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Abstract

We present a logic for algebraic effects, based on the
algebraic representation of computational effects by opera-
tions and equations. We begin with the a-calculus, a min-
imal calculus which separates values, effects, and compu-
tations and thereby canonises the order of evaluation. This
is extended to obtain the logic, which is a classical first-
order multi-sorted logic with higher-order value and com-
putation types, as in Levy’s call-by-push-value, a principle
of induction over computations, a free algebra principle,
and predicate fixed points. This logic embraces Moggi’s
computational λ-calculus, and also, via definable modali-
ties, Hennessy-Milner logic, and evaluation logic, though
Hoare logic presents difficulties.

1 Introduction

Numerous approaches have sprung up to tackle the com-
plexity of reasoning about programming languages that in-
corporate computational effects such as exceptions, non-
determinism, state, input/output, concurrency, or continu-
ations.

Moggi gave a uniform representation of effects by mon-
ads [14], with the idea that computations for an element of
(say) a set A are modelled by elements of TA, where T is
the monad. Plotkin and Power then proposed representing
the effects by operations and equations [19, 21, 23] to get
a uniform theory of effects that accounted for their source:
we call such effects algebraic. All of the effects mentioned
above are algebraic, with the notable exception of continu-
ations [3], which have to be treated differently [9].

∗Supported by EPSRC grant GR/586371/01 and a Royal Society-
Wolfson Award Fellowship.
†Supported by EPSRC grant GR/586371/01.

In the algebraic approach, the arguments of an operation
represent possible computations after the occurrence of an
effect. For example, using a binary choice operation or, a
nondeterministically chosen boolean is represented by the
term or(return true, return false); the same operation can
be used for a choice between two elements of any given
type. The equations for the operations, for example saying
that or is a semi-lattice operation, generate a free algebra
monad, which is exactly the monad proposed by Moggi [20]
to model the corresponding effect.

This article proposes a logic for algebraic effects [22],
and aims to show that it provides a rich framework, which
embraces both approaches that have developed around spe-
cific effects, such as Hennessy-Milner logic [7] for concur-
rency, and more abstract approaches originating from the
representation of computational effects with monads, such
as Pitts’ evaluation logic [17, 15, 16]. (We define an em-
brace to be a translation, which preserves provable judge-
ments. If the translation also reflects provable judgements,
we call it a strong embrace.)

Section 2 introduces the a-calculus, its syntactic prop-
erties, and its denotational semantics. The a-calculus is a
minimal calculus which separates values, effects, and com-
putations, thereby canonising the order of evaluation. In
Section 3 it is extended to a classical first-order multi-sorted
logic with higher-order value and computation types, as
in Levy’s call-by-push-value [12], a principle of induction
over computations, a free algebra principle, and predicate
fixed points. Next, in Section 4, we show that Moggi’s
computational λ-calculus, and, via definable modalities,
Hennessy-Milner logic and evaluation logic are all em-
braced by our logic; we also observe the problems in em-
bracing Hoare logic [8]. In Section 5, we briefly study the
introduction of recursion and its logic and semantics. Fi-
nally, Section 6 discusses some open problems.



2 The a-calculus

The a-calculus consists of three parts: one for values,
one for effects, and one for computations. This structure is
also reflected in the semantics, with each part interpreted in
a separate category. This is similar to Levy’s call-by-push-
value λ-calculus, which consists of a part for values and a
part for computations. We first describe values and effects
by two equational theories. These serve as parameters to a
calculus for computations that use those values and effects.

2.1 Values

We take a collection of base types α such as natural num-
bers nat, booleans bool, or memory locations loc. In the
signature Σfun, we list base functions f : (α1, . . . , αn)→ β,
for example zero : () → nat, succ : (nat) → nat, or
plus : (nat,nat)→ nat.

As shown in Figure 1, we build value terms v and type
them in a context Γ, consisting of variables x uniquely
bound to value types, with typing judgements of the form
Γ ` v : σ. We write x : σ ∈ Γ if x is bound to σ in Γ.
Throughout the article, we use vector notation ~a to abbrevi-
ate lists a1, . . . , an.

σ ::= α v ::= x | f(v1, . . . , vn)

Γ ` x :σ (x :σ ∈ Γ)

Γ ` vi :αi (i = 1, . . . , n)
(f : (~α)→ β ∈ Σfun)

Γ ` f(v1, . . . , vn) :β

Figure 1. Syntax and typing rules for value
terms

We describe the properties of values in a value theory V,
consisting of equations Γ ` v1 = v2 between value terms
Γ ` v1 : σ, Γ ` v2 : σ, and closed under the usual rules for
multi-sorted equational logic. We write Γ `V v1 = v2 if
the equation Γ ` v1 = v2 is in the value theory V.

2.2 Effects

To represent the sources of effects, we take a finite
single-sorted signature Σop of finitary algebraic operations
op :n. Examples are a binary operation or : 2 for nondeter-
minism, or a family of nullary operations raisee : 0 with e
varying over a finite set E of exceptions.

To capture the polymorphic nature of operations, we
build effect terms, which serve as templates for computation

terms of any given type. Effect terms are built and typed in a
context Ξ = ξ1, . . . , ξn of distinct effect variables, as shown
in Figure 2. Later, computation terms of an arbitrary type
will be substituted for these variables.

T ::= ξ | op(T1, . . . , Tn)

Ξ ` ξ (ξ ∈ Ξ)

Ξ ` Ti (i = 1, . . . , n)
(op :n ∈ Σop)

Ξ ` op(T1, . . . , Tn)

Figure 2. Syntax and typing rules for effect
terms

An example effect term is or(ξ, raisee()), which is an
effect term representing a nondeterministic choice between
ξ and raising an exception e.

We describe the properties of effects with equations of
the form Ξ ` T1 = T2; an effect theory E is a col-
lection of such equations, closed under the standard rules
for equational theories. As for the value theory, we write
Ξ `E T1 = T2 if the equation Ξ ` T1 = T2 is in the effect
theory E. Only equationally consistent effect theories, that
is theories without the equation ξ1, ξ2 ` ξ1 = ξ2, are of
interest to us.

Some examples of algebraic effects are shown in Table 1,
where in the case of state, lookupl(T1, . . . , Tn) is an effect
term that looks up the location l and proceeds as Ti if l con-
tains the datum di. In addition to all those effects, we can
also represent various combinations of effects [10]. As we
demanded that the signature Σop is finite and the operations
are finitary, the sets of exceptions E, locations L, data D,
and the alphabet A must all be finite. This restriction will
be lifted when we generalise operations in Section 3.1.

2.3 Computations

Effectful programs cause effects, return values, and have
an evaluation order. To reflect this, we represent them by
computation terms, limiting these to: computation terms
combined by an operation, returned value terms, and com-
putation terms sequenced with a let binding. And, as seen in
Figure 3, we type them with computation types, ranged over
by τ . In the a-calculus, the computation types are limited
to types Fσ of computations ultimately returning a value of
type σ.

We define the instantiation Γ ` T [~t/~ξ] : τ of an effect
term ξ1, . . . , ξn ` T by computation terms Γ ` ti : τ , for



effect operations equations

a family of exceptions E raisee :0 for each e ∈ E none
nondeterminism or :2 or(ξ, ξ) = ξ, or(ξ1, ξ2) = or(ξ2, ξ1),

or(or(ξ1, ξ2), ξ3) = or(ξ1, or(ξ2, ξ3))
state with locations L, ranging over D lookupl : |D| for each l ∈ L, seven equational schemas [20]

updatel,d :1 for each l ∈ L, d ∈ D
input/output on an alphabet A input : |A|, none

outputa :1 for each a ∈ A

Table 1. Examples of algebraic effects, together with signatures of operations and equations that
generate the effect theories

τ ::= Fσ

t ::= op(t1, . . . , tn) | return v | letx be t in t′

Γ ` ti :τ (i = 1, . . . , n)
(op :n ∈ Σop)

Γ ` op(t1, . . . , tn) :τ

Γ ` v :σ

Γ ` return v :Fσ

Γ ` t :Fσ Γ, x :σ ` t′ :τ

Γ ` letx be t in t′ :τ

Figure 3. Syntax and typing rules for compu-
tation terms

i = 1, . . . , n, by

ξi[~t/~ξ] = ti

op(T1, . . . , Tn)[~t/~ξ] = op(T1[~t/~ξ], . . . , Tn[~t/~ξ]) .

In this way, effect terms yield computation terms of arbi-
trary type. For example, a computation term raisee(), which
raises an exception e, is of type τ for any computation type
τ .

The equational logic consists of equations of the
form Γ ` t1 = t2, where t1 and t2 have the
same type τ in the context Γ. In addition to the
usual congruence rules for equality, the logic has two
rules and two equational schemas, given in Figure 4,
where we write op(

−−−−−−−−→
letx be t in t′) as an abbreviation for

op(letx be t1 in t′, . . . , letx be tn in t′). (We use similar ab-
breviations elsewhere.)

We use the two rules to inherit equations from the value
and effect theories. The first equational schema is the
usual β-equality for let binding, understanding the second
one requires some operational intuition. The evaluation of
letx be op(t1, . . . , tn) in t′ begins with an occurrence of the

Γ `V v = v′

Γ ` return v = return v′

Ξ `E T1 = T2

Γ ` T1[~t/~ξ] = T2[~t/~ξ]

Γ ` letx be return v in t′ = t′[v/x]

Γ ` letx be op(t1, . . . , tn) in t′ = op(
−−−−−−−−→
letx be t in t′)

Figure 4. Equational logic of the a-calculus

effect represented by the operation op :n, and then, depend-
ing on the outcome of an effect, it proceeds by evaluating
one of the computation terms t1, . . . , tn and binding its re-
sult to x in computation term t′: but this is exactly what the
schema states.

The separation of values and computations allows us to
ensure that each computation term has an explicit evalua-
tion order (cf. administrative1 normal form [3]) although,
admittedly, we give no operational semantics here. This
avoids cases where the evaluation order has to be defined
by convention, for example which of the ti is evaluated first
in the evaluation of f(t1, . . . , tn). It also makes the calcu-
lus and its extensions more concise, as each such convention
requires an additional axiom, which we rather take as an ab-
breviation. For example, we regard a computation term of
the form f(t1, . . . , tn) as abbreviating

letx1 be t1 in . . . letxn be tn in f(x1, . . . , xn)

making the usual left-to-right evaluation order explicit.

1The letter a in the a-calculus stands for both algebraic and adminis-
trative.



The two equational schemas allow us to put each com-
putation term into a canonical form with no let bindings.
We use this to derive η-equality and the associativity of let
binding, which must usually be taken as axioms [14, 12].

Lemma 1. For every effect term Ξ ` T , computation terms
Γ ` ti :Fσ, for each ξi ∈ Ξ, and Γ, x :σ ` t′ :τ , we have

Γ ` letx beT [~t/~ξ] in t′ = T [
−−−−−−−−→
letx be t in t′/~ξ] .

Proof. By induction on the structure of T using the com-
mutativity of operations and let binding.

Definition 2. A computation term Γ ` t :Fσ is in canonical
form, if it is of the form T [−−−−→return v/~ξ] for some effect term
Ξ ` T and value terms Γ ` vi :σ, for each ξi ∈ Ξ.

Proposition 3. For every computation term Γ ` t : Fσ,
there exists a computation term Γ ` t′ : Fσ in canonical
form, such that Γ ` t = t′.

Proof. We proceed by induction on the structure of t. The
cases where t = return v or t = op(t1, . . . , tn) are straight-
forward, while for the case t = letx be t1 in t2 we use
Lemma 1.

Theorem 4. The equalities

Γ ` letx be t in returnx = t

and

Γ ` letx1 be t1 in(letx2 be t2 in t)
= letx2 be (letx1 be t1 in t2) in t

are derivable, where x1 does not appear free in t.

Proof. In the first equality, t is provably equal to a term of
the form T [−−−−→return v/~ξ] because of Proposition 3. Hence the
equality

Γ` letx be t in returnx = T [
−−−−−−−−−−−−−−−−−−→
letx be return v in returnx/~ξ]

is derivable by Lemma 1. We finish the proof using β-
equality. The proof of the second equality proceeds simi-
larly, assuming now that t1 is in canonical form.

As seen in the above proof, the associativity of let bind-
ing is a consequence of its commutativity with operations.
There are other properties of operations reflected in let bind-
ing, for example commutativity is derivable when the effect
theory is commutative.

Proposition 5. If the equality

Ξ ` op(op′(ξ11, . . . , ξ1n′), . . . , op′(ξn1, . . . , ξnn′))
= op′(op(ξ11, . . . , ξn1), . . . , op(ξ1n′ , . . . , ξnn′))

is in the effect theory E for all operations op :n and op′ :n′

in Σop, then the equality

Γ ` letx1 be t1 in letx2 be t2 in t′

= letx2 be t2 in letx1 be t1 in t′

is derivable, assuming x1 and x2 are distinct and do not
appear free in t1 and t2.

If in addition

Ξ ` op(op(ξ11, . . . , ξ1n), . . . , op(ξn1, . . . , ξnn))
= op(ξ11, . . . , ξnn)

is in the effect theory E for all operations op :n ∈ Σop, the
equality

Γ ` letx1 be t in letx2 be t in t′

= letx1 be t in t′[x1/x2]

is also derivable.

2.4 Semantics

We interpret value terms in the category Set of sets, ef-
fect terms in a Lawvere theory L, and computation terms in
the category ModL(Set) of models of the theory L in Set.

Values An interpretation I is determined by sets [[α]] for
each base type α, and functions [[f ]] : [[~α]] → [[β]], where
[[~α]] = [[α1]] × · · · × [[αn]], for each base function f : (~α)→
β. Unless stated otherwise, we assume a fixed interpretation
and omit the index.

Contexts Γ = x1 : σ1, . . . , xn : σn are interpreted
component-wise: [[Γ]] = [[σ1]] × · · · × [[σn]], and the in-
terpretation of value terms is defined inductively by

[[Γ ` xi :σi]] = prσi

[[Γ ` f(v1, . . . , vn) :β]] = [[f ]] ◦ 〈[[v1]], . . . , [[vn]]〉 .

An interpretation I is sound with respect to the value
theory V, if for each equation Γ `V v1 = v2, we have
[[v1]] = [[v2]]. We consider only sound interpretations.

Effects The effect theory E gives rise to a Lawvere the-
ory L in a standard way [2, Volume 2, Chapter 3]. Each
effect term ξ1, . . . , ξm ` T is interpreted by a morphism
[[T ]] : m→ 1, defined by

[[Ξ ` ξi]] = pri
[[Ξ ` op(T1, . . . , Tn)]] = [[op]] ◦ 〈[[T1]], . . . , [[Tn]]〉 ,

where [[op]] is the interpretation of the operation op :n in the
Lawvere theory.



Computations A model of a Lawvere theory L in Set
is a product preserving functor M : L → Set. Mod-
els, together with natural transformations, form a category
ModL(Set), which is equipped with a forgetful functor
U : ModL(Set) → Set, which maps a model M to the set
M(1). This functor has a left adjoint F , which takes a set
A and constructs the free model FA on it.

Computation types Fσ are interpreted by free models
F [[σ]], and computation terms Γ ` t : τ are interpreted by
maps [[t]] : [[Γ]] → U [[τ ]], defined inductively by

[[Γ ` op(t1, . . . , tn) :τ ]] = [[τ ]]([[op]]) ◦ 〈[[t1]], . . . , [[tn]]〉
[[Γ ` return v :Fσ]] = η[[σ]] ◦ [[v]]

[[Γ ` letx be t in t′ :τ ]] = [[t′]]† ◦ 〈idΓ, [[t]]〉 ,

where f† = Uε ◦ UFf ◦ stA,B : A × UFB → UM is
the lifting of the function f : A × B → UM , and where
stA,B : A × UFB → UF (A × B) is the strength of the
functor UF .

Lemma 6. For any map f : A×B → UM , and operation
op :n, the diagram below commutes.

A× (UFB)n
〈f† ◦ (idA × pri)〉i=1,...,n- (UM)n

A× UFB

idA × FB([[op]])

?

f†
- UM

M([[op]])

?

Proof. Transposing f : A × B → UM , we obtain a map
B → U(MA) and from the adjunction, a model morphism
f̂ : FB ⇒ MA. The commutativity of the above diagram
then translates to the commutativity of the diagram

FB(n)
f̂n- MA(n)

FB(1)

FB([[op]])

?

f̂1

- MA(1)

MA([[op]])

?

which commutes because of the naturality of f̂ .

Proposition 7 (Soundness). If Γ ` t1 = t2 is derivable
for computation terms Γ ` t1 : τ and Γ ` t2 : τ , then
[[t1]] = [[t2]].

Proof. To show the soundness of equality, we have to go
through all the rules of the a-calculus. Proving soundness
of the structural rules, the inheritance rules, and β-equality,
is straightforward. To show soundness of commutativity be-
tween operations and let binding, we use Lemma 6, a known
naturality result [21] adapted to a non-monadic setting.

On a related note, the converse of the rule for inheritance
from the value theory is also sound if the effect theory is
equationally consistent. We also have a completeness re-
sult relative to the value theory, based on Proposition 3 and
completeness results for algebraic theories.

Theorem 8 (Completeness). Let Γ ` t1 : τ and Γ ` t2 : τ
be computation terms. If the equality [[t1]] = [[t2]] holds for
all sound interpretations I, the equation Γ ` t1 = t2 is
derivable.

3 The logic

To get an expressive framework, we begin with the
a-calculus; we then extend the value theory to a first-order
logic; we next extend the effect theory with parametric oper-
ations with binding, together with equations with side con-
ditions; and we then extend both value and computation
terms using an extended type structure, following the pat-
tern of Levy’s call-by-push-value [12].

Finally, we extend the equational logic of the a-calculus
to a classical multi-sorted first-order sequent calculus with
a principle of induction over computations and predicate
fixed points. The terms of this logic are value and computa-
tion terms, so according to Pnuelli’s classification [25], our
logic is an exogenous logic, as computation terms are parts
of propositions, rather than an endogenous logic, where all
propositions concern a single computation.

3.1 Syntax

First-order value theory As before, we have a collection
of base types α and a signature Σfun, consisting of base
functions f : (~α) → β; we also have a signature Σrel con-
sisting of base relations R : (~α) → form. We build first-
order multi-sorted value formulae Γ ` ϕ : form in the usual
way. A value theory V is a collection of such formulae,
closed under the standard rules for classical multi-sorted
first-order logic over the signatures Σfun and Σrel.

Parametric operations with binding Instead of having
a set of nearly identical operations such as updatel,d : 1 for
each location l and datum d, we take a single operation with
parameter types such as update : loc,dat; 1. In this way,
we get a finitary syntax describing an infinite set of effects.

Next, if we were to describe a memory holding an infi-
nite set of data by routinely generalising the operations to
infinitary ones, we would be left with an infinitary syntax
[19]. We take an alternative approach [18], and allow each
argument of an operation to be dependent on values of base
types, for example lookupl((d : dat).updatel′,d(ξ)) is an
effect term for a computation that copies the datum d from l
to l′ and proceeds as ξ, using an operation lookup : loc; dat.



So we take a more general signature Σop with operations
op : ~β; ~α1, . . . , ~αn where the base types ~β are the parameter,
or the coarity, types, and the base types ~α1, . . . , ~αn are the
respective arity types. When writing signatures, we omit
the semicolon in ~β; ~α1, . . . , ~αn when ~β is empty, and we
write n instead of ~α1, . . . , ~αn when all the ~αi are empty.

To reflect the dependency on values, we type effect terms
as Γ; Ξ ` T in a context Γ of value variables x : α and a
context Ξ of abstracted effect variables ξ : (~α), according to
the following rules, where op : ~β; ~α1, . . . , ~αn.

Γ ` ~v :~α
(ξ : (~α) ∈ Ξ)

Γ; Ξ ` ξ(~v)

Γ ` ~v : ~β Γ, ~xi :~αi; Ξ ` Ti (i = 1, . . . , n)

Γ; Ξ ` op~v((~x1 :~α1).T1, . . . , (~xn :~αn).Tn)
.

To describe the case when an equation holds only for a
particular subset of parameters, we write equations of the
form Γ; Ξ ` T1 = T2 (ϕ), where Γ ` ϕ : form is a side
condition. In this way, we can use a finite syntax to write
down a possibly infinite number of equations. An effect
theory E is a finite collection of such equations, rather than
an equational theory. (Unfortunately, we do not know what
the rules for equational theories should be when operations
have parameters and arguments with binding; see [18] for
preliminary results.)

Value and computation terms The types of the calculus
are given by

σ ::= α | 1 | σ1 × σ2 | 0 | σ1 + σ2 | Uτ
τ ::= Fσ | 1 | τ1 × τ2 | σ → τ ,

while the terms are given by

v ::= x |f(~v) | ? | 〈v1, v2〉 | fst v |snd v | in0 v | inl v | inr v |
match vwith inlx1 :σ1.t1, inr x2 :σ2.t2 | thunk t

t ::= ζ | op~v((~x1 :~α1).t1, . . . , (~xn :~αn).tn) | force v |
return v | letx be t in t′ | ? | 〈t1, t2〉 | fst t | snd t |
λx :σ.t | tv .

With thunking and forcing, value and computation terms
become intertwined: we can thunk each computation term
to obtain a value term, which we pass around before even-
tually forcing it to retrieve the original computation term.

We type value and computation terms in a context Γ of
value variables x : σ and a context ∆ of computation vari-
ables ζ : τ . Omitting the previously mentioned rules for
base functions, returned values, and let binding, and the

well-known rules for variables, products, sums, and func-
tion types, the typing rules are:

Γ; ∆ ` t :τ

Γ; ∆ ` thunk t :Uτ

Γ; ∆ ` v :Uτ

Γ; ∆ ` force v :τ

Γ; ∆ ` ~v : ~β Γ, ~xi :~αi; ∆ ` ti :τ (i = 1, . . . , n)

Γ; ∆ ` op~v((~x1 :~α1).t1, . . . , (~xn :~αn).tn) :τ

We define an instantiation Γ; ∆ ` T [
−−−−→
(~x :~α).t/~ξ] : τ of

an effect term Γ; Ξ ` T by Γ, ~xi : ~αi; ∆ ` ti : τ , for each
ξi : (~αi) ∈ Ξ. It is defined argument-wise for operations by

op~v(
−−−−−−→
(~x′ :~α′).t′)[

−−−−→
(~x :~α).t/~ξ] = op~v(

−−−−−−−−−−−−−−→
(~x′ :~α′).t′[

−−−−→
(~x :~α).t/~ξ])

and for variables by

ξi(~v)[
−−−−→
(~x :~α).t/~ξ] = ti[~v/~xi] .

(We do not propose any calculus for value and compu-
tation terms. It would be natural, for example, to consider
conditional equations of the form Γ; ∆ ` t = t′ (ϕ), but the
difficulty would again be to find the right rules.)

3.2 Logic

As noted before, our logic is an exogenous one, so to de-
scribe properties of computations, we introduce predicates
π and predicate variables X in addition to the usual propo-
sitions ϕ, all built as:

ϕ ::= v1 = v2 | t1 = t2 | R(~v) | π(~v;~t) |
⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | ∃x :σ.ϕ | ∃ζ :τ .ϕ

π ::=X | (~x :~σ; ~ζ :~τ).ϕ | µX : (~σ;~τ).π

where, in µX : (~σ;~τ).π, the predicate variableX is required
to occur positively in π.

We type propositions Γ; ∆; Π ` ϕ :prop and predicates
Γ; ∆; Π ` π : (~σ;~τ) → prop in a context Γ of value vari-
ables x : σ, a context ∆ of computation variables ζ : τ , and
a context Π of predicate variables X : (~σ;~τ) → prop, ac-
cording to

Γ, ~x :~σ; ∆, ~ζ :~τ ; Π ` ϕ :prop

Γ; ∆; Π ` (~x :~σ; ~ζ :~τ).ϕ : (~σ;~τ)→ prop

Γ; ∆; Π, X : (~σ;~τ)→ prop ` π : (~σ;~τ)→ prop

Γ; ∆; Π ` µX : (~σ;~τ).π : (~σ;~τ)→ prop

and other standard rules.



The judgements of the logic are of the form

Γ; ∆; Π | Ψ ` ϕ ,

where the list of hypotheses Ψ = ϕ1, . . . , ϕn and the con-
clusion ϕ are all propositions in the contexts Γ; ∆; Π. We
write Γ; ∆; Π ` ϕ when there are no hypotheses.

The rules of the logic are: standard reasoning rules for
a classical first-order sequent calculus, including structural
rules; an equivalence

Γ, ~x :~σ; ∆, ~ζ :~τ ; Π ` ((~x :~σ; ~ζ :~τ).ϕ)(~x; ~ζ)⇔ ϕ

defining the behaviour of predicates; rules for sums, prod-
ucts, lambda expressions, thunking, and forcing, all as in
call-by-push-value [12]; rules

Γ `V ϕ

Γ; ∆; Π ` ϕ

Γ; Ξ `E T1 = T2 (ϕ)

Γ; ∆; Π | ϕ ` T1[
−−−−→
(~x :~α).t/~ξ] = T2[

−−−−→
(~x :~α).t/~ξ]

for inheriting from the value and effect theories; two equa-
tions

y :σ; ζ :σ → τ ` letx be return y in ζx = ζy

~y : ~β; ~ζ :
−−−−−−−→∏
~α→ Fσ, ζ ′ :σ → τ `

letx be op~y(
−−−−−−−→
(~x :~α).ζ〈~x〉) in ζ ′x

= op~y(
−−−−−−−−−−−−−−−−−→
(~x :~α). letx be ζ〈~x〉 in ζ ′x)

about let binding, the second one for all op : ~β; ~α1, . . . , ~αn;
an equation

~y : ~β; ~ζ :
−−−−−−→∏
~α→ τ , ~ζ ′ :

−−−−−−→∏
~α→ τ ′ `

op~y(
−−−−−−−−−−−−−→
(~x :~α).〈ζ〈~x〉, ζ ′〈~x〉〉)

= 〈op~y(
−−−−−−−→
(~x :~α).ζ〈~x〉), op~y(

−−−−−−−−→
(~x :~α).ζ ′〈~x〉)〉 ,

that defines the behaviour of an operation op : ~β; ~α1, . . . , ~αn
on a computation type τ×τ ′, and two similar ones for com-
putation types 1 and σ → τ ; two rules stating that the pred-
icate µX : (~σ;~τ).π is the smallest pre-fixed point

Γ, ~x :~σ; ∆, ~ζ :~τ ; Π | Ψ, π[π′/X](~x; ~ζ) ` π′(~x; ~ζ)
=======================================
Γ, ~x :~σ; ∆, ~ζ :~τ ; Π | Ψ, (µX : (~σ;~τ).π)(~x; ~ζ) ` π′(~x; ~ζ)

;

a principle of induction over computations, stating that
every computation term of type Fσ is either a returned
value, or built from other computation terms using opera-
tions, which for a computation variable ζ in a proposition
Γ; ∆, ζ :Fσ; Π ` ϕ :prop is of the form

Γ; ∆; Π | ∀x :σ.ϕ[returnx/ζ], ϕop1 , . . . , ϕopk
` ∀ζ :Fσ.ϕ

where op1, . . . , opk are all the operations in Σop, and for
op : ~β; ~α1, . . . , ~αn ∈ Σop, proposition ϕop is

∀~ζ ′ :
−−−−−−−→∏
~α→ Fσ.(

n∧
i=1

(∀~xi :~αi.ϕ[ζ ′i〈~xi〉/ζ])

⇒ ∀~y : ~β.ϕ[op~y(
−−−−−−−−→
(~x :~α).ζ ′〈~x〉)/ζ]) ;

and a free algebra principle, stating

Γ; ∆; Π | ϕ1, . . . , ϕm ` ∀ζ :σ → σ′.∃!ζ† :UFσ → σ′.

(∀x :σ.ζ†(thunk returnx) = ζ(x))∧ ψop1 ∧ · · · ∧ ψopk
,

where for each op : ~β; ~α1, . . . , ~αn ∈ Σop, we take a compu-
tation term ~y : ~β; ~ζ :

−−−−−−−−→∏
~α→ Fσ′ ` top :Fσ′, and where ψop

is

∀~y : ~β; ~ζ ′ :
−−−−−−−→∏
~α→ Fσ.ζ† thunk op~y(

−−−−−−−−→
(~x :~α).~ζ ′〈~x〉)

= top[
−−−−−−−−−−−−−−−−−→
λ〈~x〉 :

∏
~α.ζ† thunk ζ ′〈~x〉/~ζ] ,

and where ϕi states

∀~y′ : ~β′, ~ζ ′ :
−−−−−−−−→∏
~α′ → Fσ′.ϕ′i ⇒ Ti[~top/−→op] = T ′i [~top/

−→op]

for each equality ~y′ : ~β′; ~ξ :
−−→
(~α′) ` Ti = T ′i (ϕ′i) in the effect

theory E, and where T [~top/−→op] is defined by

ξj(~v)[~top/−→op] = ζ ′j〈~v〉

op~v(
−−−−−→
(~x :~α).T ) = top[~v/~y,

−−−−−−−−−−−−−−→
λ〈~x〉 :

∏
~α.T [~top/−→op]/~ζ]

and where ∀ζ :σ → σ′.ϕ abbreviates

∀ζ :σ → Fσ′.(∀x :σ.∃y :σ′.ζx = return y)⇒ ϕ

and similarly for existential quantification. (Note that the
uniqueness of ζ† can be proved using the induction princi-
ple.)

In the free algebra principle, top defines op on σ′, for-
mula φi says that the ith axiom in the effect theory holds in
σ′, and ψop says that ζ† preserves op. Note that the finite-
ness of both the signature Σop and the effect theory E are
used in the formulation of the induction and free algebra
principles.

With the logic presented, we can prove a stronger, non-
schematic, version of Theorem 4.

Theorem 9. The equalities

ζ :Fσ ` letx be ζ in returnx = ζ

and

ζ1 :Fσ1, ζ2 :σ1 → Fσ2, ζ :σ2 → τ `
letx1 be ζ1 in(letx2 be ζ2x1 in ζx2)

= letx2 be (letx1 be ζ1 in ζ2x1) in ζx2

are derivable.



The proof uses the induction principle instead of the
structural induction used in Theorem 4. Structural induc-
tion is not only unwieldy due to the large number of term
constructors, but also fails to prove the theorem in the pres-
ence of effect variables. In a similar way, we can prove a
non-schematic version of Proposition 5.

For each operation op : ~β; ~α1, . . . , ~αn, we can define its
generic effect

genop :
∏ ~β → F (

∏
~α1 + · · ·+

∏
~αn)

by

genop ≡def λy :
∏ ~β.op−−→

prjy
(
−−−−−−−−−−−−→
(~x :~α). injreturn〈~x〉) ,

using evident abbreviations, in particular,
∏
~α stands for

α1 × · · · × αm (see [21] for a discussion of operations and
generic effects). An example is genlookup : loc → Fdat,
which applied to a location l returns the datum stored there,
and is usually written as !l.

Operations are recoverable from their generic effects.
For example, if the operation is of the form op : ~β; ~α, we
have

Γ; ∆ ` op~v((~x :~α).t) = let y be genop〈~v〉 in t[
−−→
prjy/~x] ,

while in the general case, we use pattern matching.
Generic effects are often used in programming, as in the

example above, but are not useful for logic, as the equations
of the effect theory are written using the operations.

3.3 Modalities

We define local modalities in order to reason about com-
putations. A pureness modality expresses the properties of
a computation in terms of the returned values, while an op-
eration modality expresses its properties in terms of its im-
mediate subcomputations. Because of the exogenous view,
modalities are operators on predicates, rather than proposi-
tions.

We define pureness modalities [↓] and 〈↓〉 for a predi-
cate π : (σ) → prop, and operation modalities [op] and
〈op〉 for an operation op : ~β; ~α1, . . . , ~αn and a predicate
π : (~β;

∏
~α1 → τ , . . . ,

∏
~αn → τ)→ prop by

[↓](π) ≡def (ζ :Fσ).∀x :σ.ζ = returnx⇒ π(x)
〈↓〉(π) ≡def (ζ :Fσ).∃x :σ.ζ = returnx ∧ π(x)

[op](π) ≡def (ζ :τ).∀~y : ~β, ~ζ ′ :
−−−−−−→∏
~α→ τ .

ζ = op~y(
−−−−−−−−→
(~x :~α).ζ ′〈~x〉)⇒ π(~y, ~ζ ′)

〈op〉(π) ≡def (ζ :τ).∃~y : ~β, ~ζ ′ :
−−−−−−→∏
~α→ τ .

ζ = op~y(
−−−−−−−−→
(~x :~α).ζ ′〈~x〉) ∧ π(~y, ~ζ ′)

The notation for the pureness modality follows the nota-
tion for Moggi’s pureness predicate t↓, which is expressible
in terms of the pureness modality as 〈↓〉((x :σ).>)(t).

We define [−](π) for a predicate π : (τ)→ prop to be

(ζ :τ).
∧

op:~β;~α1,...,~αn∈Σop

[op]((~y, ~ζ).
n∧
i=1

∀~xi :~αi.π(ζi〈~xi〉))(ζ) .

and 〈−〉(π) is defined dually. Intuitively, [−](π)(t) states
that all immediate subcomputations of t satisfy π.

The derived introduction/elimination rules for necessity
modalities are

Γ; ∆, ζ :Fσ; Π | Ψ ` [↓](π)(ζ)
===========================
Γ, x :σ; ∆; Π | Ψ[returnx/ζ] ` π(x)

and

Γ; ∆, ζ :τ ; Π | Ψ ` [op](π)(ζ)
==========================================
∆, ~y : ~β, ~ζ ′ :

−−−−−−→∏
~α→ τ | Ψ[op~y(

−−−−−−−−→
(~x :~α).ζ ′〈~x〉)/ζ] ` π(~y, ~ζ ′)

and dually for the possibility modalities. From the adjoint
form of those rules, one can see that in the categorical ap-
proach to logic, pureness and operation modalities are quan-
tifiers corresponding to the inclusion of value terms into
computation terms and to operations, respectively.

To extend local to global reasoning, we use predicate
fixed points to define a global necessity modality �π by
νX : (τ).π ∧ [−](X) and a global possibility modality ♦π
by µX : (τ).π ∨ 〈−〉(X). In the same way, we can de-
fine other global modalities known from computational tree
logic, such as AF or EG, although one should recall that as
we are working in Set, all computations are finite.

Intuitively, Γ ` (�π)(t) states that all subcomputations
of t after some effects satisfy π. Since the subcomputa-
tion relation is reflexive and transitive, we expect the global
modalities to satisfy the S4 axioms.

Proposition 10. The rules

Γ; ∆, ζ :τ ; Π | ` π(ζ)

Γ; ∆, ζ :τ ; Π | ` (�π)(ζ)

Γ; ∆, ζ :τ ; Π | (�(π1 ⇒ π2))(ζ) ` (�π1 ⇒ �π2)(ζ)
Γ; ∆, ζ :τ ; Π | (�π)(ζ) ` π(ζ)
Γ; ∆, ζ :τ ; Π | (�π)(ζ) ` (��π)(ζ)

together with the dual ones for ♦, are derivable.

3.4 Semantics

We start with an interpretation I, determined by sets [[α]]
for each base type α, functions [[f ]] : [[~α]] → [[β]] for each



base function f : (~α) → β, and subsets [[R]] of [[~α]] for
each base relation R : (~α) → form. This determines the
interpretation of the rest of the logic. We interpret value
formulae Γ ` ϕ : form in the standard way using subsets
and, again, consider only interpretations that are sound with
respect to the value theory V.

Although the effect theory E is not an equational theory,
it is an abbreviation for an infinitary one, given a fixed in-
terpretation I where all the base types occurring in the arity
types of operations are interpreted by countable sets. In this
case, which we assume from now on, the effect theory gives
rise to a countable Lawvere theory L and adjoint functors
F a U : ModL(Set)→ Set in a standard way [26]. We are
only interested in interpretations I such thatL is non-trivial.

Value types σ are interpreted by sets [[σ]], while compu-
tation types τ are interpreted by models [[τ ]] of the theory
L. The value types are interpreted by [[Uτ ]] = U [[τ ]] and in
the obvious way in other cases, while computation types are
interpreted by

[[Fσ]] = F [[σ]] [[1]] = 1

[[τ1 × τ2]] = [[τ1]] × [[τ2]] [[σ → τ ]] = [[τ ]][[σ]] ,

where the model structure is defined component-wise for
M1 ×M2 and point-wise for MA.

The context x1 : σ1, . . . , xn : σn is interpreted by
[[~σ]] = [[σ1]] × · · · × [[σn]], while ζ1 : τ1, . . . , ζn : τn is
interpreted by U [[~τ ]] = U [[τ1]] × · · · × U [[τn]].

Value terms Γ; ∆ ` v : σ are interpreted by functions
[[v]] : [[Γ]] × [[∆]] → [[σ]], and computation terms Γ; ∆ ` t :τ
are interpreted by functions [[t]] : [[Γ]] × [[∆]] → U [[τ ]], all
defined in a straightforward way.

Note that computation terms can be interpreted as mor-
phisms in the co-Kleisli category of the adjunction between
F and U . They are of the form A × UM → UN , where
A =

∏
i[[σi]] and UM = U

∏
j [[τ j ]] =

∏
j U [[τ j ]]. The in-

terpretation is then equal to one of the formUM → U(NA)
and furthermore to one of the form FUM → NA, which is
a morphism in the co-Kleisli category.

Contexts

Π = X1 : (~σ1;~τ1)→ prop, . . . , Xn : (~σn;~τn)→ prop

are interpreted by sets

[[Π]] = P([[~σ1]] × U [[~τ1]])× · · · × P([[~σn]] × U [[~τn]]) ,

propositions Γ; ∆; Π | ϕ :prop by subsets

[[ϕ]] ⊆ [[Γ]] × [[∆]] × [[Π]] ,

and predicates Γ; ∆; Π | π : (~σ;~τ)→ prop by maps

[[π]] : [[Γ]] × [[∆]] × [[Π]] → P([[~σ]] × U [[~τ ]]) ,

all defined in an obvious way. In particular, fixed points
are defined as follows: the interpretation of a predicate
Γ; ∆; Π, X : (~σ;~τ) → prop ` π : (~σ;~τ) → prop de-
fines a monotone operator [[π]]a on P([[~σ]]×U [[~τ ]]) for each
a ∈ [[Γ]]×[[∆]]×[[Π]]. By Tarski’s fixed point theorem, [[π]]a
has a smallest fixed point Sa, and we define [[µX : (~σ;~τ).π]]
to be the map a 7→ Sa.

A judgement Γ; ∆; Π | ϕ1, . . . , ϕn ` ϕ is sound with
respect to the interpretation I, if

⋂n
i=1[[ϕi]] ⊆ [[ϕ]]. Show-

ing the soundness of the reasoning rules is straightforward:
the structural rules and rules for connectives and quantifiers
are the standard ones, the proof of soundness of equations
is straightforward, the interpretation of fixed points is sound
by definition, and the proofs of the soundness of the induc-
tion and free algebra principles proceed using the universal
property of the free model. If L is non-trivial, the following
consistency proposition holds

∀x1, x2 :σ. returnx1 = returnx2 ⇒ x1 = x2 .

4 Embracing other approaches

4.1 Computational λ-calculus

The computational λ-calculus [14] has a pureness pred-
icate Γ `λc t↓, which states that a computation term t
causes no effects, in place of the separation between values
and computations. The base functions of the computational
λ-calculus can be of an arbitrary type and can cause arbi-
trary effects. Since the main premise of our approach is that
algebraic operations are an adequate representation of ef-
fects, we argue that instead of arbitrary primitive functions,
we need only pure functions f :

∏
~α → β and generic ef-

fects genop :
∏ ~β → F (

∏
~α) for each operation op : ~β; ~α

(for more general generics, one would add sum types to
Moggi’s language). Under this mild assumption, we get
an embrace of the computational λ-calculus by translating
types as

αB = α (σ1 × σ2)B = σB
1 × σB

2

1B = 1 (σ → σ′)B = U(σB → Fσ′B)
(Tσ)B = UFσB ,

contexts Γ = x1 :σ1, . . . , xn :σn as

ΓB = x1 :σB
1 , . . . , xn :σB

n ,

terms as

xB = returnx

f(t)B = letx be tB in return f(x)
genop(t)

B = letx be tB in genop x

[t]B = return thunk t

µ(t)B = letx be t in forcex



?B = return ?

〈t1, t2〉B = letx1 be t1 in letx2 be t2 in return〈x1, x2〉
(fst t)B = letx be t in return fstx

(snd t)B = letx be t in return sndx

(letx be t in t′)B = letx be tB in t′B

(λx :σ.t)B = return thunkλx :σB.tB

(tt′)B = letx be tB in let y be t′B in (forcex)y ,

and judgements as

(Γ `λc
t :σ)B = (ΓB ` tB :FσB)

(Γ `λc t1 = t2)B = (ΓB ` tB1 = tB2 )
(Γ `λc t ↓ σ)B = (ΓB ` 〈↓〉((x :σB).>)tB) .

Proposition 11. If Γ `λc ϕ then (Γ `λc ϕ)B.

4.2 Hennessy-Milner logic

Hennessy-Milner logic examines whether a given CCS
process P satisfies a property ϕ, where processes and prop-
erties are given by

P,Q,R ::= 0 | a.P | P +Q

ϕ ::=> | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a](ϕ) | 〈a〉(ϕ) .

with a ranging over a set of actions A. Note that we deal
only with finite processes. The dual properties are defined
in terms of negation. Satisfiability P |= ϕ and the transition
relation P a→ Q are given in the usual way [7].

For the embrace, we take: operations 0 : 0, a.− : 1 for
each a ∈ A, and +:2; and equations

ξ1 + (ξ2 + ξ3) = (ξ1 + ξ2) + ξ3 ξ + ξ = ξ

ξ1 + ξ2 = ξ2 + ξ1 ξ + 0 = ξ .

We then represent each process P by a computation term
` PB :F0 in the evident way.

Lemma 12. The map that sends a process P to [[PB]] in-
duces a bijection between equivalence classes of bisimilar
processes and elements of the free model [[F0]].

Proposition 13. For processes P and Q, we have P a→ Q
if and only if there exists a process R such that

` PB = (a.Q+R)B .

Proof. First, let us assume that P a→ Q and proceed by
induction on P . If P = 0, then P a→ Q does not hold for
any Q. If P = a.P ′ and P a→ Q, we have P ′ = Q and
PB = (a.Q + 0)B. If P = P1 + P2, then either P1

a→ Q

or P2
a→ Q. In the first case, we have PB = (a.Q+ (P2 +

R))B where PB
1 = (a.Q + R)B. In the second case we

proceed in the same way.

If we assume ` PB = (a.Q + R)B for some R, we get
P ' a.Q + R by the soundness of the interpretation in the
free model and Lemma 12. Since a.Q + R

a→ Q, we get
P

a→ Q.

We define the translation of formulae into predicates by

(ϕ1 ∧ ϕ2)B = (ζ :F0).ϕB
1 (ζ) ∧ ϕB

2 (ζ)
([a](ϕ))B = [+]([a.−](ϕB), (ζ :F0).>)
(〈a〉(ϕ))B = 〈+〉(〈a.−〉(ϕB), (ζ :F0).⊥) .

and similarly in other cases.
With that translation, we get a strong embrace of

Hennessy-Milner logic. This shows how to express the
modalities of Hennessy-Milner logic in terms of the local
modalities given by the operations; we conjecture that the
converse fails: that, in a suitable sense, the operation modal-
ities cannot be expressed by the modalities of Hennessy-
Milner logic.

Lemma 14. For any process P =
∑
ai.Pi and action a we

have

ζ :F0, ζ ′ :F0 |
∑
ai.P

B
i = a.ζ + ζ ′ `

∨
ai=a

ζ = PB
i .

Proof. The proof employs the free algebra principle using
an algebra defined on a sum of 1’s, which we regard as the
set of all bisimulation equivalence classes [Q1 + · · ·+Qn],
where each Qj is either a subterm of P or w.0, for some
action w not occurring in P .

This has an evident semi-lattice with a zero structure, and
we define a.[Q1 + · · · + Qn] to be [a.(Q1 + · · · + Qn)] if
a.(Q1 + · · · + Qn) is a subterm of P and [w.0] otherwise.

Proposition 15. P |= ϕ holds if and only if ` ϕB(PB).

Proof. We proceed by induction on ϕ. The propositional
cases are evident.

In the case where P |= [a](ϕ) we have P '
∑
ai.Pi for

some ai and Pi and Pi |= ϕ whenever a = ai. Next, we
have that ` ([a](ϕ))B(PB) if, and only if,

ζ :F0, ζ ′ :F0 | PB = a.ζ + ζ ′ ` ϕB(ζ)

and so, by Lemma 14, if

ζ :F0 |
∨
ai=a

ζ = PB
i ` ϕB(ζ) ,

which holds as we know that ` ϕB(PB
i ) whenever a = ai

by the induction hypothesis. The converse is straightfor-
ward using Proposition 13.

In the case where P |= 〈a〉(ϕ), there exists aQ such that
P

a→ Q and Q |= ϕ. From the induction hypothesis, we get



` ϕB(QB), which using the fact that PB = (a.Q + R)B

for some R implies ` (〈a〉(ϕ))B(PB).
On the other hand, if we have ` (〈a〉(ϕ))B(PB), we get

` ∃ζ, ζ ′.PB = a.ζ+ ζ ′∧ϕB(ζ) and from the soundness of
interpretation, we show the implication in the other direc-
tion.

Corollary 16. Processes P and Q are bisimilar if and only
if ` PB = QB.

Proof. From ` PB = QB, it follows by congruence that
` ϕB(PB) if and only ` ϕB(QB), and hence P |= ϕ if
and only if Q |= ϕ for all properties ϕ. Since Hennessy-
Milner logic classifies bisimilar processes [7], we get that
P ' Q. On the other hand, bisimilarity is characterised
by the four equations of our effect theory E, hence P ' Q
implies ` PB = QB.

4.3 Evaluation logic

Evaluation logic [17, 15, 16] reasons about computa-
tions in terms of values they return. The necessity modality
[letx be t](π) states that every value computed by compu-
tation term t satisfies ϕ. For example, if the effect at hand
is nondeterminism, then [letx be t](ϕ) holds if and only if
all values computed by t satisfy ϕ; if it is exceptions, then
[letx be t](ϕ) holds if and only if t satisfies ϕ when it does
not raise an exception. The possibility modality is defined
dually: 〈letx be t〉(ϕ) states that there exists a value com-
puted by computation term t that satisfies ϕ.

We translate types of the evaluation logic by

αB = α (Tσ)B = UFσB ,

terms by

xB = x

[t]B = thunk return t

(letx be t in t′)B = thunk letx be force tB in force t′B ,

contexts by

(x1 :σ1, . . . , xn :σn)B = x1 :σB
1 , . . . , xn :σB

n ,

and formulae by

(t1 = t2)B = (tB1 = tB2 )
⊥B = ⊥

(ϕ1 ∨ ϕ2)B = ϕB
1 ∨ ϕB

2

([letx be t](ϕ))B = �↓((x :σB).ϕB)(tB) ,

where

�↓(π) ≡def µX : (Fσ).(ζ :Fσ).[↓](π)(ζ) ∨∨
op:~β;~α1,...,~αn∈Σop

〈op〉((~y, ~ζ).
n∧
i=1

∀~xi :~αi.X(ζi〈~xi〉))(ζ) .

This agrees with Moggi’s definition of the evaluation
modality in Set [16].

We write Γ `Mev ϕ for judgements in Pitts’ evaluation
logic [17], but with the modality rules limited to Moggi’s
derived ones in [15] and their duals.

Proposition 17. If Γ `Mev ϕ, then ΓB ` ϕB.

Hoare logic [8] for finite commands and a state with lo-
cations l1, . . . , ln can be embraced by externalising the state
[16], translating Hoare triples {ϕ(~x)}t{ϕ′(~x, ~y)} to

[let 〈~x, ~y〉 be

letx1 be !l1 in . . . letxn be !ln in let z be t in

let y1 be !l1 in . . . let yn be !ln in

return〈~x, ~y〉](ϕ(~x)⇒ ϕ′(~x, ~y)) .

However, this does not seem natural to us. The answer may
lie in a coalgebraic treatment [27, 24] of state, as an alge-
braic treatment already failed [23] to give a natural opera-
tional semantics for state. Such a treatment could fit well
with Pitts’ ‘ad hoc’ approach to state [17].

5 Recursion

We sketch a version of Scott’s LCF [30, 6], adapted to al-
gebraic computational effects, but make no claim of defini-
tiveness. The logic is an extension of our logic for algebraic
effects over Set, based instead on the category ω-Cpo of
ω-cpos and continuous maps.

We extend the value theory with inequations of the form
v1 ≤ v2 and suitable axioms and rules, including asymme-
try. In the effect theory we use inequations, for example
ξ1, ξ2 ` ξ1 ≤ or(ξ1, ξ2), and assume the existence of an
operation Ω : 0, and an equation ξ ` Ω() ≤ ξ [10]. At the
level of computation terms, we add recursion with

Γ; ∆, ζ :τ ` t :τ

Γ; ∆ ` µζ :τ .t :τ
.

The logic has additional atomic propositions v1 ≤ v2 and
t1 ≤ t2. The axioms and rules are the same as before,
adapted to the presence of inequations in an obvious way,
except that: the principle of induction over computations is
restricted to admissible propositions; and we also have the
axiom Γ; ∆; Π ` t[µζ : τ .t/ζ] ≤ µζ : τ .t and the principle
of Scott induction

Γ; ∆; Π | π(Ω()),∀ζ :τ .π(ζ)⇒ π(t) ` π(µζ :τ .t) ,



also restricted to admissible propositions. The definition
of admissibility is complex owing to the presence of predi-
cates and predicate variables; we do not give it here, except
to note that νX : (~σ;~τ).ϕ is admissible if ϕ is, under suit-
able assumptions on X. The other axioms and rules are as
in the case of the logic for Set, adapted to the presence of
inequations.

We interpret values in ω-Cpo, but still interpret all base
types occurring in arities by countable sets. Then the effect
theory gives rise to a countable discrete Lawvere ω-cpo the-
ory L and an adjunction F a U : ModL(ω-Cpo)→ ω-Cpo
in a standard way [11].

6 Future work

We have presented some evidence of the expressiveness
and strength of our logic of algebraic effects, but much
clearly remains to be done. To mention one example, we ex-
pect to get an embrace of global evaluation logic [5], while
we have not yet investigated the embrace of dynamic logic
[29].

The question of how to account for computation decon-
structors, such as exception handlers [1, 13, 21] also re-
mains open, hence so does the question of what their logic
may be. Beyond Set and ω-Cpo, and without yet looking for
a logic over a general category, one could still ask for logics
over categories of presheaves and sheaves, for the consider-
ation of new names or variables [4, 20], or separation logic
[28], with its additional logical connectives.
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[29] L. Schröder and T. Mossakowski. Monad-independent dy-
namic logic in HasCasl. J. Log. and Comp., 14(4):571–619,
2004.

[30] D. S. Scott. A type-theoretical alternative to ISWIM, CUCH,
OWHY. Theor. Comp. Sci., 121(1-2):411–440, 1993.


