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Introduction

An adverse prenatal environment, as marked by low birth weight, 
permanently alters offspring structure and function and increases 
the risk of cardiovascular, metabolic and neuropsychiatric disor-
ders in adulthood,1 a phenomenon called fetal “programming”. 
Epidemiological studies in different populations suggest that the 
effects of early life exposure to environmental influences, includ-
ing nutritional and psychosocial stressors, may not be limited to 
the directly exposed first (F1) generation but may be transmissi-
ble to subsequent generations.2-5 Such effects have been proposed 
as an explanation for the persistence of secular trends in health, 
including cardiovascular disease and its risk factors, in humans.6 
The mechanisms underlying the non-genetic transmission of 
disease risk across generations remain incompletely understood. 
While exposure to persisting adverse environmental conditions 
or fetal exposure to programmed maternal physiology and struc-
ture (the “uterine effect”) 7,8 may play a role, these factors do 
not adequately explain the transmission of programmed effects 

Exposure to an adverse early life environment is associated with increased cardio-metabolic disease risk, a phenomenon 
termed “programming.” The effects of this are not limited to the exposed first (F1) generation but can be transmissible 
to a second generation (F2) through male and female lines. Using a three generation animal model of programming 
by initial prenatal glucocorticoid overexposure we have identified effects on fetal and placental weight in both the F1 
and F2 offspring. However, the expression of candidate imprinted genes in the fetus and placenta differed between 
the F1 and F2, with marked parent-of-origin effects in F2. Since DNA methylation at imprinted genes is maintained at 
fertilization, they are potential templates for the transmission of programming effects across generations. Although we 
detected alterations in DNA methylation at differentially methylated regions (DMRs) of the key prenatal growth factor 
Igf2 in F1 and F2 fetal liver, the changes in DNA methylation at these DMRs do not appear to underlie the transmission 
of effects on Igf2 expression through sperm. Thus, multigenerational programming effects on birth weight and disease 
risk is associated with different processes in F1 and F2. These findings have implications for the pathogenesis and future 
attempts to stratify therapies for the “developmental component” of cardiometabolic disease.
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through the male line in both human studies4 and in animal 
experiments in which environmental conditions can be closely 
controlled.9-12 There is increasing evidence for a role for epigen-
etic mechanisms including DNA methylation, histone modifica-
tions and small non-coding RNAs as mediators of programming 
effects13 and growing interest in the potential for the inheritance 
of epigenetic marks through the germline as a mechanism for the 
transmission of disease risk across generations.

Epigenetic modifications are established during early develop-
ment and maintained throughout life (i.e., are mitotically sta-
ble).14 During fetal development, the germ cells that will give rise 
to the F2 generation are present from early gestation and undergo 
extensive epigenetic reprogramming prenatally.15,16 Disruption 
of germ cell reprogramming by the same environmental insult 
causing the phenotype in the F1 offspring could therefore result 
in effects in the F2, if changes were preserved during the period 
of epigenetic reprogramming that occurs following fertilization. 
Genomic imprinting refers to the phenomenon by which a sub-
set of genes is monoallelically expressed according to the parent 
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demethylation can mediate hormone-induced alterations in gene 
transcription30 and glucocorticoid-induced DNA demethylation 
may provide memory of a regulatory event during development.31 
Thus, alterations in DNA methylation may be one mechanism 
underpinning glucocorticoid-induced programming effects and 
the transmission of these effects to a second generation.

We have explored the effects of prenatal Dex exposure on the 
expression of candidate imprinted genes in F1 and F2 offspring in 
both embryonic and extra-embryonic tissues in late gestation and 
determined whether any alterations in gene expression associated 
with changes in DNA methylation. We hypothesized that given 
the similar programmed phenotypes observed in this model, the 
effects on growth and imprinted gene expression would be simi-
lar in both generations and that these effects may be mediated by 
alterations in DNA methylation.

Results

The experimental design and major findings are summarized in 
Figure 1 and Table 1.

Placental and fetal growth. Birth weight was reduced in the 
F1 offspring of Dex-treated pregnancies (Fig. 2A) and at E20 
both placental and fetal weights were reduced in F1 Dex preg-
nancies (Fig. 2B and C). In the F2 generation birth weight was 
reduced in Dex/Dex, Dex/Veh and Veh/Dex offspring compared 
to Veh/Veh controls (Fig. 2D), replicating our previous study in 
reference 11. Intriguingly, there was a paternal effect to reduce 
birth weight [F(1, 408) = 23.2, p < 0.001] and, additionally, 
an interaction between parental exposure (F(1, 408) = 14.93,  
p < 0.001) so that F2 Veh/Dex (paternally exposed) offspring 
were significantly smaller than all other groups.

At E20, fetal weight was significantly reduced only in F2 Veh/
Dex offspring (Fig. 2E), suggesting that the reduction in fetal 
weight in the F2 generation occurs late in gestation, but further 
emphasizing the paternal Dex effect on fetal growth. There was, 
again, an effect of paternal Dex exposure at this time point to 
decrease both fetal and placental weight (Fig. 2E and placenta 
F(1, 397) = 12.25, p < 0.001; Fig. 2F, fetus F(1, 397) = 4.78,  
p = 0.029) and an interaction between parental exposures to 
reduce fetal weight (F(1, 397) = 6.57, p = 0.011). Unexpectedly, 
there was also an effect of maternal Dex exposure to increase F2 
placental [F(1, 397) = 10.15, p < 0.01] and fetal (F(1, 397) = 
17.69, p < 0.001) weights at E20.

Gene expression in fetal liver and placental labyrinth. 
Fetal liver. There were changes in the expression of a number of 
imprinted genes in fetal liver in the F1 offspring (Fig. 3A). The 
level of mRNA encoding the paternally expressed gene Igf2 was 
increased in liver of F1 Dex fetuses. Although increased expres-
sion of Igf2 would predict increased fetal growth, Dex exposure 
was also associated with increased expression of the maternally 
expressed genes Cdkn1c and Grb10, which act to reduce fetal 
growth, and with increased expression of H19. These Dex-
induced changes in maternally expressed imprinted genes were 
specific, since there were no changes in Phlda2 or Igf2r.

In F2 fetal liver all mRNAs that showed altered expression 
were discordant with changes seen in the F1 liver. Thus, 2-way 

of origin. Imprinted genes play a key role in fetal and placen-
tal growth and in modulating placental nutrient supply17,18 and, 
in humans, abnormalities of imprinting have major effects on 
fetal and placental growth.19 The allele-specific epigenetic marks 
maintaining the expression of imprinted genes, which include 
DNA methylation, undergo epigenetic reprogramming in the 
germline but are preserved in the zygote following fertilization, 
making imprinted genes in the fetus and placenta plausible can-
didate targets for the transmission of programming effects to a 
second generation.

One of the major hypotheses to explain the relationship between 
exposure to an adverse early life environment and later disease 
risk is fetal overexposure to glucocorticoids.20 Glucocorticoids 
are essential for fetal maturation in late gestation, but excessive 
exposure reduces fetal growth in animal models and humans.21,22 
Although glucocorticoids are highly lipophilic molecules, and 
should readily cross the placenta, fetal glucocorticoid levels are 
normally much lower than the levels in the maternal circulation.23 
This is thought to be mediated by placental 11β-hydroxysteroid 
dehydrogenase type 2 (11β-HSD2), which catalyzes the conver-
sion of active glucocorticoids to their inactive 11-keto metabo-
lites;24 however, this barrier is not complete so that 10–20% of 
maternal cortisol can cross the placenta.25 We and others have 
modeled programming by prenatal overexposure to glucocorti-
coids in rodents and non-human primates, using a number of 
methods including maternal treatment with dexamethasone 
(Dex; a poor substrate for 11β-HSD2 that readily crosses the 
placenta), inhibition/knockout of 11β-HSD2 or maternal physi-
ological stress, which increases the levels of maternal glucocorti-
coids to levels that may overcome the placental 11β-HSD2 barrier 
and additionally reduce placental 11β-HSD2.21,26-28 Such manip-
ulations reduce birth weight and produce hypertension, insulin 
resistance/hyperglycemia and anxiety-related behaviors in the 
offspring.21,29 Prenatal glucocorticoid overexposure is associated 
with the transmission of programming effects across generations; 
birth weight is also reduced in the second (F2) generation follow-
ing either maternal or paternal prenatal Dex exposure.11 DNA 

Figure 1. Summary of experimental design and time points of tissue 
collection.
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including the intragenic DMR2 and the H19 ICR situated 5' 
of the H19 gene.32,33 Methylation at DMR2 (including within 
the “core DMR2,” where DNA methylation is required for 
high level gene transcription) 33,34 was decreased in F1 Dex fetal 
liver (Fig. 6A). There were no differences in methylation across 
four CTCF binding sites within the ICR, the dominant tran-
scriptional control region (Fig. 6B). In the F2 generation, liver 
DNA showed no changes in methylation at the Igf2 DMR2 
(Fig. 6C), but there was an interaction between maternal and 
paternal prenatal Dex exposure to reduce DNA methylation at 
the fourth CTCF binding site within the ICR in F2 fetal liver 
when either parent was exposed to Dex in utero [F(1, 25) = 
4.425, p = 0.046] (Fig. 6D). There were no differences in DNA 
methylation at Igf2 DMR2 or the ICR in F1 or F2 placenta 
(data not shown).

DNA methylation in F1 sperm. Since Igf2 is a paternally 
methylated gene, we studied DNA methylation at Igf2 DMR2 
and the H19 ICR in sperm from F1 males to determine whether 
the effects on Igf2 DNA methylation following Dex exposure 
were associated with altered DNA methylation in sperm. Analysis 
of sperm DNA revealed no difference in DNA methylation at the 
Igf2 DMRs using pyrosequencing at the Igf2 DMR2 (Fig. 6E) 
and Sequenom MassArray at the ICR (Fig. 6F).

Discussion

Prenatal Dex reduced F1 fetal weight at E20 and altered liver 
mRNA levels of imprinted genes. The induction of hepatic 

ANOVA revealed an interaction between parental prenatal treat-
ment to reduce Igf2 [F(1, 27) = 5.66, p = 0.025] and Phlda2 (F(1, 
27) = 6.62, p = 0.016) (Fig. 3B) and a maternal effect to increase 
the expression of H19 [F(1, 27) = 4.93, p = 0.035]. No effects of 
Dex were found on Cdkn1c expression in F2 liver though this was 
strikingly increased in F1 liver.

Placental labyrinth. In F1 placenta, Dex exposure increased 
expression of the imprinted, paternally expressed system A amino 
acid transporter slc38a4 (Fig. 4A); however, contrary to the find-
ings in the liver, placental expression of Igf2 was reduced by Dex 
exposure. Also, in contrast to the findings in fetal liver, there 
were no changes in the expression of a number of other imprinted 
genes in placenta (Fig. 4A).

In F2 placenta, the expression of a number of imprinted genes 
was altered, with parent of origin specific effects. Paternal prena-
tal Dex exposure increased expression of the maternally expressed 
genes Cdkn1c [F(1, 28) = 6.41, p = 0.017], Phlda2 [F(1, 28) = 
6.078, p = 0.02] and H19 [F(1, 28) = 7.03, p = 0.013], whereas 
maternal prenatal Dex exposure increased the expression of 
slc22a3 [F(1, 28) = 7.78, p = 0.009] and the paternally expressed 
genes slc38a4 [F(1, 28) = 5.34, p = 0.028] and Mest [F(1, 28) = 
6.33, p = 0.018] (Fig. 4B).

DNA methylation at Igf2 in F1 and F2 generations. In 
order to explore the mechanisms underpinning altered gene 
expression we examined DNA methylation at Igf2 DMRs in 
fetal liver and placenta (Fig. 5). Igf2 is expressed exclusively 
from the paternal allele during prenatal development32 and 
is methylated on the paternal allele at a number of DMRs 

Table 1. Summary of main findings

Generation F1 F2

E20 fetal weight ↓ in F1 dex Effect of paternal dex to ↓ and effect of maternal dex to ↑ fetal weight at E20

E20 placental weight ↓ in F1 dex Effect of paternal dex to ↓ and effect of maternal dex to↑ placenta weight at E20

Birth weight ↓ in F1 dex Birth weight ↓ in all groups compared to control
 

Gene expression

     

Fetal liver

Placenta

 

Effects of prenatal dex to increase 
expression of both maternally and 

paternally expressed imprinted 
genes: Igf2, cdkn1c, grb10, H19

 
↓ expression Igf2 and ↑ expression 

slc38a4 in F1dex

 

↓ expression Igf2 and Phlda2 in F2 dex/dex

Parent of origin effects on multiple imprinted genes:

•	 Effect of maternal dex to ↑ expression of paternally expressed genes 
slc38a4, MEST

•	 Effect of paternal dex to ↑ expression maternally expressed genes cdkn1c, 
Phlda2, H19

 
DNA methylation

Igf2 DMR2

H19 ICR

 

↓ in F1dex

↔ in F1 sperm

↔ in F1 dex

↔ in F1 sperm

 

↔ in all groups

Interaction between parental exposures to ↓ methylation
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The effects on feto-placental growth and gene expression in 
F2 differed from F1 and were dependent on the transmitting 
parent. There was a predominant paternal effect to reduce F2 
placental and fetal weights as well as subsequent birth weight, as 
previously reported in this model;11 an effect also reported in a 
mouse model of undernutrition.10 Unexpectedly, there appeared 
to be maternal “compensation” with Dex via the maternal line 
increasing both placental and fetal weight at E20. Unlike our 
findings in the F1 offspring, in F2 fetal liver the expression of 
both Igf2 and Phlda2 mRNA was lowest in the smallest off-
spring, those of Dex-exposed fathers and control mothers. This 
reduction in hepatic Igf2 expression may be of major importance 
in the observed growth restriction in F2 offspring, since Phlda2 
is thought to act primarily in the placenta.41 In F2 placenta, gene 
expression patterns differed from those in liver and there were 
both paternal and maternal effects on growth and gene expres-
sion. The paternal effect to reduce placental growth was congru-
ent with the paternal effect to increase the expression of genes 
associated with growth restriction including Cdkn1c, Phlda2 
and H19. Placentas resulting from matings between Dex females 
and control males (Dex/Veh) were large and had the highest 
expression of the “growth promoting” genes slc38a4, Mest and 

Igf2 expression in F1 Dex fetuses was surprising since Igf2 is a 
paternally-expressed gene encoding the major prenatal growth 
factor.35 This may reflect a direct effect of glucocorticoids, and/
or an attempt to overcome growth retardation mediated via 
other pathways such as the maternally expressed Cdkn1c and 
Grb10.36-39 Intriguingly, Grb10 has been identified as a candidate 
mediator of early life programming effects because of its dual 
role in fetal growth and the regulation of body composition and 
later glucose-insulin homeostasis.39,40 While Dex exposure also 
reduced F1 placental size, the effects on gene expression were 
discordant with fetal liver. Recent evidence suggests that fetal 
Igf2 may link placental nutrient transport and fetal demand18 so 
that the increased expression of the nutrient transporter slc38a4 
in Dex-exposed F1 placentas may reflect increased fetal demand 
mediated through increased fetal Igf2 production. Although it is 
unclear whether the primary effects of Dex exposure act through 
the maternal epigenome, with subsequent “compensation” by the 
paternal epigenome, or vice versa (or both), the ultimate effects 
of direct Dex exposure on fetal growth plausibly depend on the 
balance of growth factor expression and the interaction between 
maternal and paternal effects in both the placenta and fetus in 
late gestation.

Figure 2. Placental and fetal growth in F1 and F2 generations. (A) Birth weight of F1 offspring (n = 145 Veh and 103 Dex). (B) F1 fetal weight (n = 58 
Veh and 68 Dex) and (C) F1 placental weight at E20 (n = 48 Veh and 57 Dex). (D) Birth weight of F2 offspring (n = 108 Veh/Veh, 84 Dex/Dex, 110 Dex/
Veh and 109 Veh/Dex). (E) F2 fetal weight and (F) F2 placental weight at E20 (n = 126 Veh/Veh; 91 Dex/Dex; 78 Dex/Veh and 106 Veh/Dex). For F2 
generation Veh/Veh: F1 Veh females with F1 Veh males; Dex/Dex: F1 Dex females with F1 Dex males; Dex/Veh: F1 Dex females with F1 Veh males; Veh/
Dex: F1 Veh females with F1 Dex males. *a: paternal effect to reduce birth weight, fetal weight and placental weight, *b: interaction between parental 
exposures to reduce weight at birth and E20 and *c: maternal effect to increase fetal and placental weight at E20. Values are mean ± SEM *p < 0.05, 
***p < 0.001.
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glucocorticoid exposure, are presumably acting to drive this 
increase in expression rather than altered methylation. In con-
trast, in F2 fetal liver, DMR2 methylation was unchanged but 
there was an interaction between maternal and paternal prena-
tal Dex exposure to decrease methylation in the H19 ICR, the 
dominant epigenetic regulator of Igf2 expression and consistent 
with both the reduction in Igf2 gene expression and the reduc-
tion in fetal size in Veh/Dex offspring. Although the significance 
of relatively small changes in DNA methylation (~5–6%) are 
unclear, such modest differences in methylation have been docu-
mented in human studies in IUGR neonates,45 and differences 
in DNA methylation of around 20% at the Igf2 DMRs cause 
the marked abnormalities in prenatal growth seen in Beckwith-
Wiedemann and Silver-Russell syndromes;46 consequently, small 
changes in these regions may have consequences for fetal growth. 
In placenta, despite the marked alterations in Igf2 expression in 
the F1 generation, there were no alterations in Igf2 DMR2 or 
ICR methylation, a finding consistent with a study in mice.47 
Thus, the effects of prenatal Dex exposure on the expression 
of imprinted genes in the placenta may be mediated by other 
epigenetic mechanisms, including histone modifications, altered 
transcription factor binding or post-transcriptional modifica-
tion,19,48 or by the recently described epigenetic modification 
5-hydroxymethylcytosine.49

slc22a3 and the lowest expression of the “growth repressing” 
genes Phlda2 and Cdkn1c. In contrast, placentas from matings 
of Dex females with Dex males (Dex/Dex) were not increased in 
size, perhaps as a consequence of the high levels of expression of 
Phlda2 and Cdkn1c. The kinship theory of genomic imprinting 
proposes that paternally expressed genes promote increased fetal 
growth by placing increased demands on mothers during preg-
nancy whereas maternally expressed genes act to constrain fetal 
growth in order to conserve maternal resources.42 The maternal 
effect to increase and the paternal effect to reduce fetal and pla-
cental growth in combination with maternal and paternal effects 
on placental gene expression appear in opposition to this hypoth-
esis, and suggest more nuanced, gene-specific effects, rather than 
generalized parent of origin impacts.

DNA methylation at Igf2 was altered in F1 and F2 genera-
tions, but at different DMRs. Although methylation at the ICR 
is established in the male germline and maintained following fer-
tilization, methylation at the intragenic DMR2 is erased at fer-
tilization and re-established in the post-implantation embryo.43 
While hypomethylation at DMR2 in F1 fetal liver suggests pre-
natal Dex may affect this process, decreased methylation is not 
consistent with the observed increase in gene expression in F1 
offspring. Recent data suggest DMR2 may not be the dominant 
controller of Igf2 expression44 so other factors, such as direct 

Figure 3. Gene expression in fetal liver. (A) Prenatal Dex exposure is associated with altered gene expression in F1 fetal liver at E20 (n = 13 Veh and 13 
Dex). (B) Gene expression in F2 fetal liver showing an interaction between parental prenatal Dex exposure to reduce the expression of Igf2 and Phlda2 
(*a: 2-way ANOVA, p < 0.05) and a maternal effect to increase the expression of H19 (*b: 2-way ANOVA, p < 0.05). n = 8 Veh/Veh, 7 Dex/Dex, 8 Dex/Veh 
and 8 Veh/Dex. Values are mean ± SEM. *p < 0.05 **p < 0.01.
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Figure 4. Gene expression in placental labyrinth. (A) Prenatal Dex exposure is associated with altered gene expression in F1 placental labyrinth at E20 
(n = 12 Veh and 12 Dex). (B) Gene expression in F2 placental labyrinth. Maternal prenatal Dex exposure increased the expression of slc38a4, Mest and 
Glut 1 (*a: 2-way ANOVA, p < 0.05) while paternal Dex increased the expression of Cdkn1c, Phlda2 and H19 (*b: 2-way ANOVA, p<0.05). n=9 Veh/Veh,  
7 Dex/Dex, 8 Dex/Veh and 8 Veh/Dex. Values are mean +/- SEM. *p<0.05 **p<0.01.

Figure 5. Schematic diagram of the Igf2 and H19 genes showing location of DMRs including DMR2 and the imprinting control region ICR upstream 
of H19. DNA methylation was analyzed at DMR2 including at four CpGs within the “core DMR” region by pyrosequencing and across four CTCF sites 
within the H19 ICR by Sequenom MassArray. The sites of promoters P0, P1, P2 and P3 are also shown. Exons are marked by shaded boxes.
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In conclusion, late gestation Dex exposure exerts tissue-
specific effects on the expression of imprinted genes in fetal 
liver and placenta in the F1 generation. In the F2 generation, 
although birth weight is also reduced, effects on feto-placental 
growth and gene expression differed from those in the F1, with 
marked parent of origin effects, suggesting that the mechanisms 
underlying glucocorticoid programmed effects in F1 and F2 gen-
erations differ. Early life programming effects may represent an 
adaptive response made by an organism in order to prepare it 
for an expected future environment,57 and the transmission of 
such effects to subsequent generations might be an attempt to 
maintain a “predictive shadow” of the programmed phenotype 
in a second generation to promote survival in the event that these 
environmental changes persist. Our observations of parent of 
origin effects on feto-placental growth and gene expression have 
implications for pathogenesis and future attempts to stratify 
therapies for the “developmental component” of cardiometabolic 
disease.

The mechanisms by which the effects of prenatal Dex 
exposure are transmitted to the second generation in this 
model remain unclear. Reports of transgenerational epigen-
etic inheritance at murine epialleles50,51 and the transmission 
of environmentally-induced epigenetic modifications to a third 
unexposed generation and beyond9,12,52 suggest that some epi-
genetic marks may resist reprogramming in germ cells and the 
zygote, although the mechanisms by which this occurs remain 
poorly understood.53 Although we found alterations in DNA 
methylation at Igf2 DMRs in fetal liver in both generations, the 
affected DMRs differed between the generations and perhaps, 
not surprisingly, altered DNA methylation at these DMRs is not 
responsible for the transmission of effects on Igf2 expression 
through sperm. Alternative explanations may include effects 
on DNA methylation or hydroxymethylation at other sperm 
DMRs, histone modifications (which are enriched at imprinted 
gene loci in sperm) 54 or through non-coding RNA,55,56 which 
remain to be explored.

Figure 6. Methylation at the DMRs of Igf2 in F1 and F2 liver and F1 sperm. (A) Methylation at 9 CpG sites within Igf2 DMR2 in F1*p < 0.05. CpGs 1–4 
lie within the “core” DMR2 33,34 (n = 8 Veh and 8 Dex). (B) Methylation across four CTCF sites within the H19 ICR in the F1 generation (n = 8 Veh and 8 
Dex). (C) Methylation at 9 CpG sites within Igf2 DMR2 in F2 and (D) methylation across four CTCF sites within the H19 ICR within F2 generation (*2-way 
ANOVA shows interaction between parental exposures to decrease methylation p < 0.05) (n = 8 Veh/Veh, 7 Dex/Dex, 8 Dex/Veh and 8 Veh/Dex). (E) 
Methylation at 9 CpG sites within Igf2 DMR2 and (F) methylation across four CTCF sites within the H19 ICR in F1 sperm (n = 8 Veh and 8 Dex).
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included males and females selected randomly from multiple 
litters.

mRNA expression studies. Total RNA was extracted from 
snap-frozen tissue samples using the Qiagen RNeasy system 
(Qiagen Ltd., Crawley, UK) and reverse transcribed using 
the Promega Reverse Transcription kit (Promega UK Ltd., 
Southampton, UK). Real time PCR was performed either using 
the UPL system from Roche Diagnostics Ltd., Burgess Hill, UK 
or pre-designed assays from Applied Biosystems, Warrington, 
UK (Table 2), using a Roche LightCycler® 480 as previously 
described in reference 58. Results were corrected for the mean 
of expression of cyclophilin A and TATA-box binding protein 
(TBP). We chose to measure the expression of a number of 
imprinted genes that would be predicted to affect fetal and pla-
cental growth either through direct growth effects or through 
effects on placental nutrient transport. These included the pater-
nally expressed growth factors Igf2 and Mesoderm-specific tran-
script homolog (Mest), which promote fetal growth, the maternally 
expressed genes Cyclin dependent kinase 1c (Cdkn1c) and Growth 
factor receptor-bound protein 10 (Grb10), which act to reduce 
fetal growth, Pleckstrin homology-like domain family A member 2 
(Phlda2), which affects placental growth, insulin like growth fac-
tor 2 receptor (Igf2r), which sequesters Igf2, and the Igf2 neigh-
boring gene H19, which encodes a non-coding RNA. We also 
measured the expression of imprinted genes encoding placental 
nutrient transporters: the paternally expressed system A amino 
acid transporter slc38a4 and the maternally expressed slc22a3.

Sperm collection and DNA extraction. Testes were dissected 
from adult males (n = 8 Veh and 7 Dex aged 1 year) and epi-
didymal sperm collected by puncturing the cauda epididymis 
and allowing sperm to swim out into warmed PBS. 200 ul of 
sample was spun at 4,000 rpm for 10 minutes. The pellet was 
resuspended in 500 ul of Somatic Cell Lysis Solution (2% Triton 
X-100, 20 mM Tris pH 8, 400 ug/ml Proteinase K) and incu-
bated at 56° for 3 hours. The sample was then incubated with 
60 μl of DNase 1 (Promega, Southampton UK) made up to 
300 μl with water, pipetted onto 500 μl of dimethyl glutarate, 

Methods

Animals. Female Wistar rats (200–250 g; Harlan UK Ltd.,) 
were maintained under conditions of controlled lighting (lights 
on 7:00 am to 7:00 pm) and temperature (22°C) and allowed 
free access to food (standard rat chow, Special Diets Services, 
Witham, Essex, UK) and water. All studies were conducted 
under licensed approval by the UK Home Office, under the 
aegis of the Animals (Scientific Procedures) Act, 1986, and with 
local ethical committee approval. After two weeks acclimatiza-
tion, rats were timed-mated. A single virgin female was housed 
with a male in a breeding cage until an expelled vaginal plug 
was noted [designated embryonic (E) day 0]; females were then 
housed singly until term (E21–22). Pregnant females (F0) were 
injected subcutaneously with Dex 100 μg/kg in 0.9% saline con-
taining 4% ethanol (Dex mothers) or with an equivalent volume 
of vehicle (Veh; 0.9% saline containing 4% ethanol; Veh moth-
ers) at the same time each morning between E15–E21 inclusive. 
A subgroup of F0 females (n = 8) from each group was culled at 
E20. Pups and placentas were individually weighed and fetal liver 
collected. Placental labyrinth was separated, snap frozen on dry 
ice and stored at -80°C.

The remaining females (n = 10 Veh and 9 Dex females per 
group) were allowed to deliver and offspring (n = 145 Veh and 
103 Dex) were weighed at birth and culled to 8/litter. Litters 
were termed F1 Dex and F1 Veh. At maturity, F1 females weigh-
ing around 230–250 g were timed-mated with F1 non-sibling 
males in all combinations as follows: F1 Veh females with F1 
Veh males (Veh/Veh), F1 Dex females with F1 Dex males 
(Dex/Dex), F1 Dex females with F1 Veh males (Dex/Veh), and 
F1 Veh females with F1 Dex males (Veh/Dex). Females were 
caged separately during pregnancy and not manipulated in any 
way. A subset (n = 7–9/group) were culled at E20 and fetal 
liver and placenta collected as before. The rest of the females 
(n = 6 Veh/Veh, 6 Dex/Dex, 6 Dex/Veh and 5 Veh/Dex) were 
allowed to go to term and offspring were weighed at birth and 
culled to eight. Experimental cohorts of F2 fetuses/offspring 

Table 2. List of primers

Gene Forward Primer Reverse primer
UPL 

probe
ABI assay ID

Cyclophilin A Rn00690933_m1

TATA-box binding protein (TBP) CCC ACC AGC AGT TCA GTA GC CAA TTC TGG GTT TGA TCA TTC TG 129

Insulin-like growth factor 2 (Igf2) Rn01454518_m1

Cyclin-dependant kinase 1c (Cdkn1c) Rn00711097_m1

Pleckstrin homology like domain a2 (Phlda2) GCG CTG ATC GAC TAC CAG A  CTA CTC CCG TGG GTC TCT GA 25

Insulin-like growth factor 2 receptor (Igf2r) Rn01636937_m1

Grb10 CAA CCA AGA AGC CAA CCA G TCC ACG GAT GAG TTA ATA TCG TT 117

Mesoderm-specific transcript (Mest) Rn01500324_m1

Slc22a3 Rn01527345_m1

Pyrosequencing primers

Gene Forward primer Reverse primer Sequencing primer(s)

Igf2 DMR2
GTT GTT GGA TAT TTT TGA 

AGA GGT T
CCT ACT AAC TAA CAC CTC CTC TCC

GGG TTT TTG GGT GGT 
AAT A
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Statistical analysis. Differences between F1 weight variables 
and gene expression were analyzed by independent Student’s t 
testing. Dex readily crosses the placenta to directly induce effects 
in both male and female F1 offspring, therefore to dissect the 
effects of F1 maternal and/or paternal prenatal exposure on the 
F2 offspring, data were analyzed by 2-way ANOVA with mater-
nal and paternal prenatal exposure status (Dex or Veh) as inde-
pendent variables and the outcome measures, e.g., placental and 
fetal weight, gene expression or DNA methylation, as dependent 
variables. Post hoc LSD testing was used where the ANOVA gave 
a p value of < 0.05. Data are expressed as mean ± SEM and for 
2-way ANOVA as F statistic and p value for maternal or paternal 
effect or interaction.
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spun at 14,000 g and the supernatant discarded. 500 μl of Sperm 
Lysis Buffer (20 mM Tris pH 8, 10 mM EDTA, 100 mM NaCl, 
1% SDS 100 ug Proteinase K and 0.04 M DDT) was added and 
the sample incubated overnight at 56°. DNA was isolated by phe-
nol chloroform extraction, washed with ethanol and resuspended 
in 50 μl TE.

DNA methylation. Genomic DNA was extracted from 
liver and placenta by phenol-chloroform extraction and meth-
ylation at Igf2 DMR2 and the H19 imprinting control region 
(ICR) (Fig. 5) was analyzed using pyrosequencing or Sequenom 
MassArray.

Pyrosequencing. Pyrosequencing was performed to assess 
methylation of the Igf2 DMR2 (including four CpGs within 
the core DMR2).34 1 μg of DNA was subjected to bisulphite 
conversion using the Epitect Bisulphite Kit (Qiagen, Crawley, 
UK) and amplified using pyrosequencing primers designed using 
PyroMark Assay Design 2.0 software (Qiagen, Crawley, UK). 
Primers are detailed in Table 2. Data was analyzed using Pyro 
Q-CpG Software (Qiagen, Crawley, UK). All primers were pur-
chased from Eurogentec (Southampton, UK).

Sequenom massarray. For analysis of methylation at the H19 
ICR, quantitative methylation was conducted by Sequenom, 
Inc., (Hamburg, Germany). This included analysis of DNA 
methylation at four of the CCCTC-binding factor (CTCF) bind-
ing sites within the H19 ICR. Methylation ratios for each of the 
residues (Methyl CpG/Total CpG) were then determined using a 
MassARRAYTM mass spectrometer using proprietary peak pick-
ing and spectra interpretation tools.
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