Edinburgh EH9 3JR, UK

Summary

The spindle checkpoint is a surveillance system acting in
mitosis to delay anaphase onset until all chromosomes are
properly attached to the mitotic spindle [1, 2]. When the
checkpoint is activated, the Mad2 and Mad3 proteins directly
bind and inhibit Cdc20, which is an essential activator of an
E3 ubiquitin ligase known as the anaphase-promoting co-
mplex (APC) [3]. When the checkpoint is satisfied, Cdc20-
APC is activated and polyubiquitinates securin and cyclin,
leading to the dissolution of sister chromatid cohesion and
mitotic progression. Several protein kinases play critical
roles in spindle checkpoint signaling, but the mechanism
(or mechanisms) by which they inhibit mitotic progression
remains unclear [4]. Furthermore, it is not known whether
their activity needs to be reversed by protein phosphatases
before anaphase onset can occur. Here we employ fission
yeast to show that Aurora (Ark1) kinase activity is directly
required to maintain spindle checkpoint arrest, even in the
presence of many unattached kinetochores. Upon Ark1 inhi-
bition, checkpoint complexes are disassembled and cyclin
B is rapidly degraded. Importantly, checkpoint silencing
and cyclin B degradation require the kinetochore-localized
isoform of protein phosphatase 1 (PP1P'2). We propose
that PP1P2mediated dephosphorylation of checkpoint
components forms a novel spindle checkpoint silencing
mechanism.

Results

Aurora Kinase Activity Is Required for the Maintenance of
Spindle Checkpoint Arrest in the Absence of Microtubules
The role of Aurora kinases in checkpoint signaling remains
controversial [5, 6]. Budding yeast and mammalian studies
suggest that Aurora B is only required for checkpoint delays
where kinetochores lack tension as a result of inappropriate
attachments [7-9]. These studies argue that Aurora B has an
indirect role in the spindle checkpoint. That role is to recognize
inappropriately attached kinetochores, disrupt microtubule
binding, and thereby produce unattached kinetochores [10]
that can be recognized by the Mad/Bub proteins, leading to
Cdc20 inhibition. However, two reports have argued that
Aurora B activity is also required to respond to unattached
kinetochores in Xenopus [11] and fission yeast [12]. In addi-
tion, we have previously shown that Aurora-dependent phos-
phorylation of budding yeast Mad3p is required for the check-
point response to lack of tension at microtubule-bound
kinetochores [6]. These findings argue that Aurora kinase has
one or more direct roles to play in spindle checkpoint signaling
in addition to the production of unattached kinetochores.

*Correspondence: vvanoost@staffmail.ed.ac.uk (V.V.), kevin.hardwick@ed.
ac.uk (K.G.H.)

Fission yeast has only one Aurora kinase (Ark1), and this
kinase is known to carry out the Aurora B role of correcting
inappropriate kinetochore-microtubule attachments [13]. It
was previously argued by means of ark1 promoter shutoff
and conditional survivin alleles that Aurora function is required
to respond to unattached kinetochores [12]. Because these
experiments took several hours to inactivate Ark1 kinase, we
wanted to confirm the result. A conditional, ATP analog-sensi-
tive allele of Aurora kinase (ark1-as3) was recently described in
fission yeast [13]. With this strain, we can activate the spindle
checkpoint and then inhibit Aurora kinase activity simply by
adding the ATP analog (1INMPP1) to cells. Microtubule depoly-
merization via the cold-sensitive tubulin mutant nda3-KM311
[14] results in a robust, spindle-checkpoint-dependent mitotic
arrest, because all kinetochores are unattached [15, 16]. nda3-
arrested cells accumulate high levels of cyclin B (Cdc13) on
spindle pole bodies (SPBs) (see Figure 1). To directly test
whether Aurora kinase activity is required to maintain spindle
checkpoint arrest in fission yeast, we made movies of arrested
nda3ark1-as3 cells, added 1NMPP1, and followed cyclin B
levels by microscopy. The SPB-enriched nuclear Cdc13-GFP
signal decreased within 15 min of Aurora inhibition (Figure 1A),
and many cells decondensed their chromosomes and sep-
tated (Figure 1B). We quantitated the fraction of arrested and
escaped cells (Figure 1C) in a 60 min time course, during which
cells were maintained at 18°C with no microtubules and unat-
tached kinetochores (Figure 1D). In fission yeast, Mad2p and
Mad3p bind to the anaphase-promoting complex (APC) upon
checkpoint arrest [17], and the escape from mitotic arrest
upon Ark1 inhibition correlated well with the loss of Mad3p-
and Mad2p-APC binding (Figures 1E and 1F). Note that in
this assay, the nda3 cells were maintained at 18°C throughout,
spindles did not form, and all kinetochores remained unat-
tached (Figure 1D). Thus, we directly assayed the ability of
cells to degrade cyclin B after Ark1 inhibition independently
of its role in kinetochore-microtubule attachment and error
correction processes. A similar result was obtained when an
experiment was performed at 32°C in the presence of the
microtubule-depolymerizing drug carbendazim, ruling out
the possibility that cyclin B degradation upon Ark1 inhibition
is a side effect of growing cells at 18°C (see Figure S1 available
online). We conclude that Ark1 activity is required to maintain
spindle checkpoint arrest, even in the presence of many unat-
tached kinetochores.

PP1 Phosphatase Is Necessary for Checkpoint Silencing
Although checkpoint activation is well characterized, far less is
understood about how the spindle checkpoint is silenced
when all sister chromatids are attached to spindle microtu-
bules in an appropriate fashion. Checkpoint silencing is an
important final step prior to anaphase onset and needs to be
both efficient and well coordinated to ensure a synchronous
anaphase. Two major silencing mechanisms have been
proposed: (1) dynein- and microtubule-dependent “stripping”
of Mad2 from kinetochores [18], and (2) disruption of Mad2-
Cdc20 complexes by either p31°°™¢* [19, 20] or Cdc20 ubiqui-
tylation [21].
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Figure 1. Ark1 Activity Is Required to Maintain the Mitotic Checkpoint Complex/Anaphase-Promoting Complex and Cell-Cycle Arrest

(A) In the presence of the ATP analog TNMPP1, Ark1 is the only kinase directly inhibited in ark7-as3 cells [13]. The spindle checkpoint was activated via the
cold-sensitive tubulin mutant nda3-KM311. After 6 hr at the restrictive temperature, 80%-90% of cells were arrested with high levels of cyclin B on spindle
pole bodies (SPBs), and all kinetochores were unattached. At this point, DMSO (control) or INMPP1 was added to the culture to inhibit Ark1, and the levels of
cyclin B were monitored by live-cell imaging. In the presence of 1INMPP1, cyclin B levels dropped rapidly, demonstrating that Ark1 activity is required to
maintain spindle checkpoint arrest in response to unattached kinetochores. The time after DMSO or 1NMPP1 addition is indicated in minutes.

(B) Cells were fixed 40 min after addition of INMPP1. Most cells escaped arrest and underwent cytokinesis (arrows).

(C) Top: after addition of INMPP1, a few cells remain arrested with high levels of cyclin B on SPBs (cell 1), whereas most escaped the arrest and precociously
degraded cyclin B (cell 2). Bottom: the number of “escaped” cells was quantified in a 60 min time course. Data are derived from four independent exper-
iments; error bars represent standard deviation.

(D) TINMPP1 addition and Ark1 inhibition have no effect on microtubule depolymerization in the nda3KM311 mutant. Anti-tubulin immunofluorescence
confirms that at 18°C, all microtubules are depolymerized, whereas spindles are formed 15 min after release at 32°C.

(E) Mitotic checkpoint complex/anaphase-promoting complex (MCC-APC) complexes are disassembled following Aurora inhibition with INMPP1. Lid7-
TAP ark1-as3 Mad2-GFP Mad3-GFP nda3KM311 cells were arrested in mitosis (6 hr at 18°C), and the culture was divided before DMSO or 5 \M
1NMPP1 addition. Lid1p was immunoprecipitated from samples collected every 10 min and immunoblotted for associated Mad2-GFP and Mad3-GFP.

(F) Model of MCC-APC binding.
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It has proven difficult to isolate mutants and devise assays
that specifically address the mechanism (or mechanisms) of
checkpoint silencing. This is due to the intimate link between
biorientation and checkpoint signaling: an apparent failure to
silence the checkpoint could be caused by prolonged check-
point activation if defective kinetochore-microtubule interac-
tions persist. The nda3ark1-as3 “silencing” assay described
above (Figure 1) is independent of chromosome attachment
and biorientation and is thus specific for checkpoint silencing
and APC activation. We used this assay to screen fission yeast
mutants and thereby identify factors that act downstream of
Ark1 during checkpoint silencing. Silencing mutants should
fail to degrade cyclin B upon ark1-as3 inhibition. In particular,
we tested whether protein phosphatase activity was neces-
sary to silence the checkpoint. PP1 phosphatase has been
argued to oppose Aurora kinase in a number of systems
[22-24]. Fission yeast expresses two PP1 phosphatases,
PP1%2 and PP15952! [25], and PP1°"2 has been localized to
kinetochores ([26] and data not shown). To analyze the role
of PP1, we constructed dis2Anda3 and sds271Anda3 strains.
These phosphatase mutants undergo spindle checkpoint
arrest efficiently (Figure 2A). Strikingly, addition of the Ark1
inhibitor INMPP1 to dis2Anda3ark1-as3-arrested cells failed
to result in cyclin B degradation, even after 2 hr (Figure 2B).
This silencing defect was highly specific: lack of the other PP1
phosphatase (PP15952") or of two other centromeric phospha-
tases (PP2AP%" and the Cdc14 homolog Flp1p/Clp1p) did not
delay cyclin B degradation upon Aurora inhibition (Figure 2B
and data not shown). This assay provides direct evidence for
a role for PP1P*2 jn spindle checkpoint silencing.

kinetics of anaphase onset.

time after nda3 release (min)

To look for a silencing defect under more physiological
conditions, we analyzed the recovery of dis2A cells from an
nda3 block, where checkpoint silencing takes place after
spindle reassembly and chromosome attachment. When nda3
cells were shifted back to their permissive temperature (32°C),
they efficiently assembled a spindle and typically entered
anaphase within 10-20 min (Figure 1D). We compared nda3
and dis2Anda3 cell populations and observed a clear delay
in anaphase onset following spindle reassembly in dis2Anda3
(Figures 2C and 2D). Again, this phenotype was specific to the
loss of PP1P's2 pecause sds27Anda3 mutants released with
wild-type kinetics (Figures 2C and 2D). This demonstrates
that, in addition to inhibition of Ark1 kinase activity, the action
of kinetochore-localized PP1°52 is needed for efficient spindle
checkpoint silencing.

Discussion

This study has two important findings highlighting the critical
balance between Aurora kinase and PP1 activities in the regu-
lation of anaphase onset:

(1) Ark1 activity is required to maintain a spindle check-
point arrest, even in the presence of many unattached
kinetochores (see Supplemental Discussion on Aurora
kinases and checkpoint signaling). This suggests that
Ark1 has important Mad/Bub checkpoint substrates,
which is consistent with our previously published
budding yeast work [6].

(2) We describe a novel role for kinetochore-localized
protein phosphatase 1, PP1°*2, in spindle checkpoint
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At unattached kinetochores: phosphorylation >

inner KT outer KT

centromeric

At bioriented (stretched) kinetochores: phosphorylation <

silencing. We propose that PP1°*2 has one or more
Mad/Bub protein substrates and do not rule out
Cdc20-APC as another important target that needs to
be dephosphorylated before the checkpoint is silenced
and the APC activated. In a separate study, we have
shown that APC activation upon Ark1 inhibition requires
the Bub3 checkpoint component (unpublished data).
Mad3/BubR1, Bub3, and Bub1 are all found at kineto-
chores later in mitosis than Mad1 and Mad2, which are
no longer recruited to attached kinetochores. There-
fore, we believe that the Bub3p binding partners
(Bub1p and Mad3p) are both strong candidates for
important Aurora and PP1°'s2 substrates. To date, we
have mapped >70 phosphorylation sites on these two
proteins, and their functional dissection is a major
goal of ongoing studies.

We propose the following simple model to explain how PP1
activity toward the kinetochore is regulated by kinetochore
attachment to microtubules (Figure 3). Upon chromosome
biorientation, inter- and intrakinetochore stretching spatially
separates Aurora B kinase from outer kinetochore substrates,
such as Ndc80 and MCAK, and thereby stabilizes kinetochore-
microtubule attachments [27-30]. In the same way, this
stretching could separate Aurora B from relevant checkpoint
targets, such as BubR1/Mad3 [6], whose modification isimpor-
tant for spindle checkpoint arrest (Figure 3). Physical separa-
tion of Aurora B from kinetochore substrates contributes to
the stabilization of kinetochore-microtubule attachments. In
turn, this stimulates the dynein- and microtubule-dependent
kinetochore stripping of spindle checkpoint components,
whereby Mad2 is transported from kinetochores to spindle
poles and then released [18, 31, 32]. This pathway has been
proposed to contribute to spindle checkpoint silencing, and it
is regulated by the kinetochore-localized PP1y isoform in
mammalian cells [33]. However, it is unclear whether stripping
of Mad2 has a direct consequence on APC activation, and
anaphase onset can occur without kinetochore stripping of
Mad2 and BubR1 [34]. Note that the silencing in our
nda3ark1-as3 assay occurs in a microtubule-independent

Figure 3. Silencing Model

Top: at unattached kinetochores, centromeric
chromatin is not under tension, and centro-
mere-localized Ark1 kinase (the green cloud of
activity) is in close proximity to kinetochore-
localized checkpoint components and can phos-
phorylate them efficiently, leading to effective
APC inhibition.

Bottom: stable attachments are formed after bio-
rientation and lead to inter- and intrakinetochore
stretching. This displaces Ark1 from kinetochore
substrates and reduces its ability to phosphory-
late checkpoint components, which can in turn
be dephosphorylated by PP1°2 (orange clouds
of activity), leading to checkpoint silencing.

manner (Figure 1) and can therefore be
independent of kinetochore-stripping of
checkpoint components.

Several other silencing mechanisms
have been proposed. p31°°™! can
disrupt Mad2-Cdc20 complexes and
thereby induce anaphase onset [19, 20,
35]. However there are no known yeast homologs of p31°°™",
and it is not yet clear how p31°°™® function is regulated by
kinetochore attachment. Cdc20 ubiquitylation might lead to
disruption of Mad2/BubR1 binding and thereby relieve check-
point inhibition [21]. However, a nonubiquitylatable Cdc20
mutant where all lysine residues had been replaced with argi-
nine was recently shown to have little difficulty in exiting
spindle checkpoint arrests [36]. In vertebrates, CENP-E-
BubR1 interactions have been proposed to silence the check-
point upon chromosome attachment [37], but yeast and C. ele-
gans lack a CENP-E homolog, and their Mad3 lacks a C-
terminal kinase domain. Finally, in budding yeast it has been
argued that Mps1 kinase is degraded to prevent checkpoint
signaling in anaphase [38], but this has yet to be confirmed in
other systems. Although there could be several ways to turn
off the spindle checkpoint, we propose that PP1 plays an
important role in several of these silencing mechanisms. Our
findings on the role of PP1 in spindle checkpoint silencing are
strongly supported by a study of the budding yeast PP1
homolog Glc7 appearing in this issue of Current Biology [39].

Conclusions

We have developed a novel assay completely independent of
kinetochore-microtubule attachment to dissect spindle check-
point silencing mechanisms acting downstream of Aurora
kinase inhibition. This has enabled us to identify PP1°'2 as
a key silencing component. A more in-depth analysis of the
silencing mechanism (or mechanisms) and how it is coordi-
nated with biorientation will be important for a full under-
standing of mitotic regulation and may also be relevant to
human disease. Indeed, the mitotic exit mechanisms utilized
by cells, particularly during clinical treatment of cancers with
antimicrotubule drugs such as taxanes, may in part determine
their fate and thereby the effectiveness of therapies [40, 41].

Experimental Procedures

Yeast Strains
A complete list of all of the strains used in this study is given in Table S1.
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Microscopy

Microscopy was performed as described previously [16] with an Intelligent
Imaging Innovations (3i) Marianas microscope, CoolSnap CCD, and Slide-
Book software (3i). For live-cell imaging in Figure 1A, mid-log ark1-as3
cdc13-GFP nda3-KM311 cells were first arrested in early mitosis in liquid
cultures by shifting the temperature to 18°C for 6 hr. Precooled dimethyl
sulfoxide (DMSO) or 5 uM 1INMPP1 was added to the culture, and cells
were immediately mounted on precooled (18°C) slides and coverslips and
imaged on a precooled (18°C) microscope stage. Images were acquired
every minute. At least ten movies were acquired for each condition.

Checkpoint Silencing Assay

Mid-log ark1-as3 cdc13-GFP nda3-KM311 cells were arrested in early
mitosis in liquid cultures by shifting to 18°C for 6 hr. The culture was divided
in two, and DMSO or 5 uM 1NMPP1 was added. Cells (300 pl) were fixed
every 10 min by mixing with 1 ml 100% methanol and mounted immediately
in medium containing DAPI (to label DNA) and calcofluor (to label cell walls
and septa). One hundred cells for each treatment condition (DMSO or
1NMPP1) were counted immediately under the microscope before the
next time point.

Mitotic Checkpoint Complex/Anaphase-Promoting Complex Interaction
Cells expressing TAP-tagged Lid1 (Apc4) and Mad2p and Mad3p tagged
with GFP from their endogenous loci were presynchronized either in G2
via the cdc25-22 mutation (Figure 3) or in early mitosis via the nda3-
KM311 mutation (Figure 1). Proteins were extracted in lysis buffer (50 mM
HEPES [pH 7.6], 75 mM KCI, 1 mM MgCl,, 1 mM EGTA, 0.1% Triton, 1 mM
sodium vanadate, microcystin, leupeptin, pepstatin, chymostatin, and Pefa-
bloc) from ~2 x 108 cells as described previously [42]. Extracts were incu-
bated for 30 min with IgG-coupled Dynabeads, which bind to Lid1-TAP. The
immunoprecipitated complexes were washed three times with lysis buffer
and once with phosphate-buffered saline containing 0.02% Tween 20.
Immunoprecipitated complexes were analyzed by immunoblot with a sheep
anti-GFP antibody.

nda3-KM311 Release Assay

Mid-log nda3-KM311 cells were arrested in early mitosis in liquid cultures by
shifting the temperature to 18°C for 6 hr. Cells were then filtered on a Dura-
pore 0.45 um HV filter (Millipore) and released from the filter into prewarmed
medium (32°C) by shaking. At each time point following release at 32°C,
cells (2 ml) were fixed by mixing with 20 ml 100% methanol precooled to
—80°C. Cells were then processed for immunofluorescence with an anti-
tubulin antibody (TAT1, a kind gift of K. Gull, University of Oxford).

Supplemental Data

Supplemental Data include Supplemental Discussion, one table, and one
figure and can be found with this article online at http://www.cell.com/
current-biology/supplemental/S0960-9822(09)01196-8.
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