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Abstract 

Serine palmitoyltransferase catalyses the first step in the de novo biosynthesis of sphingolipids. It uses a 

decarboxylative Claisen-like condensation reaction to couple L-serine with palmitoyl-CoA to generate a long 

chain base product, 3- ketodihydrosphingosine. Sphingolipids are produced by mammals, plants, yeast and 

some bacteria and we have exploited the complete genome sequence of Sphingomonas wittichii to begin a 

complete analysis of bacterial sphingolipid biosynthesis. Here we describe the enzymatic characterisation of 

the SPT from this organism and present its high resolution x-ray structure. Moreover, we identified an open 

reading frame with high sequence homology to acyl-carrier proteins (ACPs) that are common to fatty acid 

biosynthetic pathways. This small protein was co-expressed with the SPT and we isolated and characterised 

the apo- and holo-forms of the ACP. Our studies suggest a link between fatty acid and sphingolipid 

metabolism. 

 

Introduction 

Sphingolipids (SLs) are essential structural components of eukaryotic membranes and more recently they have 

been found to play important roles in cell signalling, inflammation and apoptosis.
[1-4] 

They are also found in 

various microbial species such as yeast and fungi, as well as bacteria such as Sphingomonas. The early steps 

in SL biosynthesis appear to be conserved in all species studies to date; the first reaction in the pathway is 

catalysed by the PLP-dependent enzyme serine palmitoyltransferase (SPT). SPT produces 3-

ketodihydrosphingosine by a Claisen-like condensation of L-serine and palmitoyl-CoA (Figure 1). SPT 

belongs to the α-oxoamine synthase (AOS)
[5]

 family which contains three other well characterized members: 

8-amino-7-oxononanoate synthase (AONS)
[6,7] 

5-aminolevulinate synthase (ALAS),
[8-10] 

and 2-amino-3-

ketobutyrate-CoA ligase (KBL).
[11,12] 

Together they catalyse similar chemical reactions but have specificity for 

their respective amino acid and fatty acid CoA thioester substrates. 

 

 

 

Figure 1. (a) Reaction catalysed by SPT. 
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Genes encoding SPT have been identified in numerous organisms but the species-specific traits of each 

enzyme have only emerged in recent years.
[13] 

In humans, SPT is a heterodimeric, membrane-bound enzyme 

encoded by two homologous genes making its isolation in a catalytically active form extremely 

challenging.
[14] 

Recent evidence suggests that the human enzyme is even more complex with the identification 

of two small subunits that activate in vitro SPT activity ~100 fold.
[15] 

Insight into the structure and mechanism 

of SPT has been obtained from studies of a cytoplasmic, water-soluble, homodimer that was isolated from 

Sphingomonas paucimobilis.
[16] 

The interaction between this SPT and various substrates and inhibitors have 

also been explored.
[17-19]

 Our group solved the first SPT structure, that of the PLP-bound, holo-form of S. 

paucimobilis that brought to light important catalytic residues and substrate specificity.
[20] 

This also allowed a 

model of the human heterodimeric enzyme to be built to probe residues involved in human neurological 

disorders such as hereditary autonomic neuropathy type I (HSAN1). More recently, we captured the PLP:L-

ser external aldimine complex which provided insight into how this key intermediate is stabilised.
[21] 

Recently, 

Ikushiro et al. reported the structure of the holo- and external aldimine forms of SPT from the bacterium 

Sphingobacterium multivorum showing some differences with the S. paucimobilis SPT.
[22]

 

As well as detailed studies on the individual enzymes involved in SL and lipid synthesis and metabolism, 

increasing effort has also been placed on expanding our knowledge of the structures and functions of all lipids 

within an organism, the field of “lipidomics”.
[23] 

Reports of the lipid content of mammals, plants and microbes 

have begun to appear and it is important to investigate interesting model organisms. Here, we describe our 

work on Sphingomonas wittichii RW1, a strictly aerobic Gram negative bacterium that produces both 

glucuronosyl and galacturonosyl ceramidetypes of SLs.
[24] 

This is also an environmentally useful organism 

since it metabolises toxic pollutants such as dioxin.
[25] 

The genome sequence of S. wittichii RW1 was recently 

completed and this stimulated our interest in using this organism as a good model for bacterial SL 

biosynthesis. We identified the gene encoding S. wittichii SPT using the amino acid sequence of the SPT from 

S. paucimobilis. Curiously, upstream from SPT, we found a small gene product that showed high sequence 

homology to fatty acid synthase (FAS) type II acyl carrier proteins (ACPs) (supplementary Figure 1). ACPs 

are small (~10 kDa), acidic proteins that play essential roles in the biosynthesis of fatty acids and other 

important natural products including polyketides.
[26,27]

 ACPs are expressed in an apo-form and then post-

translationally modified to their 4’- phosphopantetheine (4’-PP, holo-form using CoASH by an ACP-synthase 

(ACPS also known as a phosphopantetheinyl transferase, PPTase).
[28] 

The fatty acid is built up step-bystep by 

enzymes within the multi-subunit FAS complex whilst attached to the ACP as a thioester.
[26] 

ACPs have also 

been shown to be key components of polyketide synthases (PKS) and their peptidyl carrier protein (PCP) 

homologs also carry out essential roles in nonribosomal peptide synthases (NRPSs).
[29] 

The carrier protein 

must interact with each of the enzymes within each complex and the exact details of these protein-protein 

interactions are the subject of current research.
[30]
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The discovery that the S. wittichi ACP and SPT genes are encoded by consecutive open reading frames 

(ORFs) on the genome suggest a possible direct link between fatty acid and sphingolipid biosynthesis. In this 

study, we report the structural and functional characterisation of S. wittichii SPT. We have also isolated and 

purified the linked apo-ACP and have successfully converted it into the holo-form. Sequence analysis, 

coupled with chemical and molecular modelling, suggest that it is an unusual apo-ACP. Our work provides 

the platform for future studies of bacterial sphingolipid biosynthesis. 

 

Materials and methods 

Strains, DNA and expression plasmids 

The S. wittichii RW1 strain was a kind gift from Dr. Rolf Halden, John Hopkins University, USA. The 

complete genome sequence is available (http://img.jgi.doe.gov). The plasmids encoding the Streptomyces 

coelicolor ACPS (pET15b-ACPS) and Bacillus subtilis Sfp (pET28a/Sfp) were generous gifts from Dr. Matt 

Crump (University of Bristol) and Prof. Jason Micklefield (University of Manchester) respectively. The 

synthetic DNA construct (encoding Streptomyces verticillus SVP) was purchased from Mr. Gene, 

Regensburg, Germany. 

 

Molecular biology reagents, chemicals and chromatography media 

Plasmids (pET) and Escherichia coli chemically-competent cells BL21 (DE3), HMS174 (DE3) were 

purchased from Novagen. PCR products were cloned using the pGEM-T Easy cloning kit from Progema. Taq 

Polymerase Beads were from GE Healthcare. Plasmid and chromosomal DNA isolation kits were from 

Qiagen and used as per manufacturers’ instructions. All buffers and chemical reagents were from Sigma. 

Palmitoyl-CoA was from Avanti Polar Lipids and [U-14C]L-serine (specific activity 1.85 MBq/ml) was from 

GE Healthcare. The decanoyl-CoA (10:0), lauroyl-CoA (12:0), myristoyl-CoA (14:0), stearoyl-CoA (18:0), 

and arachidoyl-CoA (20:0) were from Sigma. Oligonucleotide primers were purchased from SigmaGenosys. 

PEG 3350 was from Fluka. All chromatography columns (Ni-sepharose, gel filtration) were from GE 

Healthcare. 

 

Gene Cloning 

Using the Sphingomonas gene sequence (Supplementary Figure 2) four PCR products that amplified the genes 

encoding ACP-SPT together, ACP alone, SPT alone and ACPS were amplified using purified genomic DNA 

from S. wittichii strain RW1 as a template and the following primers: 

http://img.jgi.doe.gov/
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(ACP-SPT and ACP forward BspHI) 

5’-CATGTCATGAGCAGCAGAGAAGACATCTTCACC-3’ 

(ACP-SPT reverse HindIII) 

5’-GGAAAAGCTTGGGGATTACTCCCGTGGCGCGCC-3’ 

(ACP reverse HindIII) 

5’-AAGCTTGGAGAGGAGGTCGGCCACC-3’ 

(SPT forward NcoI) 

5’-GGCTGACCCCATGGCCGACCTCCT-3’ 

(SPT reverse HindIII) 

5’-TGCGGCCGCAAGCTTGGGGATTAC-3’ 

(ACPS forward NdeI) 

5’-AGCGGGGAACCCATATGATCATCGGCATC-3’ 

(ACPS reverse XhoI) 

5’-ATCCCCCTCGAGCAGCGGGCGCGCATACA-3’ 

 

These primers introduce appropriate restriction enzyme sites (underlined) for subsequent cloning in the E. coli 

expression plasmids; pET-28a (for ACP-SPT, ACP and SPT), pET-22b (for ACPS) designed to include a 

His6 tag at the C-terminus of the recombinant SPT and ACPS proteins. 

The predicted sequences of the S. wittichii gene products (or open reading frames, ORFs) are annotated in the 

whole genome sequence (http://genome.jgipsf. org/sphwi/sphwi.annotation.html). This suggested that the 

“Swit_3900” ORF encoded an “8-amino-7-oxononanoate synthase” of 400 amino acids with high sequence 

homology to SPT. Sequence analysis also suggest that this ORF was translated from a GTG start codon, 10 

amino downstream from a possible alternative Met start codon. Consequently, the SPT expressing clone was 

designed in order to produce the “isolated” SPT sequence and allow determination of the sequence of the 

translated protein. 

The gene encoding the promiscuous phosphopantetheinyl transferase (PPTase also known as ACPS) from 

Streptomyces verticillus ATCC15003 “Svp” was generated by a commercial company (Mr. Gene, Germany) 
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using the sequence described in Sanchez et al.
[31]

 The synthetic gene contained the restriction site NcoI and 

XhoI in order to clone the Svp gene in pET-22b and obtain a His6 Tag at the C-terminus to enable purification 

by immobilised metal affinitychromatography (IMAC) on nickel resin. 

 

Protein Expression and Purification 

Except where specified protein expression was carried out in E. coli BL21 (DE3) host cells transformed with 

the appropriate pET plasmid and grown in the appropriate selective antibiotic (ampicillin at 100 μg/ml or 

kanamycin at 30 μg/ml). To coexpress S. wittichii ACP and SPT, cells transformed with the appropriate 

plasmid (pET-28a/ACP_SPT SW) were cultured in 2YT media (16 g/l Bacto-tryptone, 10 g/l Bacto-yeast 

extract, 5 g/l sodium chloride (pH 7.5)) including the appropriate antibiotic at 30°C for 3-5 hrs in the presence 

of 0.1 mM IPTG to induce protein expression. To express the S. verticillus Svp protein, the expressing 

plasmid was used to transform HMS 174 (DE3) cells which were grown at 30°C for no longer than 3 hours to 

avoid any mis-folding and inactivation of the enzyme. It is important to note that it was not possible to express 

the S. wittichii ACP alone, thus we co-expressed the ACP with SPT from the T7 promoter on the pET 

plasmid. Induced cells were harvested (Sorvall RC5B centrifuge) by centrifugation at 3500 rpm for 20 min at 

4°C. 

For the isolation of all recombinant proteins, the cell pellet was resuspended in 20 mM potassium phosphate 

buffer (pH 7.5) containing one EDTA-free protease tablet (Roche) before being disrupted by sonication 

(Soniprep 150) for 15 cycles (30 s on, 30 s off) on ice. The cell debris was removed by centrifugation at 

16,000 rpm for 30 min at 4°C and the supernatant cell-free extract was filtered (0.45 μm syringe filter), 

before being loaded onto the appropriate chromatography column. All chromatography steps were carried out 

at 4°C using an ATKA (GE Healthcare) to control flow rates and salt gradients. 

Each of the poly-histidine tagged recombinant proteins, S. wittichii SPT, B. subtilis Sfp and S. coelicolor 

ACPS were purified according to the previously described methods 
[21,32,33]

. Cell free extracts containing 

recombinant S. wittichii ACP protein in 20mM potassium phosphate buffer (pH 7.5) were loaded onto a 

HiLoad Q-sepharose anion exchange column (50 ml, GE Healthcare) preequilibrated with 20 mM potassium 

phosphate buffer (pH 7.5). The ACP protein was eluted with a linear salt gradient (0-1.0 M KCl) over 20 

column volumes (1 litre). Fractions containing ACP were identified by SDS-PAGE analysis, pooled and 

loaded onto a calibrated HiLoad 16/60 Superdex 75 prep grade (120 mL) size exclusion column. Elution was 

carried out in 20 mM potassium phosphate buffer (pH 7.5), 150 mM NaCl. 

The his-tagged S. wittichii ACPS in 20 mM potassium phosphate buffer (pH 7.5), 150 mM NaCl, 10% 

glycerol (v/v) and 20 mM imidazole was loaded onto a HiTrap Chelating HP column pre-equilibrated with the 

same buffer. The protein was eluted with a linear gradient [20 mM to 500 mM imidazole] over 10 column 
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volumes. Fractions containing ACPS were pooled and loaded onto a previously calibrated HiLoadTM 16/60 

SuperdexTM 75 prep grade (120 mL) size exclusion column. The pure protein was eluted at a flow rate of 1.2 

ml/min in 20 mM potassium phosphate buffer (pH 7.5), 150 mM NaCl, 10 % Glycerol. The S. verticillus Svp 

protein was purified following the same protocol that was used for S. wittichii ACPS isolation but the 

purification buffer did not contain any glycerol. 

For storage, the enzyme solutions were brought to a final concentration of 20% glycerol (v/v) (S. wittichii 

SPT, S. wittichii ACP, S. coelicolor ACPS, B. subtilis Svp) or 40% glycerol (Streptomyces verticillus Svp and 

S. wittichii ACPS) and stored at -80 °C until use. 

Protein identity and integrity were confirmed by routine high pressure liquid chromatography electrospray 

mass spectrometry (HPLC-ESI MS) on a MicroMass Platform II quadrupole mass spectrometer equipped with 

an electrospray ion source. The experimentally determined masses of each recombinant protein were within 

0.1% of the predicted masses based on their amino acid sequences. 

 

Determination of the “isolated” S. wittichii SPT N-terminus 

The ORF annotated as “Swit_3900” in the S. wittichii genome sequence is predicted to encode a “8-amino-7-

oxononanoate synthase, AONS”. The translated protein is predicted to contain 400 amino acids and a 

theoretical mass of 43095 Da. To determine the actual size of the ORF we cloned ORFs “Swit_3899” and 

“Swit_3900” together in a pET plasmid with a single T7 promoter and a six histidine tag at the C-terminal end 

of ORF Swit_3900. Expression of both genes was induced with IPTG and the Swit_3900- encoded protein 

was purified using standard IMAC procedure. After LC ESI-MS analysis, the mass of the purified 

recombinant protein was 44,515 Da which is in good agreement with a sequence containing 412 amino acids 

that has lost the N-terminal methioine residues and includes the C-terminal KLAAALEHHHHHH affinity 

fusion tag. Therefore, the purified Swit_3900 protein, hereafter named SPT SW, resembles a Nterminally 

truncated SPT SP (lacking 20 amino acids). 

 

Spectroscopic Measurements and Determination of Dissociation Constants 

All UV-visible spectra were recorded on a Cary 50 UV-visible spectrophotometer (Varian) analyzed using 

Cary WinUV software (Varian). We used the protocol previously described in Raman et al., to characterise 

the spectroscopic properties of the recombinant S. wittichii SPT.21 Briefly, the SPT was converted to its 

external aldimine (holo-) form by dialysis against freshly-prepared buffer containing 20 mM potassium 

phosphate buffer (pH 7.5), 150 mM NaCl, 25 μM PLP for 1 hour at 4 °C. We removed excess PLP by passage 

through a PD- 10 column (GE Healthcare) eluting with the same buffer without PLP. The protein was 
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concentrated to 10-20 mg/ml using a VivaSpin 30 kDa cut-off ultrafiltration spin filter. The dissociation 

constant for L-serine (Kd) was determined spectroscopically by monitoring the changes (at 425nm) upon 

incubation of the protein with increasing concentration of L-ser (0-80 mM). Data were fitted to a hyperbolic 

saturation curve using Sigma Plot software as described in Raman et al.
[21]

 

 

Assay of Recombinant SPT Activity 

We used methods previously described in Raman et al.,
[21]

 to determine the catalytic activity of S. wittichii 

SPT with a range of substrates. Product formation was monitored by following production of [14C] KDS from 

[14C] L-serine using thin layer chromatography and autoradiography. SPT activity was also monitored 

continuously by measuring the release of CoASH by reaction with 5,5’-dithiobis-2-nitrobenzoic acid (DTNB) 

at 412 nm. 

 

Structural Biology 

The SPT protein was screened for suitable crystallization conditions at the Scottish Structural Proteomics 

Facility. The proteins were dialyzed in the presence of excess PLP to ensure complete reloading prior to 

crystallization. The screens were built on a Hamilton Microstar liquid-handling robot controlled by Rhombix 

system software (Thermo). 

The S. wittichii SPT was crystallized at 20 mg/ml in 10 mM Tris (pH 7.5), 150 mM NaCl, 25 μM PLP using 

30% PEG monomethylether (MME) 2000, 0.1M KSCN, (NEXTAL JCSG+ screen condition 81). Crystals 

used for data collection were soaked for a few minutes in a solution of 27% PEG MME 2000, 0.22M KSCN, 

18% PEG400 plus 1–2 mM PLP. 

The crystal was mounted in a cryoloop (Molecular Dimensions) and frozen by plunging it into liquid nitrogen 

and carried in a dry cryogenic Dewar to the European Synchrotron Radiation Facility (Grenoble, France) for 

data collection. Multiple crystals were screened at beam line BM14 .The data sets were collected at 100 K to 

2.1 Ǻ using beam line 14 (supplementary Table 1). The data for S. wittichii SPT were processed with Mosflm 

and scaled with Scala from the CCP4 suite of programs.
[34,35] 

The density revealed that the PLP was covalently 

bound to Lys245 confirming that we had obtained the internal aldimine, holo-form of the protein. The SPT 

model was refined using Refmac534 and manually adjusted, including the addition of water molecules with 

WinCoot.
[36]

 Data and structure files have been deposited in the Protein Data Bank (PDB ID code 2xBU). 
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Conversion of S. wittichii apo-ACP to holo-ACP and acyl-ACP. 

The protocol used to modify the S. wititchii apo-ACP with the different phophopantetheinyl transferases 

(PPTases) was modified from previously described methods.
[31-33]

 

For brevity, the protocol is described using the generic name, “PPTase” that refers to each of the recombinant 

ACPS enzymes used; S. coelicolor ACPS, B. subtilis Sfp, S. verticillus Svp and S. wittichii ACPS. 

A final enzyme concentration of 60 μM apo-ACP in reaction buffer (see below) was incubated with 1 μM 

PPTase, 1 mM MgCl2 and a range of concentrations of CoASH/acyl-CoA (250 μM to 1 mM) in a final 

volume of 250 μL. The reaction was incubated at 37 °C overnight and then analysed by LC ESI-MS to 

determine the extent of modification of the apo-ACP. 

For each PPTase a different reaction buffer was used. For S. coelicolor ACPS and S. verticillus Svp, 50 mM 

Tris buffer, pH 7.8 was used. For B. subtilis Sfp we carried out the reaction in 75 mM MES buffer at pH 6.0 

and for S. wittichii ACPS this was performed in 20 mM potassium phosphate buffer (pH 7.5). 5 mM DTT was 

added to the reaction mixture when using free CoASH as a substrate. 

It is important to note that MgCl2 concentrations of > 1mM could not be used for reactions containing acyl-

CoAs as this caused precipitation of these substrates. 

 

High Resolution LC-FT-ICR Mass Spectrometry analysis 

For high resolution mass spectrometry (LC-FT-ICR MS), an Ultimate 3000 HPLC system (Dionex 

Corporation, Sunnyvale, CA), equipped with a monolithic PS-DVB (500 μM x 5 mm) analytical column 

(Dionex Corporation), was used. MS data was acquired on a Bruker 12 Tesla Apex Qe FTICR (Bruker 

Daltonics, Billerica, MA) equipped with an electrospray ionization source. Desolvated ions were transmitted 

to a 6 cm Infinity cell® penning trap. Trapped ions were excited (frequency chirp 48-500 kHZ at 100 steps of 

25 μs) and detected between m/z 600 and 2000 for 0.5 s to yield a broadband 512 Kword time-domain data. 

Fast Fourier Transforms and subsequent analyses were performed using DataAnalysis (Bruker Daltonics) 

software. Multiple charge states could be observed in this way for each of the major species. 

Isotopic Fitting. Isotope distributions of specific charge states were predicted using IsotopePattern software 

(Bruker Daltonics) from theoretical empirical formulae. These were overlaid upon the recorded experimental 

data as scatter plots, with the theoretical apex of each isotope peak designated by a circle. 

Top-Down Fragmentation. Top-down fragmentation was performed on the 12T Qh- FT-ICR. Two specific 

ions, m/z 1521 and 1304, were sequentially isolated using the mass resolving quadrupole, and MS/MS was 
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performed using collision induced dissociation (CID). For CID, the collision voltage was typically set 

between 20-35V. Fragmentation data was the sum of 200 acquisitions and data analyses were performed using 

DataAnalysis (Bruker Daltonics). The SNAP 2.0 algorithm was used for automated peak picking. The 

resulting top-down fragment mass lists were combined and searched against the primary sequence of ACP 

using Prosight-PTM software.37 Mass error tolerances were set for all searches at 10 ppm. 

 

Results and discussion 

Purification and Characterisation of S. wittichii SPT 

Using BLAST analysis we searched the annotated genome of the sphingolipidproducing organism S. wittichii 

RW1 for the gene encoding a homologue of S. paucimobilis SPT. We identified a hit ORF with 70% sequence 

identity that was annotated as “Swit_3900”. It had been labelled as an AONS catalysing the first step in biotin 

biosynthesis (condensation of L-alanine and pimeloyl-CoA to generate 8-amino-7-oxononanoate, AON6) 

since there is highly conserved sequence homology between members of the AOS family. We also noted that 

just upstream of “Swit_3900” another small gene, “Swit_3899” had been annotated with “unknown function”. 

Upon sequence analysis of this translated 80 aa protein we found a conserved phosphopantetheinylation 

sequence motif (DSLT) characteristic of acyl carrier proteins (supplementary Figures 1 and 2).29,38 The 

conserved serine residue is post-translationally modified using CoASH as a substrate to convert the apo-ACP 

into the holo-ACP form containing a 4’-phosphopantethiene (4’-PP) prosthetic arm.
[28]

 Further sequence 

analysis of the two genes suggested the presence of a typical bacterial promoter upstream of the predicted 

ACP gene and ribosome binding sites (RBSs) before the putative ACP gene (supplementary Figure 2). A 

consensus RBS could not be detected for the SPT gene. 

To explore the structure and function of this pair of proteins we cloned both genes into a pET expression 

plasmid to determine if both genes could be transcribed from the strong plasmid-encoded T7 promoter. We 

also fused a six-histidine tag at the C-terminal end of the putative SPT to enable facile purification by IMAC 

since this tagging strategy worked well with our previous S. paucimobilis SPT. We induced transcription from 

the T7 promoter of the expression plasmid pET-28a/ACP_SPT SW using IPTG and we analysed the 

expressed protein products by SDS-PAGE (Supplementary Figure 1b). Two clearly overexpressed bands were 

observed at ~8-10 kDa and ~45 kDa corresponding to the ACP and SPT gene products respectively. This 

result confirmed that both genes could be expressed from a single external promoter and suggested that the 

SPT product was translated from a RBS on the RNA transcript. 

A large scale culture was carried out with these expressing cells, a cell-free extract was prepared in the 

presence of PLP (25 μM) and then subjected to IMAC to isolate the Histagged putative SPT SW. Upon 

elution with imidazole we obtained fractions highly enriched in a single 42 kDa protein which was further 
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purified using size exclusion chromatography. The protein eluted as a dimer and its UV-vis spectrum showed 

characteristic absorbance maxima at 340 nm and 425 nm which correspond to the enolimine and ketoenamine 

forms of the PLP-bound enzyme (Supplementary Figure 3). By measuring the change in absorbance at the 

ketoenaminespecific wavelength at 425nm, the dissociation constant for L-serine (Kd L-Ser) was found to be 

0.8 mM which is in the same range as the value (1.1 mM) obtained for the S. paucimobilis SPT (Table 1).
[18,21]

 

 

 

Table 1. Kinetic Parameters for the Purified SPT S. wittichii and S. paucimobilis 

 

 

We noted that during isolation of the His-tagged SPT SW by IMAC, the putative ACP protein did not bind to 

the column, so this unbound fraction was used for the isolation of the ACP by ion-exchange chromatography 

(see below). 

 

SPT activity and kinetics 

We measured KDS production catalysed by the SPT SW with [14C ] L-serine and palmitoyl-CoA using the 

method described previously (Supplementary Figure 3b).39 We also used a continuous, spectroscopic 

DTNBlinked assay that detects formation of CoASH to determine kinetic parameters of the enzyme. The SPT 

SW bound L-serine and palmitoyl- CoA with Km values of 0.78 mM and 23.4 μM, respectively (Table 1). 

The enzyme turned over with a kcat of 0.069 s-1 and a catalytic efficiency (kcat/Km Ser) of 88.1 M-1 s-1 for 

Lserine. A comparison of the kinetics of the SPTs from S. wittichii and S. paucimobilis revealed that both 

enzymes display similar binding affinities for both substrates but that the SPT SW had a much lower turn over 

and efficiency (~17 fold for kcat; and 9 and 11 fold for kcat/ Km for L-ser and palmitoyl-CoA respectively) 

compared with the SPT SP. 
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The acyl-CoA chain length specificity of the SPT SW was also investigated. We found stearoyl-CoA (C18:0) 

to have the fastest turnover (kcat = 0.083 s-1) of all of the acyl-thioesters tested and a Km of 12.9 μM 

(Supplementary Table 2). When comparing the kcat/Km values, stearoyl-CoA (C18:0) was also the most 

efficient substrate (6,416 M-1 s-1). In contrast, the decanoyl-CoA (C10:0) and lauroyl-CoA (C12:0), were the 

poorest substrates and accurate kinetic constants could not be determined. 

These combined results suggested that although the SPTs from these different strains displayed high sequence 

identity and similar substrate binding specificities there could be subtle differences that would lead to 

differences in turnover rates. It appeared that the SPT from both Sphingomonas strains bound L-serine with 

the same affinity (similar Kd values) and similar Km values for CoASH ester substrates but there were a large 

differences in catalytic rates. The presence of a putative ACP that co-expressed with the SPT suggested that 

instead of using palmitoyl-CoA as a thioester substrate, the S. wittichii SPT could possibly use an acyl-ACP 

thioester substrate. 

 

High resolution crystal structure of S. wittichii SPT 

S. wittichii SPT crystallised as a dimer in the asymmetric unit, in contrast to the S. paucimobilis SPT where 

the dimer is generated by crystal symmetry (Figure 2a).
[20-22]

 However, both the dimer and monomer 

structures are similar (with a few differences) between the Sphingomonas strains, root mean square (rms) 

deviation for the dimer is 0.65 Å (796 C alpha backbone) and 0.61 for the monomer (398 C alpha backbone). 

In our previous SPT SP structure it was also not possible to model the N-terminal 22 amino acids and in both 

SPTs the C-terminal hexahistidine affinity tags were not visible. The SPT SW is shorter at the N-terminus 

compared to the SPT SP and therefore the SPT SW model contains 398 of the 412 amino-acids from Ala2 to 

Pro400 inclusive. The PLP cofactor is bound in both monomers in a similar way. All SPT:PLP interactions 

observed with the cofactor in one active site are also present in the second PLP-binding site within the dimer. 

The PLP cofactor forms hydrogen-bonds to the side chains of Asn118, Thr242, Thr274, the main chains of 

Gly114, Tyr115, Ala275 and π-stacks with His139 (Figure 2b). Overall the SPT SW and SPT SP active sites 

bear very close resemblance to each other (Figure 2c). 
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Figure 2. Structure of Sphingomonas wittichii SPT (a) overall structure of the SPT dimer showing one 

monomer in blue and the other in olive. The cofactor PLP bound to the residue Lys265 in the blue monomer is 

shown in stick form and is colored green. The equivalent residue from the olive monomer is colored magenta 

(b) catalytic site view showing the cofactor PLP of monomer A and the residues His139, His214 and Asn118 

involved in its stabilisation. Monomer A is drawn in blue and monomer B is drawn in olive. (c) Overlay of 

SPT SW and SPT SP showing similar residues involved at active site. SPT SW is coloured blue and the PLP 

plus active sites residues are represented in green. SPT SP is coloured magenta and the PLP cofactor and the 

active site residue are pink. 

 

Two important interactions present in S. paucimobilis SPT and also found in other members of the AOS 

family appear to be absent in the SPT SW structure. Both Asp211 and His214 appear to be too far away to 

form interactions to the PLP pyridine nitrogen and PLP oxygen atoms respectively, that have been observed in 

other structures. Both these residues are absolutely conserved among all SPTs and AOS family members and 

are known to stabilise and anchor the PLP in the active site. Even if these residues are too far away to interact 

with PLP in this crystal structure, they may be involved during catalysis in solution possibly by stabilisation 

of other intermediates (e.g. formation of the PLP:L-Ser external aldimine). We do note that a possible 
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compensatory interaction involves the sidechain of Asn118 which is closer to the pyridine nitrogen of the PLP 

ring than the equivalent residue (Asn138) in the SPT SP structure. In the S. paucimobilis SPT structure we 

found that an arginine residue, Arg378, played a role in anchoring the carboxylate residue of L-Ser in the 

PLP:L-Ser external aldimine form of the enzyme. In SPT SP the side chain of Arg378 undergoes a large 

conformational change from the holo- “swung-out” form to the external aldimine “swung-in” form.
[21] 

We 

note that in SPT SW residue Arg358 is suggested to play this role and is in the “swung-out” position 

characteristic of the holo- form of the enzyme. 

Other small differences can be observed between the two bacterial SPTs. In our previous study of S. 

paucimobilis SPT we used the bacterial, homodimeric enzyme to generate a model of the heterodimeric 

(SPT1/2) human SPT.
[20] 

We used this model to predict the site of mutation in the human SPT1 subunit 

(Cys133, which is mutated to Tyr and Trp) that causes the sphingolipid metabolic disease HSAN1. Our model 

suggested S. paucimobilis SPT residue Asn100 mapped to human SPT1 residue Cys133 and this side-chain 

plays a role in contacting the backbone amide of the PLPbinding residue Lys265. In a recent study we probed 

its structural and function role by making Asn100Tyr and Asn100Trp mutant SPT SP.
[21] 

This revealed that 

mutations on one SPT monomer do indeed impact on the other. In S. wittichii SPT the Asn100 residue is 

replaced by Thr80, other sequence changes place it in a hydrogen bonding environment at the interface 

between the two subunits. In contrast to Asn100 of SPT SP, the side-chain of Thr80 does not make a direct 

hydrogen bond contact with the other subunit but is immediately adjacent to PLP binding Lys245 of the 

neighbouring subunit (Figure 2c). 

We also observed other small differences between the SPT structures from both Sphingomonas strains. The 

entrance to the active site that is situated at the “top” of the SPT SW protein surface is wider than that 

observed in S. paucimobilis SPT, possibly indicating the binding of a larger long-chain fatty acid substrate 

(e.g. acyl-ACP) instead of an acyl-CoA thioester (Supplementary Figure 4). This results from a rigid 

movement of the loop Pro360-Pro363 of about 2 Å. The residues within this loop are conserved between SPT 

SP and SPT SW, however Met366 is found in SPT SW and is replaced with Thr386 in SPT SP; whilst residue 

Thr356 in SPT SW is replaced by Met376 in SPT SP. As a result the methionine side chain sits in different 

hydrophobic pockets in both enzymes and this may be responsible for the different loop positions. These 

comparisons suggest that there are subtle structural differences between the bacterial SPT isoforms that could 

explain observed differences in their catalytic activities. 

To further probe the Nature of the acyl-CoA binding site we used the structure of the recently solved enzyme 

CqsA from Vibrio cholerae, a recent addition to PLP-dependent, AOS family, which resembles SPT and 

AONS.
[40] 

CqsA is involved in the biosynthesis of cholerae autoinducer-1 (CAI-1) from (S)-2- aminobutyrate 

and decanoyl-CoA.
[41] 

Of particular interest, the external aldimine of the final product from the condensation 

of Lthreonine and decanoyl-CoA has been trapped in the active site (PDB ID code: 2WKA). Superposition of 

the SPT SW and V. cholerae CqsA structures places the acyl-CoA binding site in a long hydrophobic channel 
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at the interface of the two monomers of SPT SW (Figure 3a and 3b). The channel is lined by residues Leu10, 

Arg15, Ala17-Leu19, Thr21- Tyr27, Val341, Arg358-Pro361 from monomer A and Val84-Leu85, Leu266 

and Val272 from Monomer B. Two valine residues (Val23 and Val341 from monomer A) delimit the end of 

the channel. We note that SPT SW has a lower chain length limit with regard to its acyl-CoA substrates and 

we detected no activity with substrates of C12 and below. The exact details of chain length specificity within 

the AOS family are still unknown but this analysis will allow us to probe the role of the residues lining this 

putative channel. 

 

 

Figure 3. Surface structure of SPT showing palmitoyl-CoA binding cavity (a) View from the top (b) Top/side 

view. Monomer A is show in blue and monomer B in olive. The two hydrophobic cavities are coloured cyan 

and green. The end of each channel is delimited by two valine residues Val23 and Val341 shown in magenta. 

 

Purification, Characterisation and Modification of Apo-ACP 

S. wittichii ACP was co-expressed with SPT in E. coli and a rapid two-step purification procedure using anion 

exchange and size-exclusion chromatography led to the isolation of milligram quantities of the protein. We 

used LC ESI-MS to determine the mass of the purified protein (8784 Da) and this revealed that the ACP SW 

had been expressed in the apo-form (predicted mass without Met residue 8782.5 Da, Figure 4a). This suggests 

that the enzymes involved in post-translational modification of the Type II FAS machinery in E. coli do not 

recognise the S. wittichii ACP and cannot convert it to the 4’-PP holo form. 
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Figure 4. Mass spectrometry of ACP. Ion envelopes of (a) Apo-ACP (b) Holo-ACP (c) Lauroyl-ACP (d) 

Myristoyl-ACP. Apo-forms of ACP are shown in blue. Holo and acyl-forms are shown in red. The 

deconvoluted experimental masses based on the ion envelope are shown. 

 

Generally, ACPs are modified by a PPTase (also known as ACPS) by the addition of the 4’-PP group and 

thereafter the fatty acid chain is built up step-by-step by a fatty acid synthase (FAS).
[26] 

Individual members of 

the PPTase superfamily tend to display high substrate specificity and will only recognise their cognate 

ACP.
[28]

 This has caused technical problems with regard to production of various natural products in 

recombinant hosts (and in vitro) where the ACP is not modified correctly. Some PPTases are able to catalyse 

the direct transfer of an acyl group to an apo-ACP using an acyl-CoA substrate, thus generating an acylated-

ACP in a single step. Some of these PPTases are well known for their broad substrate recognition and inherent 

“promiscuity” and have been used to solve problems of production of natural products in alternative hosts. 

[27,31-33]
 Since we isolated the ACP SW in an apo- form we wished to convert it to the holo- and various 

acylated forms. We used CoASH to install the 4’-PP arm, as well as acyl-CoAs of varying fatty acid chain 

length (decanoyl C10; lauroyl C12; myristoyl C14; palmitoyl C16 and steroyl C18) in combination with a 

number of PPTases. 
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The first attempt to modify ACP SW (with CoASH and acyl-CoAs) was made with the S. coelicolor ACPS 

since it is known to have broad specificity.
[33,42]

 Unfortunately, this did not give any positive results (data not 

shown) and this suggested that S. coelicolor ACPS does not recognise ACP SW. We next tried the broad-

range ACPS B. subtilis Sfp and found it did successfully convert the apo-ACP into the holo-form with an 

increase mass of 4’- PP (experimental mass 9118 Da, Figure 4b) as well as the C10 (data not shown), C12 

(mass 9300 Da, Figure 4c) and C14 (mass 9330, Figure 4d) acyl-ACP derivatives. The % conversions of apo- 

to the C12- and C14- modified ACPs (based on MS peak height intensities) were ~50% and ~20% 

respectively. We also used high resolution MS coupled with fragmentation techniques to identify the site of 

4’-PP attachment on the holo-ACP SW as the Ser39 residue within the conserved motif (Supplementary 

Figure 5). Unfortunately, B. subtilis Sfp failed to transfer a palmitoyl (C16:0) or a stearoyl (C18:0) chain onto 

the apo-ACP SW. The transfer of the palmitoyl chain by B. subtilis Sfp was further explored by testing several 

reaction conditions (varying enzyme, substrate and co-factor concentrations as well as temperature and time) 

without any success (data not shown). Previous studies reported that B. subtilis Sfp was successfully used to 

modify a large number of ACPs and PCPs with various substrates but never with long chain fatty acids (≥ 

C16).
[32,43,44]

 

 

Figure 5. (a) Sequence alignments of E. coli and S. wittichii ACPs (b) 3D-Models of ACP S. wittichii 

showing superposition of Swiss and JIGSAW ACP 3D-models. The ACP Swiss-model is coloured cyan and 
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JIGSAW-model is coloured green. In each model, residue Trp37 is shown in stick form. (c) Superposition of 

the JIGSAW S. wittichii ACP model and E. coli ACP structure (PDB ID: 1LOH). The ACP SW JIGSAW-

model is coloured green and E. coli structure in magenta with the C4 acyl group shown in stick form and 

coloured in dark blue. 

 

Another useful promiscuous PPTase, S. verticillus Svp, with similar characteristics to Sfp, has been shown to 

have a preference for longer carbon chains.
[45] 

It was also shown to modify both type I and type II ACPs and 

PCPs from either S. verticillus or other Streptomyces species.
[31]

 However, although we found that S. 

verticillus Svp converted apo-ACP SW to the holo form it failed to transfer any acylthioester substrates (data 

not shown). Since the S. verticillus Svp and other PPTases are able to catalyse formation of holo-ACP SW but 

are not able to transfer an acyl-4’-PP group, we suggest that the problem with the long chain transfer must 

come from the structure of the ACP SW itself. Finally, we used sequence homology to identify the PPTase 

(ACPS) in the S. wittichii genome (ORF code Swit_3872) that enabled us to overexpress this PPTase in E. 

coli. We were able to purify the recombinant S. wittichii ACPS but found that in assays with apo-ACP SW 

this enzyme catalysed only the formation of the holo-form and provided no acyl-ACP. Similarly, co-

expression of ACP SW and ACPS SW inside the same E. coli host provided only holo-ACP (data not shown). 

In conclusion we found that B. subtilis Sfp was the best PPTase to act upon the apo-ACP SW. Unfortunately, 

we were unable to generate sufficient quantities of long chain acylated-ACP to carry out a study of its ability 

to act as an acyl-donor in the SPT reaction with L-serine. In a recent study on rat Type I ACP the authors also 

noted the tendency of the C16-acylated form of this protein to precipitate over 48 hrs.
[42]

 We also realised 

through our acyl-CoA chain length kinetic analysis that SPT SW failed to accept substrates with carbon chain 

lengths of less than C14 (supplementary Table 2). To generate sufficient quantities of long chain acyl-ACP 

SW we may need to turn to a chemical, non- enzymatic procedure using N-acylimidazole derivatives and this 

is a target of future work.
[46]

 

 

ACP structural model 

Since we found the apo-ACP SW was so difficult to convert to an acylated form using promiscuous PPTases 

we carried out sequence analysis to identify any novel characteristics that could explain its recalcitrant nature. 

Protein sequence alignment revealed that ACP SW is rather unusual and does not fit perfectly into an ACP 

sub-family described in the literature. Its closest homologs are proteins with no published experimental data 

associated with them. However, it does show 26% amino acid sequence identity to E. coli ACP which has 

been characterised extensively (Figure 5a).
[47] 

In ACP SW one particular residue stands out - a highly 

uncommon tryptophan residue (Trp37) positioned just before the conserved (WDSLT) 4’-PP sequence motif 
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(Figure 5a). Numerous ACP structures are available in the literature in both apo-, holo- and acylated 

forms.
[29,38] 

Despite acting in diverse biosynthetic pathways, interacting with many different enzymes and 

having low overall sequence similarity, their secondary structures and overall folds are very similar.
[27]

 For 

example the E. coli ACP is typical and displays a common fold of four α-helices. Thus, using the 3D-

JIGSAW server
[48-50] 

and Swiss-model
[51-53] 

we were able to generate two 3D-models of ACP SW in order to 

gain some insight into the role of this unusual tryptophan residue (Figure 5b and 5c). The ACP SW model was 

based on a best fit to that of the ACP from E. coli.
[47]

 This ACP was shown to be able to accommodate a 

growing acyl chain within a hydrophobic cavity that could expand as fatty acid synthesis proceeded. The ACP 

SW models adopted the typical four α-helical bundle fold. Superposition of the two models generated by the 

different software revealed two possible positions for the Trp37 side-chain both of which are close to the site 

of 4’-PP attachment (Ser39) (Figure 5b). In both models the residue is positioned on a solvent-exposed 

flexible loop and so one could imagine that the tryptophan could adopt both conformations. The superposition 

of the 3D-JIGSAW model with the C4-ACP E. coli structure (Figure 5c) lends weight to the attractive idea 

that this unusually placed tryptophan could control transfer of 4’-PP and/or long chain acyl groups. Indeed, we 

found that the holo-ACP SW could be generated from the apo-form by incubation with various PPTases but 

these structural models also provide a possible explanation for the lack of modification of the ACP SW with 

longer chain acyl-CoAs (>C16) in appreciable yields. It may be that the ACP SW is converted to a long chain 

acyl-CoA form only within S. wittichii as part of fatty acid synthesis. Thus, this directly links fatty acid and 

sphingolipid biosynthesis. Further work will be required to find conditions appropriate for its formation and 

the role of the Trp37 in this conversion will be probed by site directed mutagenesis. 

 

Conclusion 

To begin a study of bacterial sphingolipid biosynthesis, we have isolated and purified recombinant proteins 

from the bacterium S. wittichii. Using various spectroscopic, kinetic and structural techniques we 

characterised SPT SW, and showed that it bind its co-factor PLP and its substrate L-serine. We proved that 

SPT SW was enzymatically active with L-serine and a range of long-chain acyl-CoA substrates. Furthermore 

we solved the high-resolution xray structure of the enzyme which allowed a structural comparison with the 

SPT from S. paucimobilis. We noted that despite high amino acid sequence identity the SPT isozymes 

displayed differences in kinetics and in structure. We found that the SPT gene resides alongside a putative 

small protein with sequence homology to bacterial Type II acyl carrier proteins and this led us to hypothesise 

that an ACP-thioester, rather than a CoAthioester may be the natural substrate for SPT. We co-expressed the 

S. wittichii ACP-SPT gene pair in E. coli, isolated the recombinant ACP and used mass spectrometry to show 

it was recovered in an apo-form. We investigated various PPTases in an effort to convert the ACP into its 

holo-form and acylated forms but succeeded in isolating only the holo-, C10, C12 and C14 acyl-forms. 

Analysis of the ACP primary sequence identified an unusual tryptophan residue next to the conserved 
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phosphopantetheinylation motif. Using E. coli ACP as a structural homolog, models of ACP SW were 

generated and suggest that this residue may block the attachment of longer acyl chains. Probing the role of this 

residue will be the focus of future structural and functional studies as will be the identification and 

characterisation of other downstream enzymes in the Sphingomonas sphingolioid biosynthetic pathway. 
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