

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47

Citation for published version:

Anderson, CA, Boucher, G, Lees, CW, Franke, A, D'Amato, M, Taylor, KD, Lee, JC, Goyette, P, Imielinski, M, Latiano, A, Lagace, C, Scott, R, Amininejad, L, Bumpstead, S, Baidoo, L, Baldassano, RN, Barclay, M, Bayless, TM, Brand, S, Buening, C, Colombel, J-F, Denson, LA, De Vos, M, Dubinsky, M, Edwards, C, Ellinghaus, D, Fehrmann, RSN, Floyd, JAB, Florin, T, Franchimont, D, Franke, L, Georges, M, Glas, J, Glazer, NL, Guthery, SL, Haritunians, T, Hayward, NK, Hugot, J-P, Jobin, G, Laukens, D, Lawrance, I, Lemann, M, Levine, A, Libioulle, C, Louis, E, McGovern, DP, Milla, M, Montgomery, GW, Morley, KI, Mowat, C, Ng, A, Newman, W, Ophoff, RA, Papi, L, Palmieri, O, Peyrin-Biroulet, L, Panes, J, Phillips, A, Prescott, NJ, Proctor, DD, Roberts, R, Russell, R, Rutgeerts, P, Sanderson, J, Sans, M, Schumm, P, Seibold, F, Sharma, Y, Simms, LA, Seielstad, M, Steinhart, AH, Targan, SR, van den Berg, LH, Vatn, M, Verspaget, H, Walters, T, Wijmenga, C, Wilson, DC, Westra, H-J, Xavier, RJ, Zhao, ZZ, Ponsioen, CY, Andersen, V, Torkvist, L, Gazouli, M, Anagnou, NP, Karlsen, TH, Kupcinskas, L, Sventoraityte, J, Mansfield, JC, Kugathasan, S, Silverberg, MS, Halfvarson, J, Rotter, JI, Mathew, CG, Griffiths, AM, Gearry, R, Ahmad, T, Brant, SR, Chamaillard, M, Satsangi, J, Cho, JH, Schreiber, S, Daly, MJ, Barrett, JC, Parkes, M, Annese, V, Hakonarson, H, Radford-Smith, G, Duerr, RH, Vermeire, S, Weersma, RK \& Rioux, JD 2011, 'Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47' Nature Genetics, vol. 43, no. 3, pp. 246-U94. DOI: 10.1038/ng.764

Digital Object Identifier (DOI):
10.1038/ng. 764

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Nature Genetics

Publisher Rights Statement:
© 2011 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

NIH Public Access
Author Manuscript

Published in final edited form as:
Nat Genet. 2011 March ; 43(3): 246-252. doi:10.1038/ng.764.

Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47

Carl A. Anderson ${ }^{1}$, Gabrielle Boucher ${ }^{2,3,79}$, Charlie W. Lees ${ }^{4,79}$, Andre Franke ${ }^{5,79}$, Mauro D'Amato ${ }^{6,79}$, Kent D. Taylor ${ }^{7}$, James C. Lee ${ }^{8}$, Philippe Goyette ${ }^{2,3}$, Marcin Imielinski ${ }^{9}$, Anna Latiano ${ }^{10}$, Caroline Lagacé ${ }^{2,3}$, Regan Scott ${ }^{11}$, Leila Amininejad ${ }^{12}$, Suzannah Bumpstead ${ }^{1}$, Leonard Baidoo ${ }^{11}$, Robert N. Baldassano ${ }^{13}$, Murray Barclay ${ }^{14}$, Theodore M. Bayless ${ }^{15}$, Stephan Brand ${ }^{16}$, Carsten Büning ${ }^{17}$, Jean-Frédéric Colombel ${ }^{18}$, Lee A. Denson ${ }^{19}$, Martine De Vos ${ }^{20}$, Marla Dubinsky ${ }^{21}$, Cathryn Edwards ${ }^{22}$, David Ellinghaus ${ }^{5}$, Rudolf S.N. Fehrmann ${ }^{23}$, James A.B. Floyd ${ }^{1}$, Tim Florin ${ }^{24}$, Denis Franchimont ${ }^{25}$, Lude Franke ${ }^{23}$, Michel Georges ${ }^{26}$, Jürgen Glas ${ }^{16}$, Nicole L. Glazer ${ }^{27}$, Stephen L. Guthery ${ }^{28}$, Talin Haritunians ${ }^{29}$, Nicholas K. Hayward ${ }^{30}$, Jean-Pierre Hugot ${ }^{31}$, Gilles Jobin ${ }^{2,32}$, Debby Laukens ${ }^{20}$, Ian Lawrance ${ }^{33}$, Marc Lémann ${ }^{34}$, Arie Levine ${ }^{35}$, Cecile Libioulle ${ }^{36}$, Edouard Louis ${ }^{36}$, Dermot P. McGovern ${ }^{7,29}$, Monica Milla ${ }^{37}$, Grant W. Montgomery ${ }^{30}$, Katherine I. Morley ${ }^{1}$, Craig Mowat ${ }^{38}$, Aylwin $\mathrm{Ng}^{39,40}$, William Newman ${ }^{41}$, Roel A Ophoff ${ }^{42}$, Laura Papi ${ }^{43}$, Orazio Palmieri ${ }^{10}$, Laurent Peyrin-Biroulet ${ }^{44}$, Julián Panés ${ }^{45}$, Anne Phillips ${ }^{38}$, Natalie J. Prescott ${ }^{46}$, Deborah D. Proctor ${ }^{47}$, Rebecca Roberts ${ }^{14}$, Richard Russell ${ }^{48}$, Paul Rutgeerts ${ }^{49}$, Jeremy Sanderson ${ }^{50}$, Miquel Sans ${ }^{51}$, Philip Schumm ${ }^{52}$, Frank Seibold ${ }^{53}$, Yashoda Sharma ${ }^{47}$, Lisa Simms 30, Mark Seielstad ${ }^{54,55}$, A. Hillary Steinhart ${ }^{56}$, Stephan R. Targan ${ }^{7}$, Leonard H. van den Berg ${ }^{57}$, Morten Vatn ${ }^{58}$, Hein Verspaget ${ }^{59}$, Thomas Walters ${ }^{60}$, Cisca Wijmenga ${ }^{23}$, David C. Wilson ${ }^{48,61}$, Harm-Jan Westra ${ }^{23}$, Ramnik J. Xavier ${ }^{39,40}$, Zhen Z. Zhao ${ }^{30}$, Cyriel Y. Ponsioen ${ }^{62}$, Vibeke Andersen ${ }^{63}$, Leif Torkvist ${ }^{64}$, Maria Gazouli ${ }^{65}$, Nicholas P. Anagnou ${ }^{65}$, Tom H. Karlsen ${ }^{58}$, Limas Kupcinskas ${ }^{66}$, Jurgita Sventoraityte ${ }^{66}$, John C. Mansfield ${ }^{67}$, Subra Kugathasan ${ }^{68}$, Mark S. Silverberg ${ }^{56}$, Jonas Halfvarson ${ }^{69}$, Jerome I. Rotter ${ }^{29}$, Christopher G. Mathew ${ }^{46}$, Anne M. Griffiths ${ }^{60}$, Richard Gearry ${ }^{14}$, Tariq Ahmad ${ }^{70}$, Steven R. Brant ${ }^{15}$, Mathias Chamaillard ${ }^{71}$, Jack Satsangi ${ }^{4}$, Judy H. Cho ${ }^{47,72}$, Stefan Schreiber ${ }^{5,73}$, Mark J. Daly ${ }^{74}$, Jeffrey C. Barrett ${ }^{1}$, Miles Parkes ${ }^{8}$, Vito Annese ${ }^{10,37}$, Hakon Hakonarson ${ }^{13,75,80}$, Graham Radford-Smith ${ }^{76,80}$, Richard H. Duerr ${ }^{11,77,80}$, Séverine Vermeire ${ }^{49,80}$, Rinse K. Weersma ${ }^{78,80}$, and John D. Rioux ${ }^{2,3}$
${ }^{1}$ Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
${ }^{2}$ Université de Montréal, Medicine, Montréal, Québec, Canada ${ }^{3}$ Montreal Heart Institute, Research Center, Montréal, Québec, Canada ${ }^{4}$ University of Edinburgh, Western General Hospital, Gastrointestinal Unit, Molecular Medicine Centre, Edinburgh, UK ${ }^{5}$ Christian-AlbrechtsUniversity Kiel, Institute of Clinical Molecular Biology, Kiel, Germany ${ }^{6}$ Karolinska Institute,

[^0]Department of Biosciences and Nutrition, Stockholm, Sweden ${ }^{7}$ Cedars-Sinai Medical Center, Inflammatory Bowel and Immunobiology Research Institute, Los Angeles, California, USA
${ }^{8}$ Addenbrooke's Hospital, University of Cambridge, Gastroenterology Research Unit, Cambridge, UK ${ }^{9}$ The Children's Hospital of Philadelphia, Center for Applied Genomics, Philadelphia, Pennsylvania, USA ${ }^{10}$ IRCCS-CSS Hospital, Unit of Gastroenterology, San Giovanni Rotondo, Italy ${ }^{11}$ University of Pittsburgh School of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh, Pennsylvania, USA ${ }^{12}$ Erasmus Hospital, Free University of Brussels, Department of Gastroenterology, Brussels, Belgium ${ }^{13}$ The Children's Hospital of Philadelphia, Department of Pediatrics, Center for Pediatric Inflammatory Bowel Disease, Philadelphia, Pennsylvania, USA ${ }^{14}$ University of Otago, Department of Medicine, Christchurch, New Zealand ${ }^{15}$ Johns Hopkins University School of Medicine, Meyeroff Inflammatory Bowel Disease Center, Dept. of Medicine, Baltimore, Maryland, USA ${ }^{16}$ University Hospital Munich, Department of Medicine II, Munich, Germany ${ }^{17}$ Universitätsmedizin Berlin, Department of Gastroenterology, Charité, Campus Mitte, Berlin, Germany ${ }^{18}$ Université de Lille Department of Hepato-Gastroenterology, Lille, France ${ }^{19} \mathrm{Cincinnati}$ Children's Hospital Medical Center, Pediatric Gastroenterology, Cincinnati, Ohio, USA ${ }^{20}$ Ghent University Hospital, Department of Hepatology and Gastroenterology, Ghent, Belgium ${ }^{21}$ Cedars-Sinai Medical Center, Department of Pediatrics, Los Angeles, California, USA ${ }^{22}$ Torbay Hospital, Department of Gastroenterology, Torbay, Devon, UK ${ }^{23}$ University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands ${ }^{24}$ Mater Health Services, Department of Gastroenterology, Brisbane, Australia ${ }^{25}$ Erasmus Hospital, Free University of Brussels, Department of Gastroenterology, Brussels, Belgium ${ }^{26}$ University of Liège, Department of Genetics, Faculty of Veterinary Medicine, Liège, Belgium ${ }^{27}$ University of Washington, Cardiovascular Health Research Unit, Department of Internal Medicine, Seattle, Washington, USA ${ }^{28}$ University of Utah School of Medicine, Department of Pediatrics, Salt Lake City, Utah, USA ${ }^{29}$ Cedars-Sinai Medical Center, Medical Genetics Institute, Los Angeles, California, USA ${ }^{30}$ Queensland Institute of Medical Research, Genetic Epidemiology, Brisbane, Australia ${ }^{31}$ Université Paris Diderot \& INSERM \& Hopital Robert Debre APHP, Gastroenterology, Paris, France ${ }^{32}$ Hôpital Maisonneuve-Rosemont, Dept of Gastroenterology, Montréal, Québec, Canada ${ }^{33}$ The University of Western Australia, School of Medicine and Pharmacology, Fremantle, Australia ${ }^{34}$ Université Paris Diderot, GETAID group, Paris, France ${ }^{35} \mathrm{Tel}$ Aviv University, Pediatric Gastroenterology Unit, Wolfson Medical Center and Sackler School of Medicine, Tel Aviv, Israel ${ }^{36}$ Centre Hospitalier Universitaire Université de Liège, Division of Gastroenterology, Liège, Belgium ${ }^{37}$ AOU Careggi, Unit of Gastroenterology SOD2, Florence, Italy ${ }^{38}$ Ninewells Hospital and Medical School, Dept of Medicine, Dundee, UK ${ }^{39}$ Massachusetts General Hospital, Harvard Medical School, Gastroenterology Unit Boston, Massachusetts, USA ${ }^{40}$ Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA ${ }^{41}$ University of Manchester Department of Medical Genetics, Manchester, UK ${ }^{42}$ University Medical Center Utrecht, Department of Medical Genetics, Utrecht, Netherlands ${ }^{43}$ University of Florence, Institute of Human Genetics, Florence, Italy ${ }^{44}$ University Hospital of Nancy, Department of HepatoGastroenterology, Vandoeuvre-lès-Nancy, France ${ }^{45} \mathrm{Hospital}$ Clínic de Barcelona, IDIBAPS, CIBERehd, Department of Gastroenterology, Barcelona, Spain ${ }^{46}$ King's College London School of Medicine, Guy's Hospital, Department of Medical and Molecular Genetics, London, UK ${ }^{47}$ Yale University, Section of Digestive Diseases, Department of Medicine, New Haven, Connecticut, USA ${ }^{48}$ Royal Hospital for Sick Children, Paediatric Gastroenterology and Nutrition, Glasgow, UK ${ }^{49}$ University Hospital Gasthuisberg, Division of Gastroenterology, Leuven, Belgium ${ }^{50}$ Guy's \& St Thomas' NHS Foundation Trust, St Thomas' Hospital, Dept Gastroenterology, London, UK ${ }^{51}$ Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Department of Gastroenterology, Barcelona, Spain ${ }^{52}$ University of Chicago, Department of Health Studies, Chicago, Illinois, USA ${ }^{53}$ University of Bern, Division of Gastroenterology, Inselspital, Bern, Switzerland ${ }^{54}$ Genome Institute of Singapore, Human Genetics, Singapore ${ }^{55}$ Institute for Human Genetics, University of

California San Fransisco, San Francisco, California, USA ${ }^{56}$ University of Toronto, Mount Sinai Hospital Inflammatory Bowel Disease Centre, Toronto, Ontario, Canada ${ }^{57}$ Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Neurology, Utrecht, the Netherlands ${ }^{58}$ Rikshospitalet University Hospital, Medical Department, Oslo, Norway ${ }^{59}$ Leiden University Medical Center, Experimental Gastroenterology, Leiden, the Netherlands ${ }^{60}$ The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada ${ }^{61}$ Child Life and Health, University of Edinburgh, Scotland ${ }^{62}$ Academic Medical Center, Department of Gastroenterology, Amsterdam, the Netherlands ${ }^{63}$ Viborg Regional Hospital, Medical Department, Viborg, Denmark ${ }^{64}$ Karolinska Institutet, Department of Clinical Science Intervention and Technology, Stockholm, Sweden ${ }^{65}$ University of Athens, Department of Biology, School of Medicine, Athens, Greece ${ }^{66}$ Kaunas University of medicine, Department of Gastroenterology, Kaunas, Lithuania ${ }^{67}$ Newcastle University, Institute of Human Genetics, Newcastle upon Tyne, UK ${ }^{68}$ Emory School of Medicine, Department of Genetics and Department of Pediatrics, Atlanta, Georgia, USA ${ }^{69}$ Örebro University Hospital, Department of Medicine, Örebro, Sweden ${ }^{70}$ Peninsula College of Medicine and Dentistry, Barrack Road, Exeter, UK ${ }^{71}$ Inserm, U1019, Lille, France ${ }^{72}$ Yale University, Department of Genetics, Yale School of Medicine, New Haven CT ${ }^{73}$ Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany ${ }^{74}$ Massachusetts General Hospital, Harvard Medical School, Center for Human Genetic Research, Boston, Massachusetts, USA ${ }^{75}$ Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA ${ }^{76}$ Queensland Institute of Medical Research, IBD Research Group, Brisbane, Australia ${ }^{77}$ University of Pittsburgh Graduate School of Public Health, 130 Desoto Street, Pittsburgh, PA, USA ${ }^{78}$ University Medical Center Groningen, Department of Gastroenterology, Groningen, the Netherlands

Abstract

Genome-wide association studies (GWAS) and candidate gene studies in ulcerative colitis (UC) have identified 18 susceptibility loci. We conducted a meta-analysis of 6 UC GWAS, comprising 6,687 cases and 19,718 controls, and followed-up the top association signals in 9,628 cases and 12,917 controls. We identified 29 additional risk loci ($\mathrm{P}<5 \times 10^{-8}$), increasing the number of UC associated loci to 47. After annotating associated regions using GRAIL, eQTL data and correlations with non-synonymous SNPs, we identified many candidate genes providing potentially important insights into disease pathogenesis, including IL1R2, IL8RA/B, IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1. The total number of confirmed inflammatory bowel disease (IBD) risk loci is now 99 , including a minimum of 28 shared association signals between Crohn's disease (CD) and UC.

UC and CD represent the two major forms of inflammatory bowel disease (IBD: OMIM \#266600), which together affect approximately 1:250 people in Europe, North America and Australasia. Clinical features, epidemiological data and genetic evidence suggest that UC and $C D$ are related polygenic diseases. In contrast to $C D$, bowel inflammation in UC is limited to the colonic mucosa. While disease-related mortality is low, morbidity remains high and $10-20 \%$ of affected individuals will undergo colectomy. Though the precise etiology is unknown, the current hypothesis is a dysregulated mucosal immune response to commensal gut flora in genetically susceptible individuals ${ }^{1}$. Recent genome-wide and candidate-gene association studies have identified 18 UC susceptibility loci, including 7 that overlap with CD (e.g. IL23 pathway genes, $N K X 2-3$ and IL10). Known UC specific loci (HNF4A, CDH1 and LAMBI) have highlighted the role of defective barrier function in disease pathogenesis ${ }^{2}$.

The 18 confirmed UC loci explain approximately 11% of UC heritability (see Online Methods). To identify additional UC susceptibility loci and further elucidate disease pathogenesis, we combined data from six GWAS using genotype imputation and metaanalysis methodology (see Online Methods). The discovery panel consisted of 6,687 cases and 19,718 controls of European descent with data available for at least 1.1 million SNPs (Supplementary Table 1). A quantile-quantile plot of the meta-analysis test statistics showed a marked excess of significant associations in the tail of the distribution (Supplementary Figure 1). Although the majority $(16 / 18)$ of previously confirmed UC loci are at a genomewide significant level $\left(\mathrm{P}<5 \times 10^{-8}\right)$, two just failed to meet this threshold in the meta-analysis $-4 q 27^{3}$, and $22 q 13^{4}$ (Table 1), though we still consider these to be true risk loci given the strength of association in the initial studies ($P=1.35 \times 10^{-10}$ and $P=4.21 \times 10^{-8}$ respectively). Fifty loci with $\mathrm{P}<1 \times 10^{-5}$ and not previously associated with UC were followed up by genotyping the most associated SNP from each locus in an independent panel of 9,628 UC cases and 12,917 population controls (see Online Methods and Supplementary Table 2). Of these, 28 loci had evidence of association $(\mathrm{P}<0.05)$ in the follow-up panel and attained genome-wide significance ($\mathrm{P}<5 \times 10^{-8}$) in the combined analysis of meta-analysis and followup cohorts (Table 2 and Supplementary Table 3). In addition, although the locus on 1q32 failed follow-up genotyping (rs7554511) it had been previously tested for association to UC in an independent cohort (rs11584383: $\left.\mathrm{P}=1.2 \times 10^{-5}\right)^{5}$. This alternative tag SNP achieves genome-wide significancein our current meta-analysis $\left(\mathrm{P}=3.7 \times 10^{-11}\right)$ and therefore we consider this a confirmed UC locus, bringing the total number of new UC loci to 29. It should be noted that 12 of the 29 loci had documented nominal evidence of association $\left(5 \times 10^{-8}<\mathrm{P}<0.05\right)$ to UC in previous reports ($1 \mathrm{p} 36^{2}, 1 \mathrm{q} 32^{6}, 5 \mathrm{q} 33^{6}, 6 \mathrm{p} 21^{5}, 7 \mathrm{q} 32^{7}, 9 \mathrm{p} 24^{5,8}$, $9 \mathrm{q} 34^{5,9}, 10 \mathrm{p} 11^{6}, 11 \mathrm{q} 23^{5}, 13 \mathrm{q} 12^{8}, 13 \mathrm{q} 13^{2}$ and $20 \mathrm{q} 13^{10}$). We also tested the 28 loci with follow-up genotype data for association with two clinically relevant disease sub-phenotypes (maximum disease extent and need for colectomy for medically refractory disease) but no significant associations were seen following correction for multiple testing ($\mathrm{P}<5.2 \times 10^{-4}$) (Supplementary Table 4). In summary, there are 47 confirmed UC susceptibility loci, 18 from previous studies and 29 from the current study.

As a first step towards obtaining biological insight from the identification of these 47 loci, we examined the gene content of the associated regions (Supplementary Figure 2). Although three regions contained a single gene (5p15:DAP, 6q21:PRDM1, 10q24:NKX2-3), most (35/47) contain multiple genes and nine are not believed to contain any gene (Table 1). We attempted to identify plausible candidate genes by (a) using a literature-mining tool (GRAIL) to identify non-random, evidence-based links between genes, (b) searching an existing eQTL database ${ }^{11}$ for correlations with our most associated SNPs (Supplementary Table 5), (c) using 1000 genomes data to identify non-synonymous SNPs in linkage disequilibrium (LD) $\left(\mathrm{r}^{2}>0.5\right)$ with the most associated SNP in the locus (Supplementary Table 6), and (d) determining the gene in closest physical proximity to the most associated SNP (see Online Methods). These approaches (results summarized in Table 1, Table 2 and Supplementary Table 7) consistently identified a single candidate gene in six of the associated regions (2q11:IL1R2, 5p15:IL7R, 7p22:GNA12, 10p11:CCNY, 1p31:IL23R, $16 \mathrm{q} 22: Z F P 90$), potentially prioritizing which genes to follow up in future genetic and functional studies. Noteworthy candidate genes are described in Box 1. Follow-up genotyping in even larger independent panels of cases and controls from a range of ethnicities may be needed to identify the genes containing causal variants.

BOX 1 - Candidate genes within associated loci
TNFRSF14 / MMEL1 (1p36). TNFRSF14 encodes a member of the TNF receptor superfamily. In a T cell transfer model of colitis, TNFRSF14 expression by innate immune cells has an important role in preventing intestinal inflammation ${ }^{22}$. MMEL1
encodes membrane metalloendopeptidase-like 1. This locus is associated with susceptibility to celiac disease and primary biliary cirrhosis; a nsSNP in MMEL1 was nominally associated with multiple sclerosis.

TNFRSF9 (1p36): Tumour necrosis factor receptor superfamily member 9 is involved as a co-stimulator in the regulation of peripheral T cell activation, with enhanced proliferation and IL2 secretion. It is expressed by dendritic cells, granulocytes and endothelial cells at sites of inflammation. SCID mice transferred with naive CD4+ T cells from TNFRFSF9-deficient mice develop colitis of equal intensity as SCID mice transferred with wild type naïve T cells, but with amodified cytokine response ${ }^{23}$.

IL1R2 (2q11): Interleukin 1 receptor, type II binds IL1a, IL1b and IL1R1, inhibiting the activity of these ligands. Two alternative splice transcripts of IL1R2 have been reported. This protein serves to antagonise the action of IL1a and IL1b, pleiotropic cytokines with various roles in inflammatory processes. IL1b production by lamina propria macrophages is increased in patients with UC^{24}.

This locus is immediately adjacent to a CD-associated locus containing IL18RAP, ILR1 and other genes. It is unclear at present whether the CD-associated and UC-associated SNPs in these regions tag two separate loci or one locus. The lead CD SNP has a $\mathrm{P}=0.001$ in our UC meta-analysis. There is a large recombination hotspot between IL1R2 (UC) and IL1R1 (CD).

ILSRA / ILSRB (2q35): IL8RA and IL8RB encode two receptors for interleukin-8, a powerful neutrophil chemotactic factor. $\operatorname{IL} 8 R A$ expression, limited to a subpopulation of lamina propria macrophages and germinal centre lymphocytes in the healthy colon, is increased in macrophages, lymphocytes and epithelium in UC^{25}. IL $8 R B$ expression is more limited and not upregulated in UC. IL8 expression is profoundly increased in colonic tissue from UC patients compared with controls; this increase is driven by inflammation ${ }^{26}$.
$\boldsymbol{D A P}(\mathbf{5 p 1 5})$ encodes death-associated protein. The DAPs are a heterogenous group of polypeptides isolated in a screen for elements involved in the IFN γ - induced apoptosis of HeLa cells. DAP negatively regulates autophagy and is a substrate of mTOR ${ }^{13}$.

IL7R (5p13) encodes the receptor for interleukin-7. IL7 is a key regulator of naïve and memory T cell survival, specifically the transition from effector to memory T cells ${ }^{27}$. T cells expressing high levels of IL7R are seen in human and murine colitis; selective depletion of these cells ameliorates established colitis ${ }^{28}$. IL $7 R$ is a confirmed multiple sclerosis susceptibility gene ${ }^{29}$. The gene may have undergone extensive evolutionary selective pressure by intestinal helminths ${ }^{30}$.

PRDM1 (6q21) encodes PR domain containing 1, with ZNF domain (synonym BLIMP1), the master transcriptional regulator of plasma cells and a transcriptional repressor of the IFN- β promoter. It plays important roles in the proliferation, survival and differentiation of B and T lymphocytes.
GNA12 (7p22) encodes guanine nucleotide binding protein (G protein) alpha 12, a membrane bound GTPase that plays an important role in tight junction assembly in epithelial cells, through interactions with ZO-1 and Src^{20}.

IRF5 (7 q32) encoding interferon regulatory factor 5 , is a confirmed susceptibility gene for rheumatoid arthritis, SLE and primary biliary cirrhosis. This transcription factor regulates activity of type I interferons and induces cytokines including IL-6, IL-12 and TNFa, via TLR signaling. In response to mycobacterium tuberculosis infection of macrophages, Type I interferon expression is dependent on a pathway including IRF5, NOD2 and RIP231.

LSP1 (11q15): Lymphocyte-specific protein-1 is expressed by lymphocytes and macrophages, and also in endothelium wherein it is critical for normal neutrophil transmigration ${ }^{32}$

Additional bioinformatic analyses were also performed on the entire set of genes in the associated regions to search for functional commonalities across this large number of loci (see Online Methods). Specifically, using a gene set enrichment approach the UC loci are seen to have more genes associated with cytokines and cytokine receptors (including IFN γ, several interleukins, five TNF and TNFR superfamily members), key regulators of cytokinemediated signaling pathways, innate and adaptive immune response, macrophage activation and regulation of apoptosis than would be expected by chance (Supplementary Table 8 and Supplementary Figure 3). Enrichment analysis of the subset of candidate loci with no known association to other inflammatory diseases showed significant over-representation of gene sets associated with MAP kinase signaling, actin binding, calcium-dependent processes, fatty acid and lipid metabolism (Supplementary Table 8 and Supplementary Figure 3).

The 5 p 15 locus contains a single gene, $D A P$ (death-associated protein), with the most associated SNP in this region having a strong eQTL effect on $D A P$ expression $\left(\mathrm{P}=2.59 \times 10^{-12}\right)^{11}$. DAP kinase expression has been shown to increase with inflammation in UC^{12}, and DAP itself has recently been identified as a novel substrate of mTOR (mammalian target of rapamycin) ${ }^{13}$ and as a negative regulator of autophagy. While autophagic processes have previously been implicated in CD due to associations with $A T G 16 L 1$ and $I R G M^{14}$, this association with $D A P$ suggests a possible link between autophagy and UC.

Association to loci containing PRDM1, IRF5 and NKX2-3 suggests an important role for transcriptional regulation in UC pathogenesis. A key example is BLIMP-1, encoded by the PRDM1 gene, whose most important function is in B cells, as the master transcriptional regulator of plasma cells ${ }^{15}$. It also functions in T cells to attenuate IL-2 production upon antigen stimulation ${ }^{16}$, and topromote the development of short-lived effector cells and regulate clonal exhaustion in both CD4 and CD8 cells ${ }^{17}$. It is noteworthy that the 11q24 celiac disease susceptibility locus containing ETS1, a transcription factor essential for T-bet induced production of $I F N \gamma$ and the development of colitis in animal models, just fails to reach genome-wide significance in our study $\left(\mathrm{P}=1.22 \times 10^{-7} \text {, Supplementary Table } 3 \mathrm{~b}\right)^{18,19}$.

Identification of GNA12 as the most likely candidate at the 7 p 22 locus suggests a role for intestinal barrier function as this gene is implicated in tight junction assembly in epithelial cells ${ }^{20}$. Barrier integrity appears to be a key pathway in UC pathogenesis given previous associations to loci containing $H N F 4 A, C D H 1$ and $L A M B 1^{2,5}$.

Given the phenotypic overlap between UC and CD, we examined the evidence for association at all 47 UC loci in our recently completed CD GWAS meta-analysis comprising 6,333 cases and 15,056 controls ${ }^{14}$ and, conversely, for evidence of association at all confirmed CD loci in our UC meta-analysis (Table 3 and Supplementary Table 9). We find that, among the 99 confirmed IBD loci meeting genome-wide significance ($\mathrm{P}<5 \times 10^{-8}$) either in UC and/or CD, 28 independent index SNPs have $\mathrm{P}<1 \times 10^{-4}$ in both scans. Interestingly, all index SNPs meeting these criteria showed the same direction of effect in both diseases, thus pointing to a minimum of 28 shared association signals between UC and CD. Multiple genes involved in the IL23 signaling pathway are included in this overlapping SNP list, specifically IL23R, JAK2, STAT3, IL12B (p40), and PTPN2. The significance of these findings is underlined by the central role played by IL23 in the induction of IL17 by Th17 lymphocytes, its established role in other autoimmune disorders, and the intense interest in
therapeutic manipulation of the IL23-IL23R interaction through blockade of the p40 or p19 IL23 subunits.

Loci not meeting these inclusion criteria cannot be formally discounted as shared loci, indeed many of the confirmed UC/CD loci with nominal association ($1 \times 10^{-4}<\mathrm{P}<0.05$) to the other disease may be shared. Among the confirmed UC loci with no evidence ($\mathrm{P}>0.05$) of association to CD are the three containing candidate genes that play a role in intestinal barrier function (GNA12, HNF4A, and LAMB1).

In addition to loci shared with CD, 19 of the 47 UC risk loci are also associated with other immune-mediated diseases (Table 1 and Table 2). In particular, these "shared loci" are enriched for genes involved in T-cell differentiation, specifically in the differentiation of $\mathrm{T}_{\mathrm{H}} 1$ and $\mathrm{T}_{\mathrm{H}} 17$ cells (e.g. loci encoding IL23R, IL21, IL10, IL7R, IFNG). Dysregulated auto-antigen specific $\mathrm{T}_{\mathrm{H}} 1$ responses are believed to be involved in organ-specific autoimmune diseases, and $\mathrm{T}_{\mathrm{H}} 17$ cells are increasingly recognized to contribute to host defense and induction of autoimmunity and tissue inflammation ${ }^{21}$. Another shared pathway between UC and other immune mediated diseases involves TNF-signaling (TNFRSF9, TNFRSF14, TNFSF15) with widespread immunological effects including NF- $\kappa \mathrm{kB}$ activation, a known key component of the inflammatory response in IBD.

The current study has more than doubled the number of confirmed UC susceptibility loci and we estimate that 16% of UC heritability is explained by these loci (see Online Methods). We have identified potentially causal genes at several loci but confirmation of causality awaits detailed fine-mapping, expression and functional studies. Dense fine-mapping and large-scale re-sequencing studies are underway with the goal of identifying the causal variation within many of these loci.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

In memoriam to Marc Lémann, who dedicated his life to his patients but died too soon.
We thank all subjects who contributed samples, and physicians and nursing staff who helped with recruitment globally. This study was supported by the German Ministry of Education and Research through the National Genome Research Network, the popgen biobank and infrastructure support through the DFG cluster of excellence 'Inflammation at Interfaces. Italian case collections were supported by the Italian Group for IBD and the Italian Society for Paediatric Gastroenterology, Hepatology and Nutrition. We acknowledge funding provided by Royal Brisbane and Women's Hospital Foundation; University of Queensland (Ferguson Fellowship); National Health and Medical Research Council, Australia and by the European Community (5th PCRDT). UK case collections were supported by the National Association for Colitis and Crohn's disease, Wellcome Trust, Medical Research Council UK and Peninsular College of Medicine and Dentistry, Exeter. Activities in Sweden were supported by the Swedish Society of Medicine, the Bengt Ihre Foundation, the Karolinska Institutet, the Swedish National Program for IBD Genetics, the Swedish Organization for IBD, the Swedish Medical Research Council, the Soderbergh Foundation and the Swedish Cancer Foundation. Support for genotyping and genetic data analysis was provided by the Agency for Science Technology and Research (A*STAR), Singapore. We are grateful to the funders and investigators of the Epidemiological Investigation of Rheumatoid Arthritis for providing genotype data from healthy Swedish individuals.

The Wellcome Trust Case Control Consortium 2 project was supported by Wellcome Trust grant 083948/Z/07/Z. We also acknowledge the NIHR Biomedical Research Centre awards to Guy's \& St.Thomas' NHS Trust/King's College London and to Addenbrooke's Hospital/University of Cambridge School of Clinical Medicine/University of Manchester and Central Manchester Foundation Trust. The NIDDK IBD Genetics Consortium is funded by the following grants: DK062431 (SRB), DK062422 (JHC), DK062420 (RHD), DK062432 (JDR), DK062423 (MSS), DK062413(DPBM), DK076984 (MJD), and DK084554 (MJD and DPBM), and DK062429 (JHC). JHC is also funded by the Crohn's and Colitis Foundation of America; SLG by DK069513 and Primary Children's Medical Center Foundation, and JDR by NIH/NIDDK grant DK064869. Cedars Sinai supported by NCRR grant M01-

RR00425; NIH/NIDDK grant P01-DK046763; DK 063491; and Cedars-Sinai Medical Center Inflammatory Bowel Disease Research Funds. RW is supported by a clinical fellow grant (90700281) from the Netherlands Organization for Scientific Research; EL, DF and SV are senior clinical investigators for the Funds for Scientific Research (FWO/FNRS) Belgium. SB was supported by Deutsche Forschungsgemeinschaft (DFG BR 1912/5-1) and Else Kröner-Fresenius-Stiftung (P50/05/EKMS05/62). MC was supported by the Programme Hospitalier de Recherche Clinique. CAA is supported by Wellcome Trust grant WT091745/Z/10/Z. JCB is supported by Wellcome Trust grant WT089120/Z/09/Z. RKW is supported by a clinical fellowship grant (90.700.281) from the Netherlands Organization for Scientific Research (NWO). CW is supported by grants from the Celiac Disease Consortium (BSIK03009) and the Netherlands Organization for Scientific Research (NWO, VICI grant 918.66.620). LHvdB acknowledges funding from the Prinses Beatrix Fonds, the Adessium foundation and the Amyotrophic Lateral Sclerosis Association. LF received a Horizon Breakthrough grant from the Netherlands Genomics Initiative (93519031) and a VENI grant from NWO (ZonMW grant 916.10.135). RJX and AN are funded by DK83756, AI062773, DK043351 and the Helmsley Foundation.

Replication genotyping was supported by unrestricted grants from Abbott Laboratories Ltd, Giuliani SpA, Shire PLC and Ferring Pharmaceuticals. We thank the 1958 British Birth Cohort and Banco Nacional deADN, Salamanca, Spain who supplied control DNA samples. The IBSEN study group and the Norwegian Bone Marrow Donor Registry are acknowledged for contributing the Norwegian patient and control populations. The CHS research reported in this article was supported by contract numbers N01-HC-85079 through N01-HC- 85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC- 45133, grant numbers U01 HL080295 and R01 HL087652 from the National Heart, Lung, and Blood Institute, with additional contribution from the National Institute of Neurological Disorders and Stroke. A full list of principal CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. We thank the members of the Quebec IBD Genetic Consortium, in particular A. Bitton, G. Aumais, E.J. Bernard, A. Cohen, C. Deslandres, R. Lahaie, D. Langelier and P. Paré. Other significant contributors: K. Hanigan, N. Huang, P. Webb, D. Whiteman, A. Rutherford, R. Gwilliam, J. Ghori, D Strachan, W. McCardle, W. Ouwehand, M. Newsky, S. Ehlers, I. Pauselius, K. Holm, C. Sina, M. Regueiro, A. Andriulli and M.C. Renda.

References

1. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007; 448:427-34. [PubMed: 17653185]
2. The UK IBD Genetics Consortium \& The Wellcome Trust Case Control Consortium 2. Genomewide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet. 2009; 41:1330-4. [PubMed: 19915572]
3. Festen EA, et al. Genetic variants in the region harbouring IL2/IL21 associated with ulcerative colitis. Gut. 2009; 58:799-804. [PubMed: 19201773]
4. Franke A, et al. Genome-wide association study for ulcerative colitis identifies risk loci at 7 q 22 and 22q13 (IL17REL). Nat Genet. 2010; 42:292-4. [PubMed: 20228798]
5. McGovern DP, et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet. 2010; 42:332-7. [PubMed: 20228799]
6. Franke A, et al. Replication of signals from recent studies of Crohn's disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet. 2008; 40:713-5. [PubMed: 18438405]
7. Dideberg V, et al. An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet. 2007; 16:3008-16. [PubMed: 17881657]
8. Asano K, et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet. 2009; 41:1325-9. [PubMed: 19915573]
9. Zhernakova A, et al. Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am J Hum Genet. 2008; 82:1202-10. [PubMed: 18439550]
10. Kugathasan S, et al. Loci on 20 q 13 and 21 q 22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet. 2008; 40:1211-5. [PubMed: 18758464]
11. Dubois PC, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010; 42:295-302. [PubMed: 20190752]
12. Kuester D, et al. Aberrant methylation of DAPK in long-standing ulcerative colitis and ulcerative colitis-associated carcinoma. Pathol Res Pract. 2010
13. Koren I, Reem E, Kimchi A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol. 2010; 20:1093-8. [PubMed: 20537536]
14. Franke A, et al. International Association Analysis Increases to 71 the Tally of Confirmed Crohn's Disease Susceptibility Loci. Submitted.
15. Turner CA Jr, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell. 1994; 77:297-306. [PubMed: 8168136]
16. Martins GA, Cimmino L, Liao J, Magnusdottir E, Calame K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J Exp Med. 2008; 205:1959-65. [PubMed: 18725523]
17. Kallies A, Xin A, Belz GT, Nutt SL. Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity. 2009; 31:283-95. [PubMed: 19664942]
18. Grenningloh R, Kang BY, Ho IC. Ets-1, a functional cofactor of T-bet, is essential for Th1 inflammatory responses. J Exp Med. 2005; 201:615-26. [PubMed: 15728239]
19. Moisan J, Grenningloh R, Bettelli E, Oukka M, Ho IC. Ets-1 is a negative regulator of Th17 differentiation. J Exp Med. 2007; 204:2825-35. [PubMed: 17967903]
20. Sabath E, et al. Galpha12 regulates protein interactions within the MDCK cell tight junction and inhibits tight-junction assembly. J Cell Sci. 2008; 121:814-24. [PubMed: 18285450]
21. Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H) 17 cells. Nature. 2008; 453:1051-7. [PubMed: 18563156]
22. Steinberg MW, et al. A crucial role for HVEM and BTLA in preventing intestinal inflammation. J Exp Med. 2008; 205:1463-76. [PubMed: 18519647]
23. Maerten P, et al. Involvement of 4-1BB (CD137)-4-1BBligand interaction in the modulation of CD4 T cell-mediated inflammatory colitis. Clin Exp Immunol. 2006; 143:228-36. [PubMed: 16412046]
24. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn's disease. Gut. 1989; 30:835-8. [PubMed: 2787769]
25. Williams EJ, et al. Distribution of the interleukin-8 receptors, CXCR1 and CXCR2, in inflamed gut tissue. J Pathol. 2000; 192:533-9. [PubMed: 11113872]
26. Noble CL, et al. Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis. Gut. 2008; 57:1398-405. [PubMed: 18523026]
27. Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol. 2000; 1:426-32. [PubMed: 11062503]
28. Yamazaki M, et al. Mucosal T cells expressing high levels of IL-7 receptor are potential targets for treatment of chronic colitis. J Immunol. 2003; 171:1556-63. [PubMed: 12874249]
29. Gregory SG, et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet. 2007; 39:1083-91. [PubMed: 17660817]
30. Fumagalli M, et al. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J Exp Med. 2009; 206:1395-408. [PubMed: 19468064]
31. Pandey AK, et al. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog. 2009; 5:e1000500. [PubMed: 19578435]
32. Liu L, et al. LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration. J Exp Med. 2005; 201:409-18. [PubMed: 15684321]
Association results and in silico analyses for the 18 previously confirmed ($\mathrm{P}<5 \times 10^{-8}$) ulcerative colitis (UC) loci

Left-right association boundaries are given for each index SNP (see Online Methods). RAF = risk allele frequency. OR is estimated using the metaanalysis cohort only. Known associations represent phenotypes previously associated with the locus at $\mathrm{P}<5 \times 10^{-8}$). AS $=$ ankylosing spondylitis, Ast $=$ Asthma, $\mathrm{BD}=$ Behçet's disease, $\mathrm{CD}=$ Crohn's disease, $\mathrm{CeD}=$ celiac disease, Graves' disease $=\mathrm{GD}, \mathrm{HL}=$ Hodgkin's lymphoma, $\mathrm{MS}=$ multiple sclerosis, $\mathrm{PBC}=$ primary biliary sclerosis, $\mathrm{Ps}=$ psoriasis, $\mathrm{RA}=$ rheumatoid arthritis, $\mathrm{SLE}=$ systemic lupus erythematosus, T1D = type 1 diabetes and $\mathrm{WBC}=$ white blood cell count. Candidate genes of interest are listed. Those in bold were highlighted by in silico analyses (GRAIL connectivity and/or presence of an eQTL or nonsynonymous SNP. See Online Methods and Supplementary Table 7 for more details).								
dbSNP ID	Chr.	Left-right(Mb)	Risk Allele	Allele frequency in controls	P-value (meta)	OR (95\% CI)	Association reported with other phenotypes	Positional candidate genes of interest
rs6426833	1 p 36	19.93-20.18	A	0.541	3.93×10^{-35}	1.30 (1.25-1.35)		
rs11209026	1p31	67.30-67.54	G	0.935	5.12×10^{-28}	1.74 (1.57-1.92)	CD, AS, BD, Ps	IL23R
rs1801274	1 q 23	159.54-159.91	A	0.505	2.16×10^{-20}	1.21 (1.16-1.26)	SLE	FCGR2A, FCGR2B, HSPA6
rs3024505	1 q 32	204.85-205.11	A	0.159	5.76×10^{-17}	1.25 (1.19-1.32)	CD, BD, SLE, TID	IL10, IL19
rs7608910	2 p 16	60.76-61.87	G	0.390	1.70×10^{-14}	1.19 (1.14-1.24)	$\mathrm{CD}, \mathrm{CeD}, \mathrm{RA}$	PUSIO
rs4676406	2 q 37	241.20-241.32	T	0.516	8.32×10^{-11}	1.14 (1.09-1.18)		GPR35
rs9822268	3p21	48.14-51.77	A	0.302	1.60×10^{-17}	1.21 (1.16-1.26)	CD	MST1, UBA7, APEH, AMIGO3, GMPPB, BSN
rs 17388568	4 q 27	123.20-123.78	A	0.273	9.49×10^{-7}	1.12 (1.07-1.17)	CeD, Tid	IL21, IL2, ADADI
rs11739663	5p15	0.48-0.80	T	0.767	2.80×10^{-8}	1.15 (1.09-1.21)		EXOC3
rs9268853	6 p 21	31.49-33.01	T	0.661	1.35×10^{-55}	1.40 (1.34-1.47)	CD, CeD, GrD, MS, PBC, RA, T1D	HLA-DRB5, HLA-DQA1, HLA-DRB1, HLADRA, BTNL 2
rs4510766	7q22	107.20-107.39	A	0.559	2.00×10^{-16}	1.20 (1.15-1.26)		
rs6584283	10q24	101.25-101.33	T	0.472	8.46×10^{-21}	1.21 (1.16-1.26)	CD	
rs7134599	12 q 14	66.72-66.92	A	0.385	1.06×10^{-16}	1.19 (1.14-1.24)		IFNG, IL26
rs6499188	16 q 22	66.98-67.40	A	0.749	3.97×10^{-8}	1.14 (1.09-1.20)		ZFP90
rs2872507	17 q 12	34.62-35.51	A	0.463	5.44×10^{-11}	1.15 (1.10-1.19)	CD, Ast, PBC, T1D, WBC	IKZF3, ORMDL3, IKZF3, PNMT, ZPBP2, GSDML
rs6017342	20q13	42.49-42.70	C	0.538	1.09×10^{-20}	1.20 (1.15-1.26)	HDL	SERINC3
rs2836878	21 q 22	39.34-39.41	G	0.738	1.86×10^{-22}	1.25 (1.20-1.32)	AS	
rs5771069	22 q 13	48.70-48.83	G	0.515	1.87×10^{-7}	1.11 (1.07-1.16)		PIM3, ILI7REL

UC loci that meet genome-wide significance $\mathrm{P}<5 \times 10^{-8}$ in the combined analysis and $\mathrm{P}<0.05$ in the replication study. Left-right association boundaries ar given for each index SNP (see Online Methods). RAF = risk allele frequency. OR is estimated using the replication cohort only. Known associations represent phenotypes previously associated with the locus at $\mathrm{P}<5 \times 10^{-8}$. AtD $=$ atopic dermatitis, $\mathrm{BMD}=$ bone mineral density, $\mathrm{CD}=\mathrm{Crohn}$'s disease, $\mathrm{CeD}=$ celiac disease, $\mathrm{Gli}=$ glioma, $\mathrm{Lep}=$ leprosy, $\mathrm{MS}=$ multiple sclerosis, $\mathrm{MyN}=$ myeloproliferative neoplasms, $\mathrm{PBC}=$ primary biliary sclerosis, $\mathrm{Ps}=$ psoriasis, RA = rheumatoid arthritis and SLE = systemic lupus erythematosus. Candidate genes of interest are listed. Those in bold were highlighted by $i n$ silico analyses (GRAIL connectivity and/or presence of an eQTL or nonsynonymous SNP. See Online Methods and Supplementary Table 7 for more details).										
dbSNP ID	Chr.	Left-right(Mb)	Risk Allele	$\begin{gathered} \text { Allele } \\ \text { frequency } \\ \text { in } \\ \text { controls } \end{gathered}$	P-value (meta)	P-value (follow-up)	P-value (comb)	OR (95\% CI)	Association reported with other phenotypes	Positional candidate genes of interest
rs734999	1 p36	2.39-2.80	C	0.524	1.21×10^{-9}	1.51×10^{-2}	3.34×10^{-9}	1.05 (1.01-1.09)	CeD, PBC	TNFRSF14, MMEL1, PLCH2, C1orf93
rs35675666	1p36	7.83-8.13	G	0.829	1.09×10^{-8}	1.13×10^{-2}	4.84×10^{-9}	1.08 (1.02-1.15)	CD	TNFRSF9, ERFFII,UTS2,PARK7
rs7524102	1p36	22.54-22.61	A	0.828	1.04×10^{-11}	2.06×10^{-4}	1.65×10^{-13}	1.10 (1.05-1.16)	BMD	
rs7554511	1 q 32	199.06-199.33	C	0.721	2.04×10^{-13}	NA	NA	1.19 (1.14-1.25)	CD, CeD	Clorf106
rs2310173	2q11	101.66-102.13	T	0.461	8.44×10^{-8}	5.94×10^{-6}	3.17×10^{-12}	1.09 (1.05-1.14)		ILIR2
rs 11676348	2 q 35	218.58-218.97	T	0.486	8.78×10^{-9}	6.18×10^{-4}	1.25×10^{-10}	1.07 (1.03-1.11)		IL8RA, SLC11A1, IL8RB, AAMP, ARPC
rs267939	5p15	10.72-10.90	C	0.368	9.67×10^{-7}	1.27×10^{-6}	6.01×10^{-12}	1.10 (1.06-1.15)		DAP
rs3194051	5p13	35.83-36.07	G	0.269	2.19×10^{-6}	2.06×10^{-3}	4.22×10^{-8}	1.07 (1.02-1.12)	MS	${ }_{\text {IL7R }}$
rs6451493*	5p13	40.32-40.85	T	0.610	1.78×10^{-6}	2.09×10^{-4}	2.80×10^{-9}	1.08 (1.04-1.12)	CD, MS	PTGER4
rs254560	5 q 31	134.41-134.53	A	0.397	3.06×10^{-7}	4.19×10^{-4}	1.25×10^{-9}	1.07 (1.03-1.12)		
rs6871626	5 q 33	158.46-158.86	A	0.334	1.02×10^{-8}	1.40×10^{-14}	1.11×10^{-21}	1.17 (1.12-1.22)	CD, Ps, SLE	IL12B
rs943072	6 p 21	43.88-43.92	G	0.092	1.05×10^{-6}	3.71×10^{-5}	2.37×10^{-10}	1.15 (1.08-1.23)		
rs6911490	6 q 21	106.51-106.67	T	0.210	3.51×10^{-7}	1.70×10^{-3}	1.01×10^{-8}	1.08 (1.03-1.13)	CD, RA, SLE	PDRMI
rs6920220	6q23	137.88-138.17	A	0.207	6.38×10^{-10}	1.94×10^{-8}	8.05×10^{-17}	1.14 (1.09-1.20)	$\begin{aligned} & \text { CeD, Ps, RA, } \\ & \text { SLE } \end{aligned}$	
rs798502	7 p 22	2.70-2.90	A	0.711	1.21×10^{-8}	3.82×10^{-8}	2.61×10^{-15}	1.13 (1.08-1.18)		GNA12
rs4728142	7 q 32	128.33-128.56	A	0.444	1.68×10^{-6}	1.25×10^{-3}	1.74×10^{-8}	1.07 (1.03-1.11)	SLE, RA, PBC	IRF5, TNPO3
rs 10758669	9 p 24	4.93-5.28	C	0.350	8.52×10^{-13}	3.78×10^{-14}	2.22×10^{-25}	1.17 (1.12-1.21)	$\mathrm{CD}, \mathrm{MyN}$	JAK2
rs4246905	9q32	116.48-116.74	C	0.713	4.77×10^{-8}	1.44×10^{-5}	5.65×10^{-12}	1.10 (1.05-1.15)	CD, Lep	TNFSF8, TNFSF15

[^1]
Table 2

$\left.\begin{array}{llllclllllll}\hline \text { dbSNP ID } & \text { Chr. } & \text { Left-right(Mb) } & \text { Risk Allele } & \begin{array}{c}\text { Allele } \\ \text { frequency } \\ \text { in }\end{array} & \text { P-value (meta) } & \text { P-value (follow-up) } & \text { P-value (comb) } & \text { OR (95\% CI) } & \begin{array}{l}\text { Association } \\ \text { reported with } \\ \text { other } \\ \text { phenotypes }\end{array} \\ \hline \text { rontrols }\end{array} \quad \begin{array}{l}\text { Positional candidate genes of } \\ \text { interest }\end{array}\right]$

Shared association signals between UC and CD

A shared association is defined as a confirmed association ($\mathrm{P}_{\text {combined }}<5 \times 10^{-8}$) in either UC or CD and $\mathrm{P}_{\text {meta }}<1 \times 10-4$ in the other form of IBD. For more details and comparative results across all 99 reported IBD risk loci see Supplementary table 9.

Chr.	LOCUS Left-Right (Mb)	GENE Candidate	INDEX SNP			CD-META (6333/15056)		UC-META (6687/19718)	
			SNP	Risk Allele	Allele frequency in controls	p-value	OR ($\mathbf{9 5 \%}$ CI)	p-value	OR (95\% CI)
1p31	67.30-67.54	IL23R	rs11209026	G	0.94	1.00×10^{-64}	2.67 (2.37-3.01)	5.12×10^{-28}	1.74 (1.57-1.92)
1q32	199.0-199.33	KIF21B	rs7554511	C	0.72	1.58×10^{-7}	1.14 (1.08-1.19)	2.04×10^{-13}	1.19 (1.14-1.25)
1q32	204.85-205.11	IL10	rs3024505	A	0.16	8.32×10^{-9}	1.18 (1.12-1.25)	5.76×10^{-17}	1.25 (1.19-1.32)
2p16	60.76-61.87	REL	rs7608910	G	0.39	3.11×10^{-7}	1.14 (1.09-1.21)	1.70×10^{-14}	1.19 (1.14-1.24)
2 q 11	101.66-102.13	IL1R2	rs2310173	T	0.46	8.31×10^{-5}	1.09 (1.04-1.14)	8.44×10^{-8}	1.12 (1.07-1.16)
3p21	48.14-51.77	MST1	rs3197999	A	0.30	6.17×10^{-17}	1.22 (1.16-1.27)	1.86×10^{-17}	1.21 (1.16-1.26)
5p13	40.32-40.85	PTGER 4	rs6451493	T	0.61	1.61×10^{-27}	1.35 (1.28-1.43)	1.78×10^{-6}	1.12 (1.07-1.17)
		IL12B	rs6871626	A	0.33	6.08×10^{-12}	1.15 (1.10-1.20)	1.02×10^{-8}	1.12 (1.08-1.17)
5 q 33	158.46-158.86	IL12B	rs6556412 ($\mathrm{r}^{2}=0.03$)	A	0.34	5.37×10^{-14}	1.18 (1.13-1.23)	1.69×10^{-5}	1.09 (1.05-1.14)
6p22	20.60-21.25	CDKAL1	rs6908425	C	0.78	1.41×10^{-8}	1.17 (1.11-1.23)	7.75×10^{-5}	1.11 (1.05-1.16)
6 q 21	106.51-106.67	PRDM1	rs6911490	T	0.21	4.28×10^{-7}	1.12 (1.07-1.18)	3.51×10^{-7}	1.13 (1.07-1.18)
9p24	4.93-5.29	$J A K 2$	rs10758669	C	0.35	1.00×10^{-13}	1.18 (1.13-1.23)	8.52×10^{-13}	1.16 (1.11-1.21)
9 q 32	116.48-116.74	TNFSF15	rs4246905	C	0.71	1.33×10^{-15}	1.21 (1.15-1.28)	4.77×10^{-8}	1.13 (1.08-1.18)
9 q 34	138.27-138.55	CARD9	rs10781499	A	0.40	3.49×10^{-18}	1.20 (1.15-1.26)	6.95×10^{-13}	1.16 (1.11-1.21)
10p11	35.22-35.94	CREM/CCNY	rs 12261843	G	0.29	1.87×10^{-9}	1.15 (1.10-1.20)	2.35×10^{-8}	1.13 (1.08-1.18)
10q21	63.97-64.43	ZNF365	rs10761659	G	0.54	4.37×10^{-22}	1.23 (1.18-1.28)	7.39×10^{-6}	1.10 (1.05-1.14)
10q24	101.25-101.33	NKX2.3	rs6584283	T	0.47	7.18×10^{-20}	1.21 (1.16-1.27)	8.46×10^{-21}	1.21 (1.16-1.26)

Uew douln \forall Vd-HIN			ıd!ı3snuew ıO4ın \forall d-HIN			ıd!ıOsnuew ıOyın $\forall \forall d-H I N$			
	LOCUS	GENE		INDEX		CD-MET	(6333/15056)	UC-MET	(6687/19718)
Chr.	Left-Right (Mb)	Candidate	SNP	Risk Allele	Allele frequency in controls	p-value	OR (95\% CI)	p-value	OR (95\% CI)
11q13	75.72-76.02	C11Orf30	rs2155219	T	0.50	1.58×10^{-12}	1.16 (1.11-1.21)	6.33×10^{-8}	1.12 (1.07-1.16)
15q22	65.2-65.27	SMAD3	rs17293632	T	0.24	1.41×10^{-13}	1.19 (1.14-1.25)	9.52×10^{-6}	1.11 (1.06-1.16)
17q12	34.62-35.51	ORMDL3	rs2872507	A	0.46	1.51×10^{-9}	1.14 (1.09-1.19)	5.44×10^{-11}	1.15 (1.10-1.19)
18p11	12.73-12.92	PTPN2	rs1893217	G	0.16	1.29×10^{-14}	1.25 (1.18-1.32)	4.78×10^{-5}	1.12 (1.06-1.18)
19p13	10.26-10.5	TYK2	rs12720356	C	0.08	9.20×10^{-10}	1.22 (1.14-1.31)	3.90×10^{-6}	1.17 (1.09-1.26)
19q13	38.42-38.47	-	rs736289	T	0.61	2.69×10^{-7}	1.11 (1.06-1.16)	1.89×10^{-5}	1.08 (1.03-1.12)
20q13	61.66-61.98	RTEL1/SLC2A4RG	rs2297441	A	0.76	1.83×10^{-11}	1.19 (1.13-1.25)	5.78×10^{-8}	1.14 (1.09-1.20)
21q21	15.62-15.77	-	rs1297265	A	0.57	1.41×10^{-8}	1.16 (1.10-1.22)	1.73×10^{-7}	1.11 (1.06-1.16)
21q22	39.34-39.41	-	rs2836878	G	0.74	3.22×10^{-6}	1.12 (1.06-1.17)	1.86×10^{-22}	1.25 (1.20-1.32)
21q22	44.41-44.52	ICOSLG	rs2838519	G	0.39	2.09×10^{-14}	1.18 (1.13-1.23)	2.26×10^{-8}	1.12 (1.08-1.17)
22q11	20.14-20.39	YDJC	rs181359	A	0.19	6.31×10^{-13}	1.21 (1.15-1.28)	2.73×10^{-5}	1.11 (1.06-1.17)

[^0]: Correspondence should be addressed to C.A.A. (carl.anderson@sanger.ac.uk)or J.D.R. (john.david.rioux @umontreal.ca).
 ${ }^{79}$ These authors contributed equally to this work.
 ${ }^{80}$ These authors contributed equally to this work.
 Contribution of authors CWL, AF, KDT, JCL, MI, AL, LA, LB, RNB, MB, TMB, SB, CB, J-FC, LAD, MdV, MD, CE, RSNF, TF, DF, MG, JG, NLG, SLG, TH, NKH, J-PH, GJ, DL, IL, ML, AL, CLi, EL, DPM, MM, CM, AN, WN, RAO, LP, OP, LPB, JP, AP, NJP, DDP, RRo, RRu, PR, JS, MS, PS, FS, YS, MS, AHS, SRT, LHvdB, MV, HV, TW, CW, DCW, H-JW, CYP, VA, LT, MG, NPA, THK, LK, JS, JCM, SK, MSS, JH, JIR, CGM, AMG, RG, TA, SRB, MC, JS, JHC, SS, MP, VA, HH, GRS, RHD, SV, RKW and JDR established DNA collections, recruited patients or assembled phenotypic data; AF, MD'A, PG, CLa, RS, SB, CLi, DPM, GWM, LS, ZZZ, MC, RHD, and JDR conducted or supervised laboratory work; CAA, GB, DE, JABF, LF, KIM, AN, RAO, RJX, MJD, JCB, RKW, and JDR performed or supervised statistical analyses; CAA, GB, CWL, GRS, RHD, SV, RKW and JDR drafted the manuscript. All authors read and approved the final manuscript before submission.
 All authors declare no financial interest.

[^1]: Association results and in silico analyses for the 29 newly confirmed ulcerative colitis (UC) loci UC loci that meet genome-wide significance $\mathrm{P}<5 \times 10^{-8}$ in the combined analysis and $\mathrm{P}<0.05$ in the replication study. Left-right association boundaries are given for each index SNP (see Online Methods). RAF = risk allele frequency. OR is estimated using the replication cohort only. Known associations represent phenotypes previously associated with the locus at $\mathrm{P}<5 \times 10^{-8}$. AtD $=$ atopic dermatitis, $\mathrm{BMD}=$ bone mineral density, $\mathrm{CD}=\mathrm{Crohn}$'s disease, $\mathrm{CeD}=$ celiac disease, $\mathrm{Gli}=$ glioma, Lep = leprosy, $\mathrm{MS}=$ multiple sclerosis, $\mathrm{MyN}=$ myeloproliferative neoplasms, $\mathrm{PBC}=$ primary biliary sclerosis, $\mathrm{Ps}=$ psoriasis, $\mathrm{RA}=$ rheumatoid arthritis and $\mathrm{SLE}=$ systemic lupus erythematosus. Candidate genes of interest are listed. Those in bold were highlighted by in silico analyses (GRAIL connectivity and/or presence of an eQTL or nonsynonymous SNP. See Online Methods and Supplementary Table 7 for more details).

