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We consider a general economy, where agents have private information about
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1 Introduction

As first shown by Akerlof (1970), Spence (1973) and Rothschild and Stiglitz (1976),
hidden-types (adverse selection) problems can have significant consequences in terms of
efficiency on economic outcomes. More specifically, incentive compatibility constraints
limit the set of feasible allocations that can be attained. How are these restrictions
relaxed as more information becomes common knowledge? And what is the minimum
additional information required for achieving first-best efficiency? These are some of
the questions that have emerged in the attempt to better understand the effects of
information aggregation on efficiency. Indeed, some early papers by McAfee (1992),
Armstrong (1999) and Casella (2002) already point towards this direction.

In this paper we claim that if the number of agents with the same type is known for
all types in a population (in other words, the realized frequency of types is known), then
it is possible, under general conditions, to implement first-best allocations as a unique
equilibrium. More precisely, we consider an economy with asymmetric information,
where each agent has private information about his type. We also assume that: (i)
the realized frequency of types is common knowledge, (ii) preferences satisfy the Local
Non-Common Indifference Property, and (iii) the social choice rule satisfies Anonymity.
Given these conditions, we show that it is possible to construct a mechanism which has
a unique equilibrium, where all agents reveal their type truthfully and they receive a
first-best allocation. We obtain our equilibrium by using iterated elimination of strictly
dominated strategies, and hence it is also a Bayes-Nash equilibrium.

The result is interesting because we examine an asymmetric information problem
which is situated in-between the problem of Maskin (1999) (in which all agents know
the state of world but the mechanism designer does not know it) and the classic adverse
selection (in which each agent knows only his own type and the mechanism designer
knows the ex-ante distribution of types). The intuition behind the result is that, if
the realized frequency of types is known, then one can aggregate the messages that all
agents are sending out and uncover any misreport(s), even if the identity of the liar is
not known. That is appropriately designed punishments for lying can induce agents to
reveal their information truthfully. We talk about appropriately designed punishments,
because one of the features of our mechanism is that punishments must not be too
harsh. If the punishment when a lie is detected is too severe, then some agents may
deliberately lie about their type in order to force other agents to also do so. The lies
cancel out at the aggregate level and the former agents “steal” the allocations of the
latter, who are forced to lie under the fear of the extreme punishments. This can lead
to coordination failures and multiplicity of equilibria. Therefore, uniqueness of the
equilibrium requires a careful construction of the off-the-equilibrium path allocations
when lies are detected. We show that such punishments exist when the indifference
curves of different types are not locally identical, meaning that in the neighborhood of
any allocation one can find other allocations such that each type prefers one of these
over the rest.

This result is also interesting for two more reasons. First, one may consider economic
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applications with a finite number of agents, where, in addition to the private information
that each individual has, there is knowledge about how many agents have each type.
This additional information could come from a positive or negative informational shock.
For example, a retail store has received pre-paid orders from its customers, has already
the goods in stock and is ready to make the deliveries. However, the records on the
orders get destroyed due to an accident and the store’s manager does not know who
made each order. What is he to do? Can he induce the customers to truthfully reveal
the orders they have made without them making unreasonable claims or receiving orders
that were meant for other customers? We claim that this is possible, as long as the
manager posts a list with all the orders made and gives to each customer a basket of
goods, which depends on how many other agents have claimed to have ordered it.

Second, there are some well-known models of adverse selection (for example Akerloff
(1970) and Spence (1973)) which assume that the proportion of each type in the popu-
lation is common knowledge. For these models, the mechanism presented in this paper
can be used in order to provide first-best allocations. To the best of our knowledge,
this efficiency result has not been provided in the literature so far.

Admittedly, the assumption that the realized distribution is common knowledge
is stronger than the standard assumption of only the ex-ante distribution being com-
mon knowledge, which is more commonly used. However, in a closely related paper
(Boukouras and Koufopoulos, 2013) we show that this limitation can be overcome. In
particular, we show that if the ex-ante distribution is common knowledge, then there
exists a mechanism which implements allocations arbitrarily close to the first-best allo-
cations as the number of agents becomes large. Even though the mechanism used there
is not the same as the one in this paper, many of the results and insights come from
the work presented here.

The most closely related paper to ours is Jackson and Sonnenschein (2007), who
consider an economy where agents play multiple copies of the same game at the same
time and their types are independently distributed across games. They allow for mech-
anisms, which “budget” the number of times that an agent claims to be of a certain
type. If the number of parallel games becomes very large, then all the Bayes-Nash
equilibria of these mechanisms converge to first-best allocations. Our model is different
from theirs, because we do not require multiple games to be played at the same time
but we impose a stronger assumption on what is common knowledge. Moreover, we
allow for interdependent values, while they consider an independent values setting, and
in our model asymmetric information may include other individual characteristics apart
from preferences (productivity parameters, proneness to accidents, etc.).

McLean and Postlewaite (2002, 2004) consider efficient mechanisms in economies
with interdependent values. The state of the world is unknown to all agents, but
each individual receives a noisy private signal about the state. They show that when
signals are sufficiently correlated with the state of the world and each agent has small
informational size (in the sense that his signal does not contain additional information
about the state of the world when the signals of all the other agents are taken into
account), then their mechanism implements allocations arbitrarily close to first-best
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allocations. However, in the model of McLean and Postlewaite, when private signals
are perfectly correlated, all agents learn not only their own type but also the type of
all other agents. That is, in the limit, the framework of McLean and Postlewaite is one
of complete information. In contrast, in our setting agents know, at most, the realized
frequency of types1.

VCG-mechanisms (Vikrey, 1961, Clarke, 1971, Groves, 1973) are often reference
points in terms of results on efficiency. With respect to these mechanisms, our paper
has the following differences: (i) they assume quasi-linear preferences while we allow for
general preferences, (ii) VCG mechanisms may violate budget balance, while we provide
conditions, which ensure that this never happens on or off the equilibrium path.

Our paper is also related to the auctions literature with interdependent types. In
this context, Crémer and McLean (1985) and Perry and Reny (2002, 2005), show the
existence of efficient auctions when types are interdependent. Crémer and McLean,
however, require quasi-linear preferences and large transfers which may violate ex-post
feasibility. Also, Perry and Reny require the single crossing property on preferences
which is a stronger restriction than ours. Our general framework can encompass auc-
tion design problems as well. Furthermore, our main focus is the uniqueness of the
equilibrium, an issue which is not studied in these papers.

In the framework of auction design the papers by Maskin (1992), Dasgupta and
Maskin (2000) and Jehiel and Moldovanu (2001) show, in increasing generality, that
efficiency and incentive compatibility can not be simultaneously satisfied if the single
crossing condition is violated or if signals are multidimensional. In that respect, the
additional information of our environment allows us to overcome this impossibility and
implement efficient outcomes, even if conditions, which are necessary in the standard
mechanism design literature for implementation, are violated.

Rustichini, Satterthwaite and Williams (1994) show that the inefficiency of trade
between buyers and sellers of a good, who are privately informed about their preferences,
rapidly decreases with the number of agents involved in the two sides of the market and
in the limit it reaches zero. Effectively, the paper examines the issue of convergence to
the competitive equilibrium as the number of agents increases. However, their model
is limited to private values problems and hence it can be seen as a special case of our
formulation.

More recently, the papers by Mezzetti (2004) and Ausubel (2004),(2006) examine the
issues of efficient implementation under interdependent valuations and independently
distributed types. However, they also assume that agents’ preferences are quasi-linear
with respect to the transfers they receive, whereas in our model utility may not be
transferable. Moreover, the mechanisms proposed in these papers may generate multiple
equilibria (in most of which truth-telling is violated), while we are interested in a
mechanism which has a unique truth-telling equilibrium.

1In a sense, in our model agents receive private signals as well, but one can think of them as perfect
signals about the frequency of types.
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2 An Example: Spence (1973)

First we demonstrate how the knowledge of the realized frequency of types can be used
to implement first best allocations as a unique equilibrium by applying the main idea
to the classic paper by Spence (1973). The economy consists of two types of workers.
Type 1 has low productivity a and its proportion of the population is q1. Type 2 has
high productivity a , (a > a) and its proportion of the population is 1− q1

2. Acquiring
y units of education costs y/a for type 1 and y/a for type 2. Productivity parameters
are private information and firms hire workers according to a wage schedule, based on
verifiable educational attainment. The payoff for an individual is the value of his wage
minus the educational cost and for a firm the productivity parameter minus the wage.

Spence argues that agents will acquire education (which does not increase produc-
tivity in his model) in order to signal their productivity to firms. In equilibrium, the
wage schedules are such that high productivity workers acquire some education and
credibly signal their type, while low productivity workers acquire no education, and
firms correctly infer that they are of low productivity. The education acquired by type
2 is a deadweight loss, but necessary for credible signaling.

W(y)

FBa2

1U

2U

a

a

y

FBa1

1

0a

a

Figure 1: Spence, 1973

2Note that in the original paper, Spence made the assumption that a known proportion of the
population belongs to one type and the remainder proportion belongs to the other type. Hence, he
implicitly made the assumption that the realized frequency of types is common knowledge and, hence,
we can apply our mechanism directly into his economy.
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Assume that the total population is N . Then Nq1 is the total number of agents of
type 1 and N(1 − q1) is the total number of agents of type 2. Given that, the fol-
lowing mechanism can separate types without any agent incurring educational costs in
equilibrium.

Let all workers report their type. If the number of agents who report type 1 and 2 is
Nq1 and N(1−q1) respectively, then agents who report type 1 receive wage w1 = a and
those who report type 2, receive wage w2 = a. In any other case, where the reported
number of types do not match their population size, those who report type 1 receive
w1 = a and those who report type 2, are asked to undertake one unit of education and
receive w2 = a + ε, with 1

a
< ε < 1

a
(recall that a unit of education costs 1

a
for high

productivity workers and 1
a

for low productivity workers).

The above mechanism fully implements the first-best allocations in this economy.
First, consider the strategies of type 2. It is clear that, irrespectively of the reports of
the other agents, it is a strictly dominant strategy for him to report his type truthfully.
This is because, when everybody else reports truthfully, he prefers to report truthfully
as well (then his payoff is a) than to misreport his type (then his payoff is a), given that
a > a. Similarly, if someone else lies, he prefers to report truthfully and receive a payoff
of a+ ε− 1

a
than to cover the lie by misreporting and receive a, given that a+ ε− 1

a
> a.

Given the dominant strategy of type 2 and a > a+ ε− 1
a
, it is a best-response for type

1 to report truthfully as well. Hence, all agents report truthfully in equilibrium and
acquire zero education. In Figure 1, contract a0 denotes the offer to the workers, who
report high productivity, when lies are detected.

3 The Economy

The previous example was used in order to show that it is possible to eliminate asym-
metric information problems if the realized frequency is common knowledge. We now
proceed to show that this result is general and does not depend on the specifics of the
example. First, we introduce the economy and the notation.

The economy consists of a finite set I of agents, with I standing for the aggregate
number of agents as well. Θ is the finite set of potential types with elements ϑ. Each
agent has private information about his own type, but does not know the types of the
other agents. β is the vector of realized frequencies of types in the population. That is β
denotes the ex post distribution of types in the population, i.e. the relative frequency of
each type, which materializes after types are drawn. Therefore, β(ϑ) is the proportion
of agents who have type ϑ in the population and N(ϑ) is the total number of agents of
type ϑ: N(ϑ) = β(ϑ)I.

Let A be the set of all feasible allocations, with elements a ∈ A ⊆ RI×L
+ , with

L ≥ 2. L can be interpreted as the number of commodities in the economy. Also, for
any subset J of the set I, let AJ be the set of of feasible allocations for the agents in
J (AJ ⊆ RJ×L

+ ). For the analysis that follows it is also useful to define allocations on
an individual basis. That is, given an allocation a ∈ A, the individual allocation
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ai ∈ RL
+ is the bundle that agent i consumes. Moreover, since later on we will require

that agents of the same type consume the same bundle, it is useful to denote individual
allocations with respect to types. That is, aϑ denotes the individual allocation that an
agent of type ϑ consumes within allocation a.

u : RL ×Θ×ΘI\i → R is the ex post utility function for agent i, which we assume
to be strictly quasi-concave. Since the implementation takes place through some mech-
anism, we denote by m the message profile sent by agents: m = {m1, ...,mi, ...,mI},
by m−i the message profile of all other agents apart from agent i and by a(ϑ,m−i) the
allocation which one gets if he reports type ϑ, conditional on all other messages. µ(ϑ)
is the proportion of the population who have reported type ϑ.

The following definitions are also useful. Lϑ(aϑ) is the lower-contour set of an
agent with type ϑ associated with individual allocation aϑ: Lϑ(aϑ) = {c ∈ RL

+ : uϑ(c) <
uϑ(aϑ)}. Vϑ(aϑ) is the upper-contour set of type ϑ associated with aϑ: Vϑ(aϑ) =
{c ∈ RL

+ : uϑ(c) > uϑ(aϑ)}. Cϑε(aϑ) = {c ∈ RL
+ : uϑ(c) = uϑ(aϑ), ‖c− aϑ‖ < ε} is the

indifference plane of ϑ in the neighborhood of aϑ. A(aϑ) = {c ∈ RL
+ : cl ≤ aϑl,∀ l ∈

L} is the set of individual allocations, which offer weakly less quantity than individual
allocation aϑ for all commodities.

Overall, the economy is described by the following primitives: E = {I, A, u,Θ, β}.
This formulation of the economy allows for modeling a wide variety of economic sit-
uations. Since we impose no restrictions on β or the type-generating process that
produces β, types may or may not be independently distributed. Moreover, the utility
function of agents may or may not depend on the types of other agents, and so both
adverse-selection problems with independent or inter-dependent valuations can be seen
as special cases of our formulation. The model also allows for public goods problems,
since some elements of the individual allocations can be common.

Economies with uncertainty can be easily accommodated by our model as well. For
example, let φ : β → ∆S be the probability distribution function over states, where S
the finite set of states and ∆S is the unit simplex {φ ∈ RS

+|
∑

s∈S φs = 1}. In this case,
L = S × T , where T is the finite set of final commodities, and the agents’ expected
utility function is ui(ai, β) =

∑
s∈S vi(ai, s)φs(β), where vi(ai, s) is the decision-outcome

payoff in state s.

Another example, which is a special case of our formulation is the Prescott-Townsend
(1984) economy when applied to adverse selection problems. In order to make our model
equivalent to theirs, we simply need to specify the individual endowment ξ ∈ RL

+, with
all agents having the same endowment, and the resource constraints

∑
ϑ β(ϑ)riϑ(ai −

ξ) ≤ 0 ∀i ∈ I, where riϑ is some real-valued linear function on L. Of course, Prescott
and Townsend use their model to examine also moral hazard problems, while we restrict
attention to problems of hidden information.

A final comment before we proceed to the next section. Even though we have
not provided any restrictions on the feasible set A, which in principle could be non-
convex, this does not generate problems for implementation. This is because we examine
the implementation of Pareto efficient allocations, which, by definition, are feasible.
Therefore, on-equilibrium path feasibility is guaranteed. For off-the-equilibrium path
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feasibility we provide sufficient conditions in section 5, but the main idea is that out-of-
equilibrium path individual allocations are located in the neighborhood of the efficient
allocation so that feasibility is satisfied, given the feasibility of the efficient allocation.

4 Implementation of First Best Allocations

We now show that, under weak restrictions on allocations and preferences (Anonymity
and Local Non-Common Indifference Property), there exists a mechanism which imple-
ments Pareto efficient allocations as a unique equilibrium.3 The Local Non-Common
Indifference Property requires that, whenever the indifference planes of any two types
intersect, then this intersection is of at least one dimension less than the planes them-
selves. This implies that one can find allocations which satisfy incentive compatibility
for the two types in the neighborhood of any allocation. Anonymity requires that the
first-best allocations are such that agents of the same type receive the same individual
allocation.

Formally, let a∗ be a Pareto efficient allocation and let a∗ϑ be the individual alloca-
tion, which an agent with type ϑ receives in a∗. In other words, a∗ϑ is the allocation
which a mechanism designer would like to offer to an agent with type ϑ, if a∗ were to
be implemented. Then, we have the following definition:

Definition 1: A Social Choice Rule satisfies Anonymity if, for any two agents i and j,
a∗i = a∗j = a∗ϑ, whenever ϑi = ϑj = ϑ.

Assumption 1: The Social Choice Rule satisfies Anonymity.

Under Anonymity, agents who have identical types receive identical allocations. There-
fore, an agent’s identity per-se has no impact on the agent’s final allocation. Anonymity
is a desirable property for a social choice rule. In most cases of interest, economists
are concerned with the economic characteristics of agents and not with their identity.
Therefore, it is reasonable to assume that, if the distribution of these characteristics re-
mains unchanged, so does the distribution of the economically desirable outcomes. It is
also a property satisfied by many commonly used social choice rules, like the Walrasian
correspondence and the utilitarian social welfare function.

Assumption 2: Preferences satisfy the Local Non-Common Indifference Property
(LNCIP).

Definition 2: Let Cϑε(aϑ) = {c ∈ RL
+ : uϑ(c) = uϑ(aϑ), ‖c− aϑ‖ < ε}. The Local

Non-Common Indifference Property is satisfied if ∀ϑ, η ∈ Θ and ∀aϑ ∈ RL
+,

3Of course, this result applies if a Pareto efficient allocation exists in A. If no such allocation exists
then our mechanism does not apply to any allocation in A. We implicitly assume that A is such that
the set of Pareto efficient allocations, A∗, is not empty.
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there exists εϑ,η > 0 such that dim (Cϑε(aϑ) ∩ Cηε(aϑ)) ≤ L× S − 1 , ∀ ε < εϑ,η.

ai
ai

Figure 2: Indifference Curves satisfying LNCIP

LNCIP is a weaker restriction than the Single-Crossing Property (SCP) which is usually
used in the literature. For example, any pair of indifference curves that has finitely
many intersections satisfies the LNCIP but it violates the SCP. Also, LNCIP allows for
tangent indifference planes (as long as the tangent parts “miss” at least one dimension
compared to the indifference planes), while the SCP does not. On the other hand, if
SCP is satisfied then LNCIP is also satisfied. Figure 2 provides two examples, which
illustrate the LNCIP and distinguish it from the SCP.

The main idea of the mechanism is essentially the same as in the example of section
2. First we rank the different types according to the envy they feel for the first-best
allocations of other types. Thus, types of the highest rank do not envy any other type’s
allocation while types of the lowest rank are not envied by any other type. Intermediate
ranks envy the allocation of at least one type with higher rank and do not envy the
allocations of lower ranks.

The mechanism exploits this rank by providing allocations, on and off the equilib-
rium path, such that it is a strictly dominant strategy for the highest rank types (say
of rank K) to report truthfully, irrespectively of their beliefs about the reports of other
types. By always reporting truthfully, these types “signal” to the mechanism designer
whether someone else misreported her type as being of rank K or not, since the mech-
anism designer knows the proportion of K-types in the population and the number of
respective reports she should expect.

In the case that the proportion of the K-type reports is greater than the propor-
tion of K-types in the population, the designer “punishes” the misreporting types and
“rewards” the truthfully reporting types by providing allocations in the neighborhood
of the first-best allocations of the misreporting types. These out-of-the equilibrium
path allocations are designed to satisfy no-envy and to provide slightly higher utility to
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K-types than the utility of the first-best allocations of the other types, so that K-types
indeed prefer to report truthfully. This is always possible due to the LNCIP property.

Given the dominant strategy of the K-types, the best-response of types of the second
highest rank is to also report truthfully, and given this the best-response of the third
highest rank types is to report truthfully, and so on and so forth. Thus, by iterated
elimination of strictly dominated strategies, the unique equilibrium of the mechanism
is for all agents to report truthfully. We break down these arguments in a series of
Lemmas, which lead to the main result in Proposition 1. All proofs are included in the
appendix.

Lemma 1: If a∗ is a Pareto efficient allocation which satisfies Anonymity, then there
exists at least one type ϑ, who does not envy the individual allocation of any other
agent: Uϑ(a∗ϑ) ≥ Uϑ(a∗η), ∀η ∈ Θ.

Corollary 1: If a∗ is a Pareto efficient allocation which satisfies Anonymity, then
Lemma 1 holds for any subset of Θ. Namely, let Θ̌ ⊆ Θ and let Ǎ = {a∗ϑ : ϑ ∈ Θ̌}.
Then, Lemma 1 holds for Θ̌ with regard to Ǎ as well.

Let Rank(K) = {ϑ ∈ Θ : Uϑ(a∗ϑ) ≥ Uη(a
∗
η),∀η ∈ Θ}, be the set of types who do not

envy the allocation of any other type. By Lemma 1, we know that this set is non-empty.
Then, by removing this set of types from the set Θ and applying Corollary 1, we can
define Rank(K-1) = {ϑ ∈ Θ : Uϑ(a∗ϑ) ≥ Uη(a

∗
η),∀η ∈ Θ − Rank(K)}. By iteration,

we can define K groups, 1 ≤ K ≤ Θ, such that the types in each one of them do not
envy any of the types in their own group or groups with lower rank, but they envy
the allocation of some type(s) in groups with higher rank4. We will also refer to group
Rank(K) as the group with the highest rank and group Rank(1) as the group with
the lowest rank.

Definition 3: An individual allocation âϑ(ai) is incentive compatible for type ϑ within a
set of individual allocations Â(ai) if and only if uϑ(âϑ(ai)) > uϑ(â(ai)), ∀âη(ai) ∈ Â(ai).

Lemma 2: If LNCIP holds then for any individual allocation ai there exists a collection
of Θ individual allocations Â(ai) such that for any type ϑ ∈ Θ there exists one individual
allocation âϑ(ai) ∈ Â(ai) which is incentive compatible for this type.

Lemma 2 states that, if the LNCIP holds, then in the neighborhood of any individual
allocation ai, there exists a set of allocations such that each agent of a certain type
prefers a particular allocation over the rest. In other words, it is possible to find
incentive compatible individual allocations for any type in the neighborhood of any

4One extreme case is when an allocation exhibits no-envy, in which case Rank(K) contains the
whole set of types (egalitarian allocations: K = 1). The other extreme case is when each rank-group
contains a single type, in which case the types form a complete hierarchy, from the one who is envied
by all the other types to the one who is not envied by anyone (K = I).
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allocation, which implies that it is possible to satisfy no-envy, at least in a local sense.

Proposition 1: If preferences satisfy the LNCIP, then, for every Pareto efficient al-
location a∗, which satisfies Anonymity, there exists a mechanism, for which a∗ is the
unique Bayes-Nash equilibrium allocation and agents report their private information
truthfully.

Even though the mechanism which is used in the proof of Proposition 1 is formally
presented in the appendix, we would like to comment on the advantages it presents in
comparison to the existing literature (see for example, Jackson, 1991, Maskin, 1999).
First, our mechanism holds even with two agents (or even in the degenerate case of
one agent). Second, the required message space is minimal, since agents send messages
only about their own type. Third, we do not require any ad-hoc game, which has no
equilibrium in pure strategies (like an integer game), in order to rule out undesirable
equilibria. This is achieved by ‘enticing’ some of the misreporting agents to report
truthfully, whenever there are multiple misrepresentations. Fourth, our solution concept
is iterated elimination of strictly dominated strategies and, therefore, our mechanism
is not limited only to Bayesian implementation. Finally, Assumptions 1 and 2 are
relatively weak and there are many cases of interest that comply with them.

5 Out-of-Equilibrium Path Feasibility

The mechanism which is used for the proof of Proposition 1 has one caveat. Out-
of-the-equilibrium path feasibility may be violated. This is because if the reported
frequency does not match the realized frequency of two types, with agents of one type
envying the first-best allocation of the other type agents, then these two types receive
allocations in the neighborhood of the first-best allocation of the envying type. For
example, say that η-types envy a∗ϑ and the reported frequencies of ϑ and η types do not
match their realized frequencies. Then all agents who reported these two types receive
an allocation in the neighborhood of a∗η. Since we do not impose any restrictions on
the Pareto-frontier, we know only that a∗η allocations are feasible N(η) times, but not
necessarily N(η) + N(ϑ) times, as required (recall that N(η) is the number of η-types
according to the realized frequency).

In the case described above, out-of-the-equilibrium path feasibility can be satisfied
by slightly modifying the mechanism of Proposition 1, but additional restrictions on
preferences or on the realized frequency may be necessary5. What is required for the
uniqueness of the equilibrium is that there exist feasible individual allocations, say a′ϑ
and a′η such that: Uη(a

∗
η) > Uη(a

′
η) > Uη(a

′
ϑ), Uϑ(a′ϑ) > Uϑ(a∗η) and Uϑ(a′ϑ) > Uϑ(a′η).

That is, one can find out-of-equilibrium feasible allocations such that η-types prefer
their first-best allocation over the out-of-equilibrium allocations, but ϑ-types prefer one
of the out-of-equilibrium allocations over the other and over a∗η.

5In fact, this is the only case in the mechanism of Proposition 1, where feasibility may be violated.
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Figure 3: Feasible and Incentive Compatible Allocations. Case (i):A(a∗ϑ) ∩ Lϑ(a∗η) ⊂
A(a∗ϑ) ∩ Lη(a∗η)

Such allocations exist if Lϑ(a∗η) is a subset of Lη(a
∗
η) in the interior of A(a∗ϑ) (see also

Figure 3). Because A(a∗ϑ)∩Lϑ(a∗η) ⊂ A(a∗ϑ)∩Lη(a∗η), there exists an allocation a′ϑ such
that a′ϑ ∈ A(a∗ϑ) ∩ Lη(a∗η) and a′ϑ /∈ A(a∗ϑ) ∩ Lϑ(a∗η). This means that ϑ types strictly
prefer a′ϑ to a∗η and vice versa for η types. Moreover, because a′ϑ is in the interior of
A(a∗ϑ), it is feasible to provide it up to N(ϑ) times. It is also easy to find an allocation
a′η, arbitrarily close but strictly in the interior of A(a∗η) such that the rest of the required
inequalities are satisfied (Figure 3).

A more demanding case is when A(a∗ϑ)∩Lη(a∗η) ⊂ A(a∗ϑ)∩Lϑ(a∗η) (Figure 4). Then
it is impossible to find a allocation a′ϑ, which satisfies the required inequalities and is in
the interior of A(a∗ϑ). If one does not impose any further restriction on preference than
LNCIP, then such an allocation exists for sure only in the neighborhood of a∗η. But a∗η
is available up to N(η) times at most, and therefore, if N(η) < N(ϑ), there may not
be enough out-of-equilibrium path allocations for ϑ types to induce truthful reporting
from their part, whenever η types misreport.

The problem can be solved if we impose the single-crossing property on the utility
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Figure 4: Feasible and Incentive Compatible Allocations. Case (ii):A(a∗ϑ) ∩ Lη(a∗η) ⊂
A(a∗ϑ) ∩ Lϑ(a∗η)

functions of different types, so that the types who are envied have steeper indifference
planes than those types who envy them (with respect to some commodity which is
provided in greater quantity in the first best allocations of the envied types). Such a
condition ensures that the situation of Figure 4 does not arise.

Formally, we require that, if Uη(a
∗
ϑ) > Uη(a

∗
η) and a∗ηk > a∗ϑk for some commodity k,

then there exists at least one commodity l such that a∗ϑl > a∗ηl and − ∂Uϑ/∂l
∂Uϑ/∂k

< − ∂Uη/∂l

∂Uη/∂k
.

A more general condition than single-crossing, which also ensures that the situation
of Figure 4 does not arise, is to assume that, in the interior of the set A(a∗ϑ), the
lower-contour set of the envied type is a subset of the lower-contour set of the type
who feels envy (the contour sets are taken with respect to the first best allocations of
the type who feels envy). Formally, whenever Uη(a

∗
ϑ) > Uη(a

∗
η), then the restriction is

A(a∗ϑ) ∩ Lϑ(a∗η) ⊂ A(a∗ϑ) ∩ Lη(a∗η).
Finally, a third way to satisfy off-the-equilibrium path feasibility is to impose a

condition on the realized frequency of types. The condition requires that the number of
incentive compatible allocations in the neighborhood of a∗η is large enough such that it is
feasible to provide each of ϑ-type agents with one of these allocations, whenever it is not
possible to provide incentive compatible allocations in the interior of A(a∗ϑ). Formally,
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whenever Uη(a
∗
ϑ) > Uη(a

∗
η) and A(a∗ϑ) ∩ Lη(a∗η) ⊂ A(a∗ϑ) ∩ Lϑ(a∗η), then N(η) ≥ N(ϑ).

If any of the above additional assumptions is imposed, then one can still use the
mechanism of Proposition 1 to fully implement first best allocations and satisfy out-of-
equilibrium path feasibility at the same time. The only difference is a change in the
implemented allocations in case 2.(b) of the mechanism (see page 18). All other parts
of the mechanism and the proof remain unaffected.

Conclusion

In this paper we consider a general hidden-type economy and, under relatively weak
conditions, we show that it is possible to construct a mechanism which has a unique
Bayes-Nash equilibrium, where all agents reveal their type truthfully and they receive
a first-best allocation. If the realized frequencies of types are known, then one can
aggregate the messages that all agents are sending out and uncover any misreport(s),
even if the identity of the liar is not known.

Truth-telling, however, requires appropriately designed punishments for lying. If
the punishment from detecting a lie is too severe, then some agents may deliberately
lie about their type in order to force other agents to also do so. The lies cancel out and
the former agents “steal” the allocations of the latter, who are forced to lie under the
fear of the extreme punishments. This can lead to coordination failures and multiplicity
of equilibria. Therefore, uniqueness of the equilibrium requires a careful construction
of the allocations when lies are detected. We show that such punishments exist when
the indifference curves of different types are not locally identical, meaning that in the
neighborhood of any allocation one can find other allocations such that each type prefers
one of these over the rest.

It should be stressed that we obtain our equilibrium by using iterated elimination
of strictly dominated strategies and, hence, it is also a Bayes-Nash equilibrium. This
contrasts with most of the existing papers, where the Bayesian equilibrium concept is
used. Finally, even though our assumption regarding the realized distribution of types
may appear as strong, in a companion paper (Boukouras and Koufopoulos, 2013) we
relax it. Then, we show that first-best allocations can be implemented arbitrarily close
as the number of agents increases and the law of large numbers applies.
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Appendix

Proof of Lemma 1

Consider a Pareto efficient allocation a∗, which satisfies Anonymity with type-dependent
individual allocations a∗ϑ and suppose that Lemma 1 does not hold. Then, all types
envy at least another type: ∀ a∗ϑ, ∃ η ∈ Θ, η 6= ϑ : Uϑ(a∗η) > Uϑ(a∗ϑ). But, since this
holds for all types, then there exists at least one reassignment of individual allocations
among the I individuals such that some of them are made strictly better-off and the
rest remain as well-off as under a∗.

In order to find one such reassignment, use the following algorithm. Pick an arbitrary
ϑ ∈ Θ and let ϑ = {η ∈ Θ : Uϑ(a∗η) > Uϑ(a∗ϑ)}, be the set of types whom ϑ-types envy.

Reassign one individual allocation a∗η, for some η ∈ ϑ, to one agent of type ϑ. If ϑ ∈ η,
then reassign a∗ϑ (from the ϑ-type individual who received a∗η) to η (to the specific agent
whose a∗η allocation was reassigned) and stop the reassignment.

If ϑ /∈ η, then reassign some allocation a∗ζ , ζ ∈ η to η and then proceed to the
individual whose allocation a∗ζ was reassigned. Iterate the procedure until you reach

some agent of type λ, such that there exists some type κ ∈ λ, whose allocation a∗κ has
already being reassigned. In this case, ignore all reassignments preceding the individual
of type κ (these agents retain their original allocations), reassign to λ the allocation a∗κ
and stop the reassignments (all reassignments between κ and λ are not modified).

Since the set of agents is finite and all types envy at least one allocation, after at
most I reassignments, the algorithm above will end-up in some agent, whose allocation
has already been reassigned. In this case, a reassignment of allocations has been found,
which makes some agents in I better-off (from agent of type κ until agent λ) while the
rest remain equally well-off. This constitutes a Pareto improvement and violates the
initial assumption that a∗ is Pareto efficient. �

Proof of Corollary 1

Take any subset of agents Θ̌ of the set Θ. Suppose that Lemma 1 does not hold over
the set Ǎ, which is the set of individual allocations of the agents with types in Θ̌. But if
Lemma 1 does not hold, then it is possible to find a reassignment of allocations between
the agents in Θ̌, such that some of them will be made better-off while the rest remain
as well-off. This is a Pareto-improvement for some agents in I, which contradicts the
assumption that a∗ is Pareto efficient. �

Proof of Lemma 2

Recall that Cϑε(ai) = {c ∈ RS×L
+ : Uϑ(c) = Uϑ(ai), ‖c− ai‖ < ε}. Also, recall

that Lϑ(ai) is the lower-contour set of type ϑ associated with individual allocation ai
and Vϑ(ai) is the corresponding upper-contour set (throughout the proof we use the

15



subscript i on allocations in order to make clear that we are considering individual
allocations).

Hai is an L − 1 hyper-plane, which passes through ai, and is perpendicular to the
marginal rate of substitution of some type’s indifference plane through ai. Hai splits
the space of allocations in two sub-spaces, A1 and A2. In each of these sub-spaces, and
due to the LNCIP, there exists some ε(ai) > 0 such that for every ε < ε(ai), within the
open ball Bε(ai), the upper contour set of each type is a subset of the upper contour
set of some other type (see also the figure below).

  

●a

θ
η

ζ

ι

Ha

●b ●c

θ

η

ζ

Hb

Bε(a)

Bε(b)

A1

A2

B1

B2

Figure 5: LNCIP and Local Incentive Compatibility

Say that an agent of type ι is the one with the smallest upper contour set within
ball Bε(ai) and subspace A1: Vι(ai)

⋂
Bε(ai)

⋂
A1 ⊂ Vη(ai)

⋂
Bε(ai)

⋂
A1,∀η ∈ Θ, η 6=

ι. Then, by LNCIP, there exists some allocation bi ∈ Bε(ai) such that ai is strictly
preferred to bi by agents of type ι, but the agents of all other types strictly prefer bi to
ai: bi ∈ Lι(ai) and bi ∈ Vη(ai),∀η ∈ Θ, η 6= ι.

Likewise, taking bi as a starting point, there exists Hbi and an open ball Bε(bi), with
Bε(bi) ⊂ Bε(ai)

⋂
Lι(ai)

⋂
η∈Θ−ι Vη(ai), such that some type ζ ∈ Θ− ι has the smallest

upper contour set in the intersection of Bε(ai) and subspace B1. Thus, by LNCIP, there
exists some allocation ci ∈ Bε(bi) such that ci ∈ Lζ(bi) and ci ∈ Vη(bi),∀η ∈ Θ− {ι, ζ}.
Thus, ai is strictly preferred to bi and ci by type ι, bi is strictly preferred to ai and ci
by type ζ and all other types prefer ci to ai and bi.

By using ci as a starting point and by iterating the above steps, one can construct
Θ individual allocations in the ε-neighborhood of ai (including ai, bi and ci), such that
the agents of one type strictly prefer one allocation over all the other. The properties
described by Lemma 2 and definition 3 follow immediately. �
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Proof of Proposition 1

Let a∗ be a Pareto efficient allocation which satisfies Anonymity. Let âϑ(ai) denote
an individual allocation in the neighborhood of individual allocation ai which satisfies
Lemma 2. This means that ϑ prefers âϑ(ai) to ai and to any other allocation âη(ai),
which is provided for any other type in the neighborhood of ai.

ap is a “punishment” feasible individual allocation: ap ∈
⋂
ϑA(a∗ϑ). That is, ap is an

individual allocation in the interior of the first best individual allocations of all types.
Finally, recall that β(ϑ) is the realized proportion of agents with type ϑ and µ(ϑ) is the
proportion of agents who report ϑ.

The proof is done by construction. Before we proceed, we need to provide the
description of a sub-game, which is induced by the main mechanism if the number of
reports do not match the realized frequencies for two types. The sub-game is one where
the agents of the two misreported types choose an allocation from a “pool” of incentive
compatible individual allocations.

More specifically, if two types, ϑ and η are misreported (µ(ϑ) 6= β(ϑ), µ(η) 6= β(η)),
then the agents who reported these two types are sequentially drawn at random to
choose an individual allocation from a collection of allocations. The collection contains
N(ϑ) times an identical individual allocation, which is incentive compatible for type
ϑ, and N(η) times an individual allocation, which is incentive compatible for type η,
where N(ϑ) is the number of individuals in the economy with type ϑ: N(ϑ) = β(ϑ)I.
Each time an agent chooses an allocation, this allocation is removed from the collection
and the next agent chooses from the remaining allocations. Since this sub-game is
induced when only two types are misreported, the number of agents, who are involved,
is exactly equal to the number of individual allocations of the collection (N(ϑ)+N(η)).
Formally, the sub-game described above is represented by G(ϑ, η,N(ϑ)×aϑ, N(η)×aη),
where N(ϑ) × aϑ denotes the number of times (N(ϑ)) the individual allocation aϑ is
provided. Since in each stage of the sub-game there is only a single player taking an
action, the sub-game has N(ϑ) + N(η) stages. Due to the incentive compatibility of
the allocations, it is easy to check that the unique sub-game perfect equilibrium of the
sub-game G(ϑ, η,N(ϑ)× aϑ, N(η)× aη) is for each agent to receive his most preferred
allocation. With this in mind, we present the mechanism.

Each agent reports his type mi and a final allocation is received according to the
following mechanism M(m, a):

1. If µ(ϑ) = β(ϑ) for all ϑ, then a(ϑ,m−i) = a∗ϑ.

2. If for two types, ϑ, η, µ(ϑ) > β(ϑ) and µ(η) < β(η), then:

(a) If Uϑ(a∗ϑ) > Uϑ(a∗η) , Uη(a
∗
η) > Uη(a

∗
ϑ), then, for the agents who reported

types ϑ, η, the mechanism induces the game G(ϑ, η,N(ϑ)× (a∗ϑ− ε), N(η)×
(a∗η−ε)). ε is strictly positive for all commodities and it is such that Uϑ(a∗ϑ−
ε) > Uϑ(a∗η) and Uη(a

∗
η − ε) > Uη(a

∗
ϑ).
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(b) If Uϑ(a∗ϑ) > Uϑ(a∗η) , Uη(a
∗
η) < Uη(a

∗
ϑ), then, for the agents who reported

types ϑ, η, the mechanism induces G(ϑ, η,N(ϑ)× âϑ(a∗η), N(η)× âη(a∗η)).
(c) If Uϑ(a∗ϑ) < Uϑ(a∗η) , Uη(a

∗
η) > Uη(a

∗
ϑ), agents who report type η receive

allocation a∗η and agents who report type ϑ receive allocation ap.

(d) For all κ 6= {ϑ, η}, a(κ,m−i) = a∗κ.

3. For any other case, a(ϑ,m−i) = âϑ(ap), ∀ϑ ∈ Θ.

Under the mechanism above, it is a strictly dominant strategy for all agents with
types of rank(K) to report their type truthfully. To see this consider the different beliefs
of an agent of rank(K) (say i of type ϑ) about the messages that other agents will send.
If i believes that all other agents will report their type truthfully, then the best-response
for him is to report truthfully. This is because Uϑ(a∗ϑ) > Uϑ(a∗ϑ − ε), in the case he
reports another type, who does not envy a∗ϑ, and Uϑ(a∗ϑ) > Uϑ(ap), in the case he reports
a type, who envies a∗ϑ (recall that a rank(K) agent does not envy anyone.).

If i believes that only one other agent will misreport, then i still prefers to report
his type truthfully, irrespectively of who misreports. Say that i believes that j is of
different type (say η), does not envy a∗ϑ and that j will misrepresent her preferences
as being of type ϑ. If i reports that he is of type η, then the two lies will cover each
other and i receives a∗η. But if he reports ϑ, then µ(ϑ) > β(ϑ) and µ(η) < β(η). In the
latter case, G(ϑ, η,N(ϑ) × (a∗ϑ − ε), N(η) × (a∗η − ε)) is induced and i receives a∗ϑ − ε.
Since a∗ϑ− ε is constructed to be strictly preferred by i to a∗η, i strictly prefers to report
truthfully.

The same argument holds if i believes that j is of type η, that j envies a∗ϑ and
that j will report ϑ. Since i strictly prefers âϑ(a∗η) to âη(a

∗
η), he prefers to report

truthfully. Also, note that whenever i believes that j misreports, i strictly prefers to
report truthfully than to send any other message ϑ 6= {ϑ, η}, because, in the latter case,
i receives âϑ(ap), which makes him strictly worse-off.

In the case where i believes that multiple misrepresentations will take place, then,
irrespectively of his message, µ(ϑ) 6= β(ϑ) (if all reports but one cancel out then we go
back to the analysis of the previous cases). This means that his message, alone, can
not hide the fact that some agent(s) misrepresents(misrepresent) her(their) type(s).
His best response remains to report truthfully: Uϑ(âϑ(ap)) > Uϑ(âη(a

p)), ∀η 6= ϑ. We
conclude that, under all possible beliefs, i strictly prefers to report truthfully.

Given this, it is a best response for an agent of rank(K-1) to report his type truthfully
as well. Say that agent i, who is of rank(K-1) and type η, envies the allocation of some
type ϑ of rank(K). Of course, if i believes that some agent of type ϑ will report as being
of type η, then the best response for i is mi = ϑ, but, as we showed, this cannot be
an equilibrium6. Hence, if i believes that all agents will report truthfully, he prefers to
report truthfully as well. If he believes that only one agent of the same or lower rank

6This argument also makes clear that our paper is not one of dominant strategy implementation,
as only rank(K) individuals have dominant strategies.
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will misreport their types as his own, he will still prefer to reveal his type truthfully, for
the same type of reasoning as in the case of an agent of rank(K). Finally, if he believes
that many agents will misreport their types, he still prefers to receive an incentive
compatible allocation (by construction) than misrepresenting his own type. Therefore,
given that rank(K) agents report truthfully, agents of rank(K-1) also report truthfully.

By induction, we conclude that for an agent of Rank(κ), if all agents of higher rank
are expected to report truthfully their types, his best-response is to report truthfully,
irrespectively of the actions of agents of the same or lower rank. Since it is a dominant
strategy for rank(K) agents to report truthfully, then, by iterated elimination of strictly
dominated strategies, the only possible equilibrium is when all agents report truthfully.
�
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