

Edinburgh Research Explorer

Relational Parametricity for Control Considered as a
Computational Effect

Citation for published version:
Mogelberg, R & Simpson, A 2007, 'Relational Parametricity for Control Considered as a Computational
Effect' Electronic Notes in Theoretical Computer Science, vol. 173, pp. 295-312. DOI:
10.1016/j.entcs.2007.02.040

Digital Object Identifier (DOI):
10.1016/j.entcs.2007.02.040

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Electronic Notes in Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28965583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.entcs.2007.02.040
https://www.research.ed.ac.uk/portal/en/publications/relational-parametricity-for-control-considered-as-a-computational-effect(669f3beb-47ad-4618-becc-b34691497249).html

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Relational Parametricity for Control
Considered as a Computational Effect

Rasmus Ejlers Møgelberg, Alex Simpson1

LFCS, University of Edinburgh

Abstract

This paper investigates parametric polymorphism in the presence of control operators. Our approach is
to specialise a general type theory combining polymorphism and computational effects, by extending it
with additional constants expressing control. By defining relationally parametric models of this extended
calculus, we capture the interaction between parametricity and control. As a worked example, we show that
recent results of M. Hasegawa on type definability in the second-order (call-by-name) λµ-calculus arise as
special cases of general results valid for arbitrary computational effects.

Keywords: Computational effects, control, denotational semantics, parametric polymorphism

1 Introduction

Relational parametricity [19] gives a powerful proof principle for establishing prop-
erties of polymorphic programs. It has been widely studied in the context of the
Girard/Reynolds second-order λ-calculus, which, in its pure form, is a calculus of
total functions.

Trying to extend the notion of relational parametricity to richer calculi causes
problems. Even recursion (and attendant nontermination) create difficulties, since
the fixed-point property of recursion is incompatible with certain consequences of
parametricity (the existence of finite coproducts). This issue led Plotkin to advocate
adopting a linear type theory, in which such inconsistencies do not arise [18]. This
approach has been worked out in detail in [4], and enjoys many good properties.
For example, one obtains a wide class of polymorphic type definability results, with
the desired universal properties following from relational parametricity.

Unfortunately, the approach of using linear type theory does not adapt to im-
pure settings incorporating computational effects. In particular, a crucial aspect
of linear logic, its monoidal closed structure, does not occur naturally in models

1 This work was supported by the Danish Agency for Science, Technology and Innovation, and by EPSRC

c©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
v1lfass
Typewritten Text
Mogelberg, R., & Simpson, A. (2007). Relational Parametricity for Control Considered as a Computational Effect. Electronic Notes in Theoretical Computer Science, 173, 295-312doi: 10.1016/j.entcs.2007.02.040

v1lfass
Typewritten Text

v1lfass
Typewritten Text

Møgelberg, Simpson

for computational effects whose associated computational monads (in the sense of
Moggi [15]) are not commutative.

One important example of a non-commutative monad is the continuations monad
used to model control effects. For such effects, Hasegawa [6,7] has recently proposed
a syntactic account of relational parametricity, and he has exploited this to obtain
type definability results for a call-by-name version of Parigot’s second-order λµ-
calculus [16]. An intriguing fact he observes is that his results on polymorphic type
definability are analogous to ones that hold in Plotkin’s linear setting. However,
the technical frameworks within which the two classes of results are developed are
seemingly quite different.

The goal of the present paper, together with a companion paper [14], is to
develop a unified semantic theory of relational parametricity, which is applicable to
arbitrary computational effects, and which specialises, in the case of commutative
effects, to linear parametricity, and, in the case of control, to a semantic version of
Hasegawa’s account of parametricity.

The general framework we use to achieve this is presented in detail in the com-
panion paper [14]. It takes the form of a polymorphic type theory loosely based
on Levy’s call by push value paradigm [13], together with an associated semantic
framework for defining relationally parametric models.

In the current paper, we focus on control. To this end, we extend the general
type theory of [14] with extra constants which specialise it to control. The extension
allows control-based program calculi to be interpreted in the type theory. We illus-
trate this by giving a call-by-name translation of Parigot’s second-order λµ-calculus,
closely following the formulation in [7].

The main technical effort in the paper is the construction of a relationally para-
metric model of the extended type theory. Our goal is to exploit the model to show
that Hasegawa’s results on type definability in the second-order λµ-calculus also
hold in our setting. In fact, we show that they arise as special cases of general
results valid for arbitrary computational effects. As well as providing an alternative
(and denotational) account of Hasegawa’s results, this fact explains the reason that
Hasegawa’s results mirror ones available in the setting of linear parametricity.

2 A type theory for polymorphism and control

We start by recalling the general type theory for polymorphism and effects (PE) as
presented in [14], and specialising it to the case of continuations. The type theory
for polymorphism and effects is based on Paul Levy’s call-by-push-value (CBPV)
paradigm [13], in which types are separated into two groups: value types and compu-
tation types. Following the convention of [13], we distinguish syntactically between
the two kinds of type by using underlined metavariables A,B, . . . for computation
types, as opposed to A,B, . . . for value types. The type theory PE allows for poly-
morphic quantification over both kinds of type, and therefore types may contain
type variables for value type, ranged over by X, Y, . . . or for computation types,
ranged over by X,Y , Z, Value types and computation types are defined by the

2

Møgelberg, Simpson

grammar

A,B ::= X | A → B | ∀X. A | X | A (B | ∀X.A

A,B ::= A → B | ∀X. A | X | ∀X.A .

Notice that, in contrast to CBPV, our computation types constitute a subset of the
value types. For discussion on this and other departures from CBPV, see [14]. Here
we comment only on those features that will play a prominent role in our treatment
of control.

There are two constructions for function types: (and →, and to distinguish the
two we shall refer to the former as the linear function type. One semantic intuition
of the type system is that computation types are algebras for a monad and value
types are simply objects. Under this intuition → denotes ordinary function space
and (is the space of algebra homomorphisms, which does not in general carry
an algebra structure so is a value type. Another somewhat different model will be
presented in Section 4. Note that typing restrictions prevent the (constructor
from being iterated. For example, (A (B) (B′ is not a valid type.

Terms are given by the grammar

t, s ::= x | λx : A. t | s(t) | ΛX. t | t(A) | λ◦x : A. t | ΛX. t

Typing judgements are of the form Γ | ∆ ` t : A, where Γ is a context of variables
and ∆ is a second variable context called the stoup which is either empty or con-
sists of exactly one variable of computation type, in which case A must also be a
computation type. The two cases are also sometimes written explicitly as

Γ | − ` t : A Γ | x : B ` t : A .

The semantic intuition behind the stoup is that the term t, for all instantiations of
the variables in Γ, denotes an algebra homomorphism from B to A. This is closely
related to Levy’s notion of stack in CBPV [13].

The typing rules are given in Figure 1. We shall consider the equality theory
on terms of the type theory given as the smallest congruence relation induced by
the usual β and η rules for both types of term abstraction and both types of type
abstraction, see Figure 2. Of course these equalities are to be understood as being
between identically typed terms in the relevant contexts.

In [14], the type theory PE is studied as a generic calculus for combining poly-
morphism and effects. Our purpose here is to specialise it to the case of control
effects, as implemented by continuations monads. To motivate our approach, we
recall that, in [14], the defined type construct

!A =def ∀X. (A → X) → X ,

which maps any value type A to a computation type !A, is shown to serve the
purpose of Moggi’s type monadic type TA [15] (or, slightly more accurately, of
Levy’s free computation type construct FA [13]). In [14], a theory of relational
parametricity is used to justify this encoding. As a consequence, one obtains a
Girard decomposition: the types A → B and !A (B are isomorphic (as value
types).

3

Møgelberg, Simpson

Γ, x :A |− ` x : A

Γ, x :A |∆ ` t : B

Γ |∆ ` λx :A. t : A → B

Γ |∆ ` s : A → B Γ |− ` t : A

Γ |∆ ` s(t) : B

Γ |∆ ` t : A
X 6∈ FTV(Γ,∆)

Γ |∆ ` ΛX. t : ∀X. A

Γ |∆ ` t : ∀X. A

Γ |∆ ` t(B) : A[B/X]

Γ |x :A ` x : A

Γ |x :A ` t : B

Γ |− ` λ◦x :A. t : A (B

Γ |− ` s : A (B Γ |∆ ` t : A

Γ |∆ ` s(t) : B

Γ |∆ ` t : A
X 6∈ FTV(Γ,∆)

Γ |∆ ` ΛX. t : ∀X. A

Γ |∆ ` t : ∀X. A

Γ |∆ ` t(B) : A[B/X]

Fig. 1. Typing rules for PE.

(λx : A. t)(u) = t[u/X]
λx : A. t(x) = t if t : A → B and x /∈ FV(t)

(λ◦x : A. t)(u) = t[u/X]
λ◦x : A. t(x) = t if t : A (B and x /∈ FV(t)

(ΛX. t) A = t[A/X]
ΛY . t Y = t if t : ∀X.A and Y /∈ FTV(t)

(ΛX. t) A = t[A/X]
ΛY. t Y = t if t : ∀X. A and Y /∈ FTV(t)

Fig. 2. Equality axioms for PE.

To encode control, we wish to specialise !A to be a continuations monad. One
can formulate this by asking for a type constant R, to act as a result type, and
requiring the type construction (A→R)→R to behave like !A. For this, the type
expression (A → R) → R must be a computation type, hence so must the type
constant R. Then the required properties of (A→R)→R can be implemented by
requiring the canonical linear map !A ((A→R)→R to have a linear inverse. By
the Girard decomposition above, this is equivalent to asking for the canonical map
!A ((!A(R)→R to have a linear inverse.

Our actual approach to control is a natural generalisation of the above. Rather
than restricting the last isomorphism above to types of the form !A, we ask for the
canonical map A ((A (R)→R to be an isomorphism for every computation
type A. Of course, the natural way to add such an isomorphism to the type theory
is by adding a polymorphic constant. One direction of the isomorphism is directly
definable without any additions to the type theory:

η =def ΛX.λ◦x : X.λf : X (R. f(x) : ∀X. X ((X (R)→R .

We thus extend the type theory with a constant

ε : ∀X. ((X (R)→R) (X ,

4

Møgelberg, Simpson

and equations ensuring that this constant is inverse to η. More precisely, using the
notation εA for ε A and likewise ηA for η A, we add the equations

ΛX.λ◦x : X. εX(ηX(x)) = ΛX.λ◦ x : X.x

ΛX.λ◦x : (X (R)→R. ηX(εX(x)) = ΛX.λ◦x : (X (R)→R. x.

We shall refer to this extension as the type theory for polymorphism and control,
abbreviated as PE+C. Further motivation for the formulation of this theory can be
found in Section 3, where it is used to model Parigot’s second-order λµ-calculus [16],
and in Section 4, where the type constants and equations will be justified semanti-
cally. We also mention that our use of the linear function space A (R is related
to Levy’s use of stack types in his treatment of control in [13, §5.4], and our use
of R is related to his use of an answer type in [13, Ch. 7]. Our combination of
the two seems a very natural approach, since the requirement of having a linear
isomorphism between A and (A(R)→R leads to a very simple equational theory.

We now explore some simple equational properties of PE+C that follow from
the βη laws and the isomorphism equations for control. First, the constant ε is
natural in linear maps in the sense that for any f : A (B, the diagram

(A (R) → R
εA ◦ A

(B (R) → R

(f (R) → R

◦ εB ◦ B

f

◦

commutes. This follows from the corresponding naturality of η, which is a simple
consequence of the β and η rules.

Next, we show that, just from the βη equalities, one obtains a Girard decom-
position of function spaces using (A→R)→R in place of !A. (Note that the cor-
responding result for the polymorphic definition of !A depends upon parametricity
properties.) For readability we introduce the notation ¬A for A → R.

Proposition 2.1 For any type A and computation type B in PE+C there is a
bijective correspondence between terms of type A → B and terms of type ¬¬A (B.
The correspondence is natural in A for all maps and in B for linear maps.

Proof. The correspondence takes a term t : ¬¬A (B to λx : A. t(λf : ¬A. f(x))
and a term u : A → B to λ◦h : ¬¬A. εB(λf : B (R. h(f ◦ u)). 2

An important consequence of adding the constant ε to the type theory is that η

becomes split mono, which implies the following lemma.

Lemma 2.2 In PE+C the following principle holds. If t, t′ : A are such that f(t) =
f(t′), for a fresh variable f : A (R, then t = t′.

We end this section with another lemma that we need later.

5

Møgelberg, Simpson

Lemma 2.3 In PE+C if f : A (R and x : (A (R) → R then

x(f) = f(εA x)

Proof. Naturality of ε implies f(εA x) = εR(((f (R) → R)(x)). Now, by unique-
ness of inverses to isomorphisms, εR(y) = y(idR), and so f(εAx) = x(f) as desired.2

3 Interpreting second-order λµ-calculus in PE+C

The goal of this section is to show how the control primitives of PE+C support a
natural interpretation of Parigot’s second-order λµ-calculus [16]. For this, we give
a call-by-name translation, modelling the equational theory of [7].

We first recall the second-order λµ-calculus, λµ2. Generally, we follow the pre-
sentation in [7], but extend the language slightly by introducing a falsity type, which
allows us to break the control operations into name application and µ-abstraction.
This is not a serious modification of the calculus. As shown in [7], see also Sec-
tion 5, under an appropriate theory of relational parametricity, ⊥ can be encoded
polymorphically as ∀X. X.

The types of λµ2 are given by the grammar

σ, τ ::= X | ⊥ | σ → τ | ∀X. σ,

and terms are given by

M,N ::= x | M N | λxσ.M | M σ | ΛX. M | µα.M | [α]M.

We use x, y, z to range over ordinary variables and α, β, γ to range over continuation
variables (sometimes called names). Typing judgements are written as

Γ ` M : σ | ∆,

where Γ is the context of ordinary variables, and ∆ is a context of continuation
variables. The typing rules of λµ2 are given in Figure 3.

Γ, x : σ,Γ′ ` x : σ | ∆
Γ, x : σ,Γ′ ` M : τ | ∆

Γ,Γ′ ` λxσ.M : σ → τ | ∆

Γ ` M : σ → τ | ∆ Γ ` N : σ | ∆

Γ ` M N : τ | ∆

Γ ` M : σ | ∆ X /∈ FTV(Γ,∆)

Γ ` ΛX. M : ∀X. σ | ∆
Γ ` M : ∀X. σ | ∆

Γ ` M τ : σ[τ/X] | ∆
Γ ` M : σ | ∆, α : σ,∆′

Γ ` [α]M : ⊥ | ∆,∆′

Γ ` M : ⊥ | ∆, α : σ,∆′

Γ ` µασ.M : σ | ∆,∆′

Fig. 3. Typing rules for λµ2

6

Møgelberg, Simpson

We shall consider the equality relation on λµ2 terms given as the smallest con-
gruence relation containing the axioms of Figure 4. The two last rules in Figure 4
use so-called mixed substitution. For example M [[β](−N)/[α](−)] means replace
all subterms of M of the form [α]L with [β](L N).

(λxσ.M) N = M [N/x]

λxσ.M x = M

(ΛX. M) σ = M [σ/X]

ΛX. M X = M

[α](µβ.M) = M [α/β]

µα. [α]M = M(α /∈ FN(M))

(µασ→τ .M) N = µβτ .M [[β](−N)/[α](−)]

(µα∀X.σ.M) τ = µβσ[τ/α]M [[β](− τ)/[α](−)]

Fig. 4. Axioms for call-by-name λµ2

Our interpretation, denoted (−)∗, of λµ2 into PE+C is presented in Figure 5.
Types of λµ2 are interpreted as computation types. A λµ2 typing context Γ =
x1 : σ1, . . . xn : σn is interpeted as Γ∗ =def x1 : σ1

∗, . . . xn : σn
∗. For a continuation

context, ∆ = α1 : σ′1, . . . αm : σ′m, we use the notation ∆∗ (R for the PE+C
context α1 : σ1

∗ (R, . . . αn : σ1
∗ (R. The proposition below formulates the

interpretation of typing judgements.

X∗ = X ⊥∗ = R (σ → τ)∗ = σ∗ → τ∗ (∀X. σ)∗ = ∀X.σ∗

x∗ = x (λx : σ.M)∗ = λx : σ∗.M∗ (M N)∗ = M∗ N∗

(ΛX. M)∗ = ΛX.M∗ (M σ)∗ = M∗σ∗

([β]M)∗ = β(M∗) (µασ.M)∗ = εσ∗(λα : σ∗ (R.M∗)

Fig. 5. The interpretation of λµ2 into PE+C.

Proposition 3.1 (Type soundness) If Γ ` M : σ | ∆ is a typed term in λµ2
calculus then the judgement below is well typed in PE+C.

Γ∗,∆∗ (R | − ` M∗ : σ∗

Theorem 3.2 (Soundness) If Γ ` M1 = M2 : σ | ∆ is provable using the equality
rules of call-by-name λµ2 then PE+C proves:

Γ∗,∆∗ (R | − ` M∗
1 = M∗

2 .

7

Møgelberg, Simpson

Proof. The proof is by induction over the structure of the proof of M1 = M2. The
interpretation is clearly sound with respect to the first half of the λµ2 axioms as the
interpretation preserves the simply typed structure and the polymorphic structure.

Consider the equality [β](µγ.M) = M [β/γ]. By definition ([β](µγ.M))∗ =
β(εσ∗(λγ.M∗)), where σ is the type of γ, which by Lemma 2.3 is equal to M∗[β/γ] =
(M [β/γ])∗.

The rule µα. [α]M = M is sound because

(µα. [α]M)∗ = εσ∗(λα. α(M∗)) = εσ∗(ησ∗(M∗)) = M∗

We prove soundness of (µασ1→σ2 .M) N = µβσ2 .M [[β](− N)/[α](−)] by using
Lemma 2.2. So suppose f : σ2

∗ (R. Then the function λ◦h : σ1
∗ → σ2

∗. f(h(N∗))
is linear, so by Lemma 2.3

f((µασ1→σ2 .M) N)∗ = f(εσ1
∗→σ2

∗ (λα : (σ1
∗ → σ2

∗) (R.M∗)(N∗))

= (λα : (σ1
∗ → σ2

∗) (R.M∗)(λ◦h : σ1
∗ → σ2

∗. f(h(N∗)))

= M∗[f(−N∗)/α(−)]

= (λβ : σ2
∗ (R. (M [[β](−N)/[α](−)])∗)f

= f(µβσ2 .M [[β](−N)/[α](−)])∗.

Soundness of the last rule (µα∀X.σ1 .M)σ2 = µβσ1[σ2/X].M [[β](− σ2)/[α](−)] is
proved the same way. 2

Readers familiar with Reus and Streicher’s “negated domains” translation of the
λµ calculus [22] may wonder how that translation is related to the one presented
here. This question is also relevant for comparison with Hasegawa’s work [7] because
he studies λµ2 calculus via a translation which is essentially a polymorphic extension
of Reus and Streicher’s. In fact, our translation can be seen as a negated domains
translation on the value types of the form A (R. For each λµ2 type σ, consider
the PE+C value type σ† =def σ∗ (R. Then σ† → R ∼= σ∗ and so, up to this
isomorphism, any λµ2 term

x1 : σ1, . . . , xn : σn ` M : τ | α1 : σ′1, . . . , αm : σ′m

is translated to a term

x1 : σ1
† → R, . . . , xn : σn

† → R,α1 : σ′1
†
, . . . , αm : σ′m

† ` M∗ : τ † → R

If we add a product to the value types (as can be polymorphically encoded in
the presence of parametricity) and an isomorphism X ∼= (X → R) (R for all
value types X to PE+C we recover Hasegawa’s extension of Reus and Streicher’s
interpretation since, for example,

(σ → τ)† ∼= ((σ† → R) → (τ † → R)) (R ∼= ((¬σ†×τ †) → R) (R ∼= ¬σ†×τ † .

8

Møgelberg, Simpson

4 Relationally parametric models of PE+C

The aim of this section is to present a family of relationally parametric models for
PE+C. Note that any such model will contain within it a relationally parametric
model, in the usual sense, of the standard second-order λ-calculus, since this is a
subsystem of the value types of PE. So it is natural to construct the model of
PE+C over such a model.

Relationally parametric models of the second-order λ-calculus fall into just two
known varieties: term models [8], and PER models. The latter can be viewed ex-
plicitly as PER models [1], categorically as fibrations [3], or “synthetically” as full
subcategories of the category of “sets” according to the internal logic of associated
realizability toposes. Here, as in [14], we take the latter approach, since it allows us
to work axiomatically and straightforwardly in intuitionistic set theory, performing
simple set-theoretic constructions without getting encumbered by incidental techni-
cal properties of the concrete models. Thus, henceforth we work in intuitionistic set
theory (IZF). The reader who is unhappy with this, is urged to simply bear with us
and to follow the development classically. In theory, following Reynolds [20], such
reader will be able to exploit classical logic to derive an inconsistency. However,
this awkward fact is unlikely to get in the way of obtaining a general understanding.

We start by recalling the (somewhat involved) structure required for a model of
PE in [14]. We assume that we are given a full subcategory C of the category Set
of sets that will be used to interpret value types. This is required to satisfy:

(C1) If A ∈ C and A ∼= B in Set then B ∈ C.

(C2) For any set-indexed family {Ai}i∈I of sets in C, the set-theoretic product∏
i∈I Ai is again in C.

(C3) Given A,B ∈ C and functions f, g : A → B, the equalizer {x ∈ A | f(x) =
g(x)} is again in C.

(C4) There is a set C of objects of C such that, for any A ∈ C, there exists B ∈ C
with B ∼= A.

By items (C2) and (C3), the category C is complete with limits inherited from Set.
Since function spaces are powers, for any set A and any B ∈ C, the function space
BA is in C, i.e. C is an exponential ideal of Set. In particular, C is cartesian closed.
The last axiom states that C is weakly equivalent to a small category. This allows
one to show that C is also cocomplete, by an application of Freyd’s adjoint functor
theorem, cf. [9].

Computation types are modelled using a category A together with a functor
U : A → C satisfying the axioms below. For the moment, the intuition will be that
A is the category of algebras for a monad on C, and U is the forgetful functor.
However, soon we shall see a rather different example of model when we consider
the case of control. The axioms required for A and U are:

(A1) U “weakly creates limits” in the following sense. For every diagram ∆ in A
and limiting cone lim U(∆) of U(∆) in C, there exists a specified limiting cone
lim ∆ of ∆ in A such that U(lim ∆) = lim U(∆).

(A2) U reflects isomorphisms (i.e. if Uf is an isomorphism then so is f).

9

Møgelberg, Simpson

(A3) For objects A,B of A, the hom-set A(A,B) is an object of C.

(A4) There exists a set A of objects of A such that, for every object A of A, there
exists B ∈ A with A ∼= B in A.

Although the above axioms do not force the category A to be a category of
algebras for a monad on C, for convenience and intuition, we shall nonetheless
call the objects of A algebras. Since the axioms imply that U is faithful, we can
identify A(A,B) with a collection of special functions from UA to UB which we call
homomorphisms, and we shall write f : A (B to mean that f is a homomorphism
from UA to UB. We write A ∼=◦ B if A and B are isomorphic as objects of A.

For an object A of C, we write SubC(A) for the set {B ⊆ A | B ∈ C}, which
gives a canonical representation for the set of C-subobjects of A. Axioms (A1) and
(A2) imply that U is an injective map from A-subobjects of A ∈ A to C-subobjects
of UA. Accordingly, we can define

SubA(A) =def {B ⊆ UA | B ⊆ UA is the image of an A-subobject of A}

as a representation of the set of A-subobjects of A.
For the construction of the parametric model, we will assume that we are given,

as extra data, two collections of “admissible” relations, which we shall use to for-
mulate the principle of relational parametricity. More precisely, for each pair of
objects A,B of C, we require a specified set of admissible C-relations RC(A,B) ⊆
SubC(A × B), and for each pair of objects A,B of A, we require a specified set of
admissible A-relations RA(A,B) ⊆ SubA(A × B). Moreover, these collections of
relations are required to satisfy some closure properties, which we now define.

For A ∈ C, we write ∆A for the diagonal (identity) relation in SubC(A × A).
Similarly, for A ∈ A, we write ∆A for the diagonal relation on UA, which is indeed
in SubA(A × A). For f : A′ → A, g : B′ → B in C and R ∈ SubC(A × B) we write
(f, g)−1R for {(x, y) | (f(x), g(y)) ∈ R}, which is an element of SubC(A′×B′). Note
that if f : A′ (A, g : B′ (B and Q ∈ SubA(A×B) then (f, g)−1Q is an element
of SubA(A′ ×B′).

We impose the following requirements on admissible relations.

(R1) For each object A of C the diagonal relation ∆A is in RC(A,A) and likewise
for each object A of A the diagonal ∆A is in RA(A,A).

(R2) Admissible relations are closed under inverse image, i.e., if R ∈ RC(A,B) and
f : A′ → A, g : B′ → B, then (f, g)−1R ∈ RC(A′, B′) and if Q ∈ RA(A,B) and
f : A′ (A, g : B′ (B, then (f, g)−1Q ∈ RA(A′, B′)

(R3) For any set of admissible C- (respectively A-)relations on the same pair of
objects, the intersection is an admissible C- (respectively A-)relation.

(R4) RA(A,B) ⊆ RC(UA,UB).

Notice that axioms (R1) and (R2) imply that graphs of functions are admissible,
specifically if f : A → B then 〈f〉 =def {(x, y) | f(x) = y} ∈ RC(A,B) and if
g : A (B then 〈g〉 ∈ RA(A,B).

There are many ways of constructing models for axioms (C), (A) and (R). A
motivating construction is to take C to be any full reflective subcategory of a real-

10

Møgelberg, Simpson

izability topos that is weakly small (see [9,11] for how to produce such categories).
Then for any (internal) monad on C, take A to be the category of (Eilenberg-
Moore) algebras for the monad. Finally, take RC(A,B) and RA(A,B) to simply
be SubC(A × B) and SubA(A × B) respectively. A more sophisticated example,
exploiting the flexibility in specifying the admissible relations, appears below.

We briefly consider the interpretation of PE in the above structure, giving an
overview sufficient for understanding this paper. For full details see [14].

Value types are interpreted in the category C and computation types are in-
terpreted as objects in the category A. We shall write C[[−]] and A[[−]] for these
interpretations respectively. Since any computation type A is also a value type, it
is given two interpretations which satisfy U(A[[A]]) = C[[A]].

The type constructor → is interpreted as set-theoretic function space and (
is interpreted as the set of homomorphisms between the algebras assigned to the
computation types. The computation type A → B is interpreted, using weak limit
creation, as an algebra A for which UA is the set of functions from C[[A]] to C[[B]]. In
order to give a relationally parametric interpretation of polymorphic types, the type
constructors are also given relational interpretations. For example, if R ∈ RC(A,B)
and R′ ∈ RC(A′, B′) then R → R′ is the relation

{(f, g) ∈ (A → A′)× (B → B′) | ∀x : A, y : B. (x, y) ∈ R ⊃ (f(x), g(y)) ∈ R′},

and if Q ∈ RA(A,B) and Q′ ∈ RA(A′, B′) then Q (Q′ is the relation

{(f, g) ∈ (A (A′)× (B (B′) | ∀x : UA, y : UB. (x, y) ∈ Q ⊃ (f(x), g(y)) ∈ Q′}.

Polymorphic types are interpreted by taking products over C and A respectively,
and restricting to parametric elements of the product. This restriction to parametric
elements is with respect to parametricity formulated with respect to relations in
RC when quantifying over value types and with respect to relations in RA when
quantifying over computation types. As an illustrative example, which we shall
need later, for a closed computation type B, the type ∀X. ((X (B) → B) (X is
interpreted as the object of A given by

{(fA)A∈A ∈
∏

A∈A((A (A[[B]]) → A[[B]]) (A | ∀A,B ∈ A.∀Q ∈ RA(A,B).

(fA, fB) ∈ ((Q (∆A[[B]]) → ∆A[[B]]) (Q}.
(1)

Finally, we briefly recall the interpretation of terms. For simplicity we restrict to
the case in which types are closed. A well-typed term Γ | ∆ ` t : B is interpreted as
an element [[t]]γ of C[[B]] relative to an environment γ mapping each variables x : A
in Γ | ∆ to an element γ(x) ∈ C[[A]]. In the case of ∆ being non-empty, the mapping
d ∈ C[[A]] 7→ [[t]]γ[d/x] is a homomorphism from A[[A]] to A[[B]] for any environment
γ. For the full interpretation of terms involving open types, see [14].

Having now presented the semantic structure needed to model PE, we at last
turn to the issue of, in addition, modelling our constructs for control. Since there
is no avoiding having a parametric model of second-order λ-calculus, we begin with
an arbitrary category C satisfying the (C) axioms above. Let R be any object of C,

11

Møgelberg, Simpson

chosen as a result type. In order to satisfy our axioms, one would like to implement
the equation:

A
U

- C =def Cop R(−)
- C ,

which fits in with an established tradition in continuations models, cf. [25,24,13].
Indeed, in such a structure, one would interpret the computation type constant R

by A[[R]] =def 1 and C[[R]] =def R1 ∼= R. Then, for any object A of A, and hence
of C, one would have A[[(A (R) → R]] ∼=◦ A,because C[[A (R]] ∼= A(A, 1) =
C(1, A), hence C[[(A (R) → R]] ∼= RA = U(A), where the isomophism is indeed a
homomorphism.

However, although the category Cop does satisfy axioms (A3) and (A4) above,
the functor R(−) : Cop → C does not necessarily satisfy axioms (A1) and (A2).
Accordingly, we modify the construction so that these axioms are satisfied.

First we address the reflection of isomorphisms. Although R(−) : Cop → C need
not reflect isomorphisms on all of C, there exists a largest full reflective subcategory
of C on which it does.

Definition 4.1 [10,23] A set C in C is called R-replete if for all maps f : A → B in
C, if the map Rf : RB → RA is an isomorphism then so is Cf : CB → CA.

We denote by Crep the full subcategory of C on replete objects. It is standard,
cf. [10,23], that the replete objects are closed under limits in Set and so Crep satisfies
(C1)–(C3). It also satisfies (C4) as we can take Crep =def {C ∈ C | C replete}.
Trivially the object R is itself replete, and hence any power RA is also replete.

As a second attempt at constructing a model we replace (4) with:

A
U

- Crep =def Crep
op R(−)

- Crep ,

However, there remains a technical issue concerning satisfaction of (A1). As re-
marked earlier, the axioms (C1)–(C4) imply cocompleteness, and so Crep

op is com-
plete. Moreover, the functor R(−) preserves limits since it has a left adjoint (also
given by R(−)). Still R(−) : Crep

op → Crep does not weakly create limits in the sense
of (A1), since a given limiting cone in Crep of a diagram of the form R∆ need not
be in the image of the functor R(−) up to equality. We address this by considering
instead of Crep

op the equivalent category A (and this is our final redefinition of A):

Objects: Triples (A, i, P), where A,P are objects in Crep and i : P → RA is an
isomorphism.

Morphisms: A morphism from (A, i, P) to (B, j,Q) is a map f : B → A.

We define the functor U : A → C to map the morphism f : (A, i, P) → (B, j,Q) to
j−1 ◦Rf ◦ i : P → Q. Clearly there exists an equivalence of categories between Crep

op

12

Møgelberg, Simpson

and A making the diagram

Crep
op -

'� A

Crep

�

U
R (−

)
-

commute up to natural isomorphism, but U : A → Crep does have the property of
weakly creating limits in the sense of (A1).

Proposition 4.2 The functor U : A → Crep satisfies (A1)–(A4).

Before discussing admissible relations in this model we write out the inter-
pretation of the non-polymorphic types of PE+C. If A[[A]] = (A, i, C[[A]]) and
A[[B]] = (B, j, C[[B]]) then

A[[R]] = (1, R ∼= R1, R)

C[[A → B]] = C[[B]]C[[A]]

C[[A (B]] = AB

A[[A → B]] = (B × C[[A]], h, C[[B]]C[[A]])

where h is jC[[A]] composed with the isomorphism (RB)C[[A]] ∼= RB×C[[A]] .
Finally, we consider how to define admissible relations. The type theory PE+C

introduces the isomorphism (X (R) → R ∼=◦ X via a polymorphic constant of type
∀X. ((X (R) → R) (X inverse to η. By (1), for this inverse to be parametric,
we must have, for any Q ∈ RA(A×B),

(ηA, ηB)−1((Q (∆R) → ∆R) = Q. (2)

This forces us to consider, as our notion of admissible relation, the collection of
relations Q satisfying (2). Fortunately, (ηA, ηB)−1((Q (∆R) → ∆R) has a familiar
looking alternative description as Q>> defined as

Q> = {(f, g) : (A (R)× (B (R) | ∀x : UA, y : UB. (x, y) ∈ Q ⊃ f(x) = g(y)}

Q>> = {(x, y) ∈ UA× UB | ∀f : A (R, g : B (R. (f, g) ∈ Q> ⊃ f(x) = g(y)}

The (−)>> construction defines a closure operator in the sense that it is increasing
(Q ⊆ Q>>), idempotent and monotone with respect to the inclusion ordering,
and we shall call a relation (−)>>-closed if Q>> = Q. The (−)>>-closure is a
familiar construction in the theory of parametricity, studied extensively by Pitts
in an operational setting [17,2]. The technique also appears to be a general and
powerful one from a denotational perspective, cf. [12].

13

Møgelberg, Simpson

Finally, we define:

RC(A,B) = SubC(A×B)

RA(A,B) = {Q ∈ SubA(A×B) | Q = Q>>}

Proposition 4.3 Axioms (R1)–(R4) for admissible relations hold.

Proof. The interesting point is that, for any A ∈ A, the identity relation ∆A is
(−)>> closed. This is easily seen to be equivalent to the following linear separation
property: for all x, y ∈ UA, if f(x) = f(y) for all f : A (R, then x = y; and
this, in turn, is equivalent to the canonical function ηA : A ((A(R)→R being
injective. However, we showed above that this function is an isomorphism. 2

Theorem 4.4 The structure defined above is a model of PE+C.

Proof. Most of this theorem follows from Propositions 4.2 and 4.3. It remains to
prove that this model of PE also models the polymorphic inverse to η. Since each ηA

has an inverse εA we just need to show that this collection constitutes an element in
the parametric model, i.e., that for any (−)>> closed relation Q between algebras
A,B, the pair (εA, εB) maps elements related in (Q (∆R) → ∆R to elements
related in Q. But this happens iff (ηA, ηB)−1((Q (∆R) → ∆R) = Q which holds
for (−)>> closed relations Q since Q>> = (ηA, ηB)−1((Q (∆R) → ∆R). 2

5 Polymorphic type encodings in λµ2

By composing the interpretation from λµ2 into PE+C with the interpretation of
PE+C into any model as defined in the previous section, we get a parametric model
of λµ2. In this section we study polymorphic λµ2 type encodings in such models,
and compare with Hasegawa’s parametricity results for λµ2 [7].

The composite translation interprets types σ of λµ2 as objects A[[σ∗]] in A, but
terms t : σ → τ of λµ2 are interpreted not as homomorphisms but as general maps
from U(A[[σ∗]]) to U(A[[τ∗]]) (recalling that U(A[[A]]) = C[[A]]). For the following
discussion it is therefore convenient to introduce the category A!, with the same
objects as A, i.e., triples (A, i, P) consisting of replete objects A,P and an isomor-
phism i : P → RA. A morphism from (A, i, P) to (B, j,Q) is simply a map from
P to Q. Note that the category A! is equivalent to the full subcategory of Set on
the objects of the form RA for A in Crep. This is called the category of “negated
domains” by Reus and Streicher [22], and indeed our interpretation of λµ2 in A!

can be seen as a polymorphic extension of their interpretation of (simply-typed)
λµ. Alternatively, one can view our interpretation as a polymorphic extension of
Selinger’s [21], since A! is a control category in the sense of op. cit.

The category A embeds into A! by mapping a morphism from (A, i, P) to
(B, j,Q) given by f : B → A to j−1 ◦ Rf ◦ i. We shall call a term t : σ → τ of
λµ2 linear if it is interpreted in the model as a homomorphism.

Our goal in this section is to uncover the universal properties of polymorphic
type encodings in λµ2 that are induced by our relationally parametric model. All

14

Møgelberg, Simpson

the examples we consider are taken from Hasegawa’s paper [7]. We obtain the same
universal properties with respect to the category of linear maps that he obtains for
his “focal” maps. The main point we wish to emphasise is that our results fall out
as instances of general definability results valid for any model of PE, and hence as
instances of principles that are valid for arbitrary computational effects [14].

Example 5.1 The λµ2 type ∀X. X is interpreted as an initial object in A. Indeed,
for any type σ, the term λx : ∀X. X. x σ defines the unique linear map from ∀X. X

to σ. This is an immediate consequence of the following general fact, cf. [14]. In any
parametric model of PE, the computation type ∀X.X is interpreted as the initial
object in A, with the unique linear map given in the evident way.

Note that the λµ2 type ⊥ is also interpreted as an initial object in A (the object
(1, R ∼= R1, R) is obviously initial). So relational parametricity yields the polymor-
phic definability of ⊥ in λµ2. This fact can be used to justify omitting ⊥ as a
primitive type constant in λµ2, and using the polymorphic type ∀X. X in its place,
as, in fact, is done in [7].

An analogous observation applies to the formulation of PE+C. In any para-
metric model of PE+C, the type constant R is interpreted as the initial object of
A. Thus the constant R could have simply been omitted from PE+C, and the
isomorphisms formulated using the computation type ∀X.X in its place.

Example 5.2 The λµ2 type ∀X. (σ → X) → X, where X is not free in σ, is given
an interpretation that is linearly isomorphic to the interpretation of ¬¬σ. In λµ2,
the canonical terms of type σ → ∀X. (σ→X)→X and (∀X. (σ→X)→X) → σ are
not isomorphisms. Rather they respectively correpond to the unit for the double
negation monad and double negation elimination in the control category A!.

The above properties follow from the general fact [14] that, in any parametric
model of PE, the type !A = ∀X. (A → X) → X is interpreted as the free A-object
over the set C[[A]]. In any model of PE+C, this specialises to C[[!A]] ∼=◦ ¬¬C[[A]], cf.
the motivating discussion for the control isomorphisms in Section 2.

Example 5.3 Suppose σ is a type expression of λµ2 with type variable X occuring
only positively. As is standard, this type induces an endofunctor on A!. One can
check, by induction on the structure of σ, that this functor cuts down to one acting
on the category of linear maps A.

In the pure second-order λ-calculus, the type ∀X. (σ → X) → X is an initial
algebra for the functor induced by σ. However, in our model of λµ2, the type
∀X. (σ → X) → X is instead an initial algebra for the functor induced by the type
¬¬σ on the linear category A. Moreover, all the necessary structure is definable in
λµ2, i.e., the structure map of the initial algebra can be defined as a linear map in
λµ2, and likewise the term giving the unique algebra map out of a given algebra.
Detailed definitions appear in [7].

The above facts are a conseqence of the following general property of PE mod-
els, cf. [14]. For any computation type A with free computation type variable X

occurring only positively, the induced functor on A, has its initial algebra µ◦X. A
given by the computation type ∀X. (A (X) → X. Then in PE+C we have
(∀X. (σ → X) → X)∗ = ∀X. (σ∗ → X) → X, which is isomorphic to µ◦X. ¬¬σ∗ =

15

Møgelberg, Simpson

C[[(∀X. X → X)∗]] ∼=◦ RR

C[[(∀X. (σ → X) → (τ → X) → X)∗]] ∼=◦ RRC[[σ∗]]×RC[[τ∗]]
(X 6∈ FTV(σ, τ))

C[[(∀X. (σ → τ → X) → X)∗]] ∼=◦ RRC[[σ∗]] ×RRC[[τ∗]]
(X 6∈ FTV(σ, τ))

C[[(∀Y. (∀X. (σ → Y)) → Y)∗]] ∼=◦ C[[∃◦X.¬¬σ∗]] (Y 6∈ FTV(σ))

Fig. 6. Interpretation of λµ2 types in the model

∀X. (¬¬σ∗ (X) → X.

A few more examples of interpretations of λµ2 types are presented in Figure 6,
where the notation ∃◦X.A represents an existential computation type, see [14].
The stated isomorphisms again follow from general properties of PE models.

While the results we have presented above all follow those of Hasegawa [7],
there is a difference in the formulation. We have obtained universal properties
relative to our semantic notion of linear map, whereas Hasegawa obtained them with
respect to a syntactically defined notion of “focal map”. Here the semantic/syntactic
distinction is not crucial. We could equally well have used our translation from λµ2
to PE+C to define a syntactic notion of linear map in λµ2 (and, in effect, this is
anyway how our proofs that various terms were linear proceed). Conversely, one
can immediately apply the definition of focal map in our semantic setting to obtain
a subcategory of focal maps within A!. Doing this, one obtains that every linear
map is focal, but the converse holds if and only if the continuation monad RR(−)

on
C satisfies Moggi’s equalising requirement [15]. The equalising requirement seems
a difficult condition to enforce for continuations monads in semantic categories
modelling parametric polymorphism. For example, in [5], it is shown that the
equalising requirement can fail in the category of R-replete objects. Thus, we feel
that our stricter notion of linear map is the more natural one in our semantic setting.

Acknowledgements
We thank Masahito Hasegawa and Paul Levy for helpful discussions.

References

[1] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial polymorphism. Theoretical
Computer Science, 70:35–64, 1990.

[2] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymorphic linear
lambda calculus with recursion. In Fourth International Workshop on Higher Order Operational
Techniques in Semantics, Montréal, volume 41 of Electronic Notes in Theoretical Computer Science.
Elsevier, September 2000.

[3] L. Birkedal and R. E. Møgelberg. Categorical models of Abadi-Plotkin’s logic for parametricity.
Mathematical Structures in Computer Science, 15(4):709–772, 2005.

[4] L. Birkedal, R. E. Møgelberg, and R. L. Petersen. Linear Abadi & Plotkin logic. Logical Methods in
Computer Science, 2, 2006.

[5] G. Gruenhage and T. Streicher. Quotients of countably based spaces are not closed under sobrification.
Math. Struct. in Comp. Sci., 16:223–229, 2006.

[6] M. Hasegawa. Relational parametricity and control. In Proceedings Twentieth Annual LiCS
Symposium, pages 72–81, 2005.

16

Møgelberg, Simpson

[7] M. Hasegawa. Relational parametricity and control. Logical Methods in Computer Science, 2, 2006.

[8] R. Hasegawa. Parametricity of extensionally collapsed term models of polymorphism and their
categorical properties. In Takayasu Ito and Albert R. Meyer, editors, Proceedings of Theoretical Aspects
of Computer Software.(TACS ’91), volume 526 of LNCS, pages 495–512. Springer, September 1991.

[9] J.M.E. Hyland. A small complete category. Annals of Pure and Applied Logic, 40(2):135–165,
November 1988.

[10] J.M.E. Hyland. First steps in synthetic domain theory. In A. Carboni, M.C. Pedicchio, and G. Rosolini,
editors, Proceedings of the 1990 Como Category Theory Conference, volume 1488 of Lecture Notes in
Mathematics, pages 131–156. Springer, Berlin, 1991.

[11] J.M.E. Hyland, E.P. Robinson, and G. Rosolini. The discrete objects in the effective topos. Proc.
London Math. Soc., 3(60):1–36, 1990.

[12] S. Katsumata. A Semantic Formulation of >>-lifting and Logical Predicates for Computational
Metalanguage. In Proc. CSL 2005. LNCS 3634, pp. 87–102, 2005.

[13] P. Levy. Call By Push Value, a Functional/ Imperative Synthesis. Kluwer, December 2003.

[14] R.E. Møgelberg and A.K. Simpson. Relational parametricity for computational effects. Submited
manuscript, 2007.

[15] E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92, 1991.

[16] M. Parigot. Proofs of strong normalisation for second order classical natural deduction. Journal of
Symbolic Logic, 62(4):1461–1479, 1997.

[17] A.M. Pitts. Parametric polymorphism and operational equivalence. Mathematical Structures in
computer Science, 10:321–359, 2000.

[18] G.D. Plotkin. Type theory and recursion (extended abstract). In Proceedings, Eighth Annual IEEE
Symposium on Logic in Computer Science, page 374, Montreal, Canada, 19–23 June 1993. IEEE
Computer Society Press.

[19] J.C. Reynolds. Types, abstraction, and parametric polymorphism. Information Processing, 83:513–523,
1983.

[20] J.C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D. B. MacQueen, and G. D. Plotkin,
editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages 145–156.
Springer-Verlag, 1984.

[21] P. Selinger. Control categories and duality: On the categorical semantics of the lambda-mu calculus.
Mathematical Structures in Computer Science, 11(2):207–260, 2001.

[22] T. Streicher and B. Reus. Classical logic, continuation semantics and abstract machines. Journal of
Functional Programming, 8(6):543–572, 1998.

[23] P. Taylor. The fixed point property in synthetic domain theory. In 6th Annual Symposium on Logic
in Computer Science, pages 152–160, Washington, 1991. IEEE Computer Society Press.

[24] P. Taylor. Sober spaces and continuations. Theory and Applications of Categories, 10(12):248–300,
2002.

[25] H. Thielecke. Categorical Structure of Continuation Passing Style. Phd thesis, Laboratory for
Foundations of Computer Science, Univ. of Edinburgh, 1997.

17

	Introduction
	A type theory for polymorphism and control
	Interpreting second-order -calculus in PE + C
	Relationally parametric models of PE + C
	Polymorphic type encodings in 2
	References

