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Abstract
Synthetic glucocorticoids (GC) form a crucial first-line treatment for childhood acute
lymphoblastic leukemia (ALL). However prolonged GC therapy frequently leads to GC-resistance
with an unclear molecular mechanism. 11β-hydroxysteroid dehydrogenase (11β-HSD) 2
inactivates GCs within cells. Here, we show the association between GC sensitivity and 11β-
HSD2 expression in human T-cell leukemic cell lines. 11β-HSD2 mRNA and protein levels were
considerably higher in GC-resistant MOLT4F cells than in GC-sensitive CCRF-CEM cells. The
11β-HSD inhibitor, carbenoxolone pre-treatment resulted in greater cell death with prednisolone
assesed by methyl-thiazol-tetrazolium assay and Caspase-3/7 assay, suggesting that 11β-HSD2 is a
cause of GC-resistance in ALL.
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Introduction
Glucocorticoids (GCs) have potent pro-apoptotic effects on lymphoid cells at certain stages
of differentiation that are widely exploited in the treatment of malignant lymphoproliferative
disorders. The synthetic GCs dexamethasone and prednisolone form a crucial first-line
treatment for both B- and T-cell subtypes of childhood acute lymphoblastic leukemia [1,2].
However, ALL cells show different degrees of GC sensitivity/resistance at diagnosis and
resistance to GCs can arise during therapy [3,4]. In childhood-ALL, in vitro GC sensitivity
at diagnosis correlated with the in vivo response to 7 days prednisolone pretreatment, with a
poor response associated with an unfavourable prognosis [5,6,7]. Functional glucocorticoid
receptor (GR) levels generally correlate with response to GC treatment. Low GR levels may
be a common, though hard to detect, mechanism of GC resistance [4,8,9,10,11]. However,
this does not account for all GC resistance in ALL.
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11β-HSD interconverts endogenous active GC (cortisol) and intrinsically inert cortisone
(which does not bind to GR) [12]. Two isozymes exist. 11β-HSD2 (encoded by HSD11B2)
inactivates GCs, whereas 11β-HSD1 (encoded by HSD11B1) regenerates active GCs from
inert 11keto forms [12,13]. Importantly, prednisone (inert) and prednisolone (active) are also
interconverted by these enzymes [14]. In contrast, dexamethasone is poorly inactivated [14].
Previous work has shown that 11β-HSD2 is expressed in some tumours and malignant cells,
although it is not expressed in the normal adult tissue from which it is derived [15,16,17].
We have therefore postulated that 11β-HSD2 is expressed in glucocorticoid-resistant
leukemia cells where its activity contributes to glucocorticoid resistance. The aim of this
study was to evaluate how 11β-HSD2 affects GC sensitivity in lymphoblastic leukemia.

Materials and methods
Cell culture

Human T-lymphoblastic leukemia cells, CCRF-CEM (JCRB9023) and MOLT4F
(JCRB0021) were obtained from the Health Science Research Resources Bank (Osaka,
Japan). Cells were maintained in RPMI 1640 supplemented with 10% fetal calf serum
(FCS), 100 IU/mL penicillin, 100 μg/mL streptomycin at 37°C, 5% CO2. Carbenoxolone
(CBX, 10 μM) was added 1h before adding glucocorticoids.

Cytotoxicity assay
Cytotoxicity was assessed using the methyl-thiazol-tetrazolium (MTT) assay and
Caspase-3/7 assay. Cells (1×105 cells/well) were cultured in 96-well plates. Glucocorticoid
sensitivity/resistance was determined by addition of prednisolone (PRED) or dexamethasone
(DEX) (9 nM–280 μM) for 96 h and cell viability measured by MTT assay, as previously
described [18,19]. The 50% lethal dose (LD50) was calculated from the dose–response
curve. For caspase assay, cells were treated with prednisolone (1 μM) or dexamethasone (1
μM) for 48h. 100 μl of caspase-Glo 3/7 (Promega, Madison, WI, USA) reagent was then
added to each sample, cells were incubated for 1 h and caspase activity measured according
to the manufacturer’s instructions.

RNA extraction and reverse transcription-PCR analysis
Cells (1×106 cells/well) were cultured for 24 h in the presence or absence of 1 μM
dexamethasone in 12-well plates. RNA was extracted following homogenisation in Trizol
(Invitrogen) and resuspended in RNase-free water. Reverse transcription of RNA (1 μg)
used a reverse transcriptase system (Takara) according to the manufacturer’s protocol.
Specific mRNA levels were quantified by real-time PCR on a LightCycler (Roche,
Mannheim, Germany), according to the manufacturer’s instructions. Primers used were:
11β-HSD2, 5′-ATCCGTGCTTGGGGGCCTATGGAAC-3′, 5′-
GACCCACGTTTCTCACTGACTCTGTC-3′ and GRα, 5′-
ACTTACACCTGGATGACCAAAT-3′, 5′-TTCAATACTCATGGTCTTATCC-3′. 18S
served as internal control.

Western blotting
Cells were washed twice in cold PBS and lysed with RIPA buffer containing protease
inhibitor cocktail. Electrophoresis was carried out on 12% NuPAGE Bis-Tris gels
(Invitrogen) with 20 μg protein loaded. After transfer, blots were probed with antibodies to
11β-HSD2 (a gift of Dr. Roger W. Brown [20]) or tubulin at 1:10000 dilution overnight at
4°C. After washing, membranes were incubated with goat anti-rabbit IRDye-800CW (for
11β-HSD2) or goat anti-mouse IRDye-800CW (for tubulin) secondary antibodies (both from
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LI-COR) for 1 h at room temperature. Blots were visualized on an Odyssey scanner (LI-
COR).

Analysis of 11β-HSD2 activity
Cells were cultured in 12-well plates in the presence or absence of 10 μM CBX for 1 h.
Cortisol (0.1 μM) was added and medium was collected after 24 h. Cells were removed from
the medium by centrifugation (10,000 × g, 20 min, 4°C) and cell numbers per well were
counted. The collected medium was loaded onto activated Sep-Pak C18 (Waters Corp., MA,
USA) cartridges. The column was then washed with 5% methanol and steroids eluted with
100% methanol. The eluate was dried in a vacuum centrifuge and steroids were analyzed by
liquid chromatography-tandem mass spectrometry (LC-MS/MS) as previously described
[21]. Enzyme activity is expressed as pmol cortisone produced/ h/ 106 cells.

Statistics
Data were analyzed using ANOVA. Significance was set at p < 0.05. Values are mean
±SEM.

Results
Differential sensitivity to dexamethasone and prednisolone in glucocorticoid-resistant
MOLT4F cells

Dexamethasone is poorly metabolised by 11β-HSD enzymes, whereas prednisone/
prednisolone are readily metabolized [14]. To determine whether glucocorticoid-sensitive
CCRF-CEM [22] and glucocorticoid-resistant MOLT4F cells [23] show differential
sensitivity to dexamethasone and prednisolone, MTT and caspase 3/7 assays were carried
out. Both MOLT4F and CCRF-CEM cells showed measureable sensitivity to
dexamethasone, although MOLT4F cells were considerably more resistant than CCRF-CEM
cells (Fig. 1A). However, in contrast to CCRF-CEM cells, MOLT4F cells were completely
resistant to prednisolone (LD50 >280 μM). Consistent with these data, prednisolone and
dexamethasone (at 1 μM) were equally effective in the induction of caspasae 3/7 activity in
CCRF-CEM cells, yet only dexamethasone induced caspase 3/7 activity in MOLT4F cells
(Fig. 1B).

High expression of 11β-HSD2 and low expression of GR alpha in glucocorticoid-resistant
MOLT4F cells

The relative resistance to prednisolone suggested the presence of 11β-HSD2 in MOLT4F
cells. Quantitative (q)PCR showed that levels of 11β-HSD2 mRNA were considerably
higher in MOLT4F cells than in CCRF-CEM cells (Fig. 2A). 11β-HSD1 mRNA was not
detectable in MOLT4F cells (data not shown). GR alpha mRNA was also expressed in both
CCRF-CEM cells and MOLT4F cells (Fig. 2B). The basal level of GR alpha mRNA was
higher in CCRFCEM cells than MOLT4F cells, although this did not achieve significance.
In CCRF-CEM cells, GR alpha mRNA was dramatically increased by dexamethasone
treatment, whereas no induction of GR alpha occurred in MOLT4F cells (Fig. 2B) to give a
10.5 fold difference in GR alpha mRNA levels between glucocorticoid-sensitive CCRF-
CEM and glucocorticoid-resistant MOLT4F cells following dexamethasone treatment (Fig.
2B). Consistent with the levels of 11β-HSD2 mRNA, western blotting showed higher levels
of 11β-HSD2-immunoreative protein in MOLT4F cells than in CCRF-CEM cells (Fig. 2C),
indicating that 11β-HSD2 could be inactivating prednisolone to prednisone in MOLT4F
cells.
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Inhibition of 11β-HSD2 increases sensitivity to prednisolone in MOLT4F cells
To determine whether 11β-HSD2 could contribute to prednisolone resistance in MOLT4F
cells, cells were pre-treated with the 11β-HSD inhibitor carbenoxolone (CBX) prior to
cytotoxicity assay. CBX pre-treatment significantly increased caspase 3/7 activity following
prednisolone treatment in MOLT4F cells (Fig. 3A) and significantly decreased cell survival
following prednisolone treatment, assayed by MTT (Fig. 3B), whereas CBX had no effect in
CCRF-CEM cells (Fig. 3A and 3B). Cortisol was converted to cortisone by MOLT4F cells,
but not by CCRF-CEM cells (Fig. 3C), confirming the presence of functional 11β-HSD2 in
MOLT4F cells with negligible levels in CCRF-CEM cells. Moreover, conversion of cortisol
(active natural glucocorticoid) to cortisone (inert natural glucocorticoid) was completely
abolished by CBX pre-treatment (Fig. 3C), demonstrating inhibition of 11β-HSD2 by CBX
in MOLT4F cells.

Discussion
Here we have shown that high levels of 11β-HSD2 are associated with resistance to the
synthetic glucocorticoid, prednisolone, in MOLT4F cells, whereas the non-metabolisable
glucocorticoid, dexamethasone, could induce measurable apoptosis in these cells.
Dexamethasone reportedly has 6 times the glucocorticoid potency of prednisolone [24].
However even a 40-fold higher dose of prednisolone could not induce apoptosis to the levels
achieved with dexamethasone, suggesting that the prednisolone resistance in these cells is
not simply due to differences in potency of the two synthetic glucocorticoids. The presence
of 11β-HSD2 in MOLT4F cells could plausibly contribute to prednisolone resistance.
Indeed, the conversion of active cortisol into inactive cortisone by MOLT4F cells and its
inhibition by CBX demonstrates the presence of oxidative 11β-HSD activity in these cells.
This was confirmed by demonstration of 11β-HSD2 mRNA and protein, but not 11β-HSD1
mRNA in these cells.

MOLT4F cells showed greater resistance to dexamethasone-induced cell death than did
CCRF-CEM cells. This is unlikely to be due to 11β-HSD2, as dexamethasone is poorly
inactivated by this isozyme [14]. However, dexamethasone resistance in MOLT4F cells
could, at least in part, be due to the low levels of GR in these cells and failure of GR auto-
induction. This is consistent with previous reports of low GR levels and/or a failure of auto-
induction as a common though hard to detect cause of GC resistance in lymphoblastic
leukemia [4,8,9,10,11,25], exquisitely sensitive to glucocorticoid dose [9]. Our data
therefore point to at least two mechanisms of GC resistance in MOLT4F cells: a pre-
receptor mechanism due to 11β-HSD2 expression (dependent on the type of glucocorticoid
administered) and a receptor-mediated mechanism; low GR levels and failure of GR auto-
induction.

We have previously shown differential GC regulation of 11β-HSD1 in glucocorticoid-
sensitive and glucocorticoid-resistant lymphoblastic leukemia [19]. Levels of 11β-HSD1,
which amplifies glucocorticoid action within cells by converting inert GC to active forms,
were increased by GC treatment of glucocorticoid-sensitive acute lymphoblastic leukemia
cells, whereas they were decreased or unchanged in resistant cells [19]. This may be yet
another mechanism that could contribute to differential glucocorticoid sensitivity of
leukemic cells. In contrast to 11β-HSD1, 11β-HSD2 is widely expressed during
development and is re-expressed in tumours and transformed cell lines [17,26,27]. Indeed,
many tissues switch from 11β-HSD2 to 11β-HSD1 expression as they differentiate and
mature [27,28]. In transfected cells, 11β-HSD1 expression reduced proliferation, whereas
transfection with 11β-HSD2 increased proliferation rate [26]. Therefore it is possible that the
expression of 11β-HSD1 and 2 produce opposing patterns of cell proliferation.
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Alternatively, expression of these enzymes together with GR auto-induction may contribute
to the differential GC-sensitivity of early lymphocyte precursors [29,30].

CCRF-CEM and MOLT4F cells may be extreme examples of GC sensitivity/resistance.
Nevertheless, they add further support to the hypothesis that threshold levels of GR are
required for glucocorticoid sensitivity of lymphoblastic leukemic cells. Moreover, whilst
11β-HSD2 is unlikely to be a contributory factor in dexamethasone resistance, it may
contribute to prednisolone resistance. It is now critical to establish whether 11β-HSD2 can
contribute to, or is a marker of, glucocorticoid resistance in primary cells. If this is true for
primary leukaemic cells then dexamethasone would be of greater therapeutic benefit than
prednisolone in the initial treatment of lymphoblastic leukemia. Indeed, replacement of
prednisolone (or prednisone) by dexamethasone in induction therapy markedly reduced risk
of relapse with better clinical outcome [31,32,33]. In addition, further research with primary
cells is required to investigate whether levels of GR, 11β-HSD2 and 11β-HSD1 could be
useful prognostic makers in childhood acute lymphoblastic leukemia.
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Figure 1.
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Figure 2.
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Figure 3.
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