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Modelling replenishment and transshipment decisions

in periodic review multilocation inventory systems

T. W. Archibald
Management School, University of Edinburgh

Abstract: Effective models of key operational decisions in multilocation inventory systems

are important for a successful retail sector. This paper argues that much of the existing

research in this area is not applicable to a highly competitive retail environment, particularly

if periodic review replenishment policies are used. The paper develops a model of a periodic

review multilocation inventory system that is suitable for this environment and investigates

the characteristics of optimal replenishment and transshipment decisions. This motivates the

development of three simple heuristic transshipment policies that are practical for systems with

many locations. The results of a numerical study involving systems with five locations suggest

that the performance of these heuristic policies is often close to optimal and can be considerably

better than the performance of commonly used policies.

Keywords: Inventory, Dynamic Programming, Markov Decision Processes, Transshipment,

Retail

1 Introduction

It is common for a retail company to use several outlets or locations to distribute its products

throughout a region. The efficient management of multilocation inventory systems is therefore

important to retail companies as they strive to satisfy the conflicting objectives of maximizing

customer service and minimizing cost. The key issues in the management of such systems are

how to organize the ordering process and how to organize the distribution of inventory between

locations. Changes to the distribution of inventory involve transshipments between the locations

in the system. Models of inventory systems that allow such transshipments can generally be

classified as one of the following three types.

1. Periodic review systems that allow transshipments at a single point during a

period before the demand for the period is fully known. One of the first such

models is due to Gross (1963) who characterizes an optimal policy for a two location

system in which replenishment and transshipment decisions are taken together at the

beginning of each period. Das (1975) analyses a variant of this model in which the

transshipment decision is taken at a fixed point during each period. Jonsson and Silver

(1987) examine a model in which the objective is to minimize backorders rather than

cost. The transshipment decision is taken a fixed time before the replenishment decision

and the model allows for non-zero transshipment lead time and an arbitrary number of

locations. Bertrand and Bookbinder (1998) consider this model with the objective of
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minimizing cost for the case of zero transshipment lead time. It is common for retailers to

initiate a transshipment after a stockout has arisen, so these models do not fully satisfy

the requirements of the retail industry.

2. Periodic review systems that allow transshipments after the demand for the

period is known, but before it has to be satisfied. The model of Krishnan and Rao

(1965) minimizes cost in a multilocation system with zero replenishment and transshipment

lead times. Robinson (1990) characterizes the form of close-to-optimal policies for similar

systems. Tagaras and Cohen (1992) examine a model with two locations and non-zero

replenishment lead time. Rudi et al. (2001) investigate the conflict between maximizing

location and system profits in a two location model. These models require a non-negligible

lead time on the service of customer requests to allow the total demand to become apparent

before transshipments are arranged. In highly competitive retail situations, such a delay

would often lead to lost sales and so these models would not be appropriate.

3. Continuous review systems that allow transshipments in response to stockouts

and use a one-for-one replenishment policy. These models extend the multiechelon

inventory model for repairable items with Poisson demand developed by Sherbrooke

(1968) by allowing transshipments. Lee (1987) develops a method of determining the

minimum cost inventory position for a system that allows transshipments between identical

locations and finds approximations to measures of system performance including the

expected number of backorders and transshipments. Axsäter (1990) and Sherbrooke

(1992) propose similar approximations for systems that allow transshipments between non-

identical locations. Kukreja et al. (2001) develop a heuristic to determine replenishment

and transshipment policies for a system with non-identical locations under the objective

of minimizing cost. These models are only appropriate for slow moving, expensive and/or

repairable items, but transshipments are more widely used.

There are a few recent papers that do not fall into any of the categories above. Evers (2001)

and Minner et al. (2003) develop heuristics to determine whether or not to make a transshipment

in a continuous review multilocation inventory system facing a stockout. Axsäter (2003a)

develops an approximate method of determining the replenishment policy for a continuous review

multilocation inventory system in which a location facing a stockout sources items from locations

with lower shortage costs whenever possible. Axsäter (2003b) extends this model by relaxing

the assumption that the decision rule for transshipments is given and develops a heuristic to

determine whether or not to make a transshipment in response to a stockout. This heuristic is

based on the assumption that no further transshipments will be possible. It is not uncommon for

retail companies to use periodic review replenishment policies, so these models are not always

appropriate. Archibald et al. (1997) analyse a periodic review inventory system with Poisson

demand and unlimited transshipments during a period in response to stockouts, but their model

only allows two locations.
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The above review shows that there is a gap between existing mathematical models and the

requirements of a retail company operating in highly competitive environment and using periodic

review replenishment policies. This paper aims to address this issue by developing a model of a

periodic review inventory system with an arbitrary number of locations in which transshipments

may occur at any time in response to stockouts.

Due to the difficulty of determining optimal transshipment policies for complex multilocation

inventory systems, simple heuristic policies are often used in practice. The most common of these

are: “no pooling” in which case transshipments are never used; and “complete pooling” in which

case, when a stockout arises, a transshipment is used to satisfy demand whenever possible. The

main weakness of these heuristics is that they do not consider the likelihood of items being

used before the next replenishment. For example if the item to be transshipped is almost

certain to be required at some other location before the next replenishment, transshipment

effectively moves the location of the stockout as well as the item. On the other hand, if the

item is almost certainly not required, transshipment is likely to improve customer satisfaction

and reduce system holding cost. Effective heuristic transshipment policies should depend on

inventory levels and the time until the next replenishment, but it is not obvious what form

this dependency might take in general. This paper develops three heuristics with this property

and demonstrates via a numerical investigation that these can be highly effective for a range of

problems with different characteristics.

The model considered in this paper assumes a periodic review replenishment policy. Such

policies may be used due to practical constraints such as the frequency with which a supplier

delivers to an area. It is also assumed that locations are not open 24 hours per day and that

all replenishment orders and deliveries are completed during periods in which the locations are

closed (e.g. overnight). Hence the lead time for replenishment orders is effectively zero. Ideally

all demand arising at a location would be satisfied from stock held at that location. However

due to uncertainty in demand, this will not always be possible. When a stockout occurs at a

location, it is assumed that the company can either place an emergency order with the supplier

or transship an item from another location in the area. Customers are assumed always to accept

the alternative offered. Such an assumption is reasonable only if the lead times for emergency

orders and transshipments are negligible. Figure 1 shows the flow of inventory in the system

resulting from the decisions that can be taken. The unit cost of transshipment is less than that

of an emergency order, so transshipment is better in a myopic sense. However this benefit must

be weighed against the increased risk of further stockouts in the system. The objective is to

minimize the long-run average cost of managing the system. (An alternative interpretation of

this model is that failure to supply demand from stock held in the system results in a lost sale.

In this case the cost of an “emergency order” would be interpreted as the cost of a lost sale.)

Section 2 presents a full description of the problem and formulates the problem as a

Markov decision process. Due to the curse of dimensionality, it is not practical to solve the

Markov decision process for instances of the problem with more than 5 or 6 locations. Instead
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sections 3 and 4 analyse the Markov decision process formulation to establish characteristics of

optimal replenishment and transshipment policies for certain cases, and use these to develop

three heuristic transshipment policies for the general problem. Section 5 presents a numerical

comparison of the performance of the proposed heuristic policies. This shows that the proposed

heuristics are often close to optimal in terms of long-run average cost and are generally

considerably better than the no pooling and complete pooling heuristics used in practice.

2 A model of a multilocation single product inventory system

Consider a multilocation inventory system consisting of m locations that uses a periodic review

replenishment policy in which all locations are replenished simultaneously from an external

supplier with infinite supply. Replenishment lead time is zero and the cost of replenishment is c

per item, independent of the location. The time between successive review epochs is fixed and

divided into T intervals of length δ, where δ is chosen so that the probability of more than one

customer demand in the system in an interval of length δ is negligible. Generally as the average

system demand increases, more intervals will be required to approximate the demand process.

However the complexity of the dynamic programming solution methods proposed in this paper

increase linearly with the number of intervals, so this is not a major issue. Let pk, 1 ≤ k ≤ m,

denote the probability that a customer demand arises at location k in an interval of length δ.

Define p0 = 1−∑m
k=1 pk to be the probability that there is no customer demand in an interval

of length δ. Hence the probability distribution of the system demand between successive review

epochs is binomial (T, 1− p0), and the probability distribution of demand at location k between

successive review epochs is binomial (T, pk). Location k has a limited storage capacity for Mk

items. A holding cost of hk is incurred for each item in stock at location k immediately before

a review epoch.

Whenever possible, customer demand is met from local stock because this action involves no

additional cost. When a customer demand cannot be met from local stock, an item is sourced

either from the supplier via an emergency order or another location via transshipment. An

emergency order costs E and is assumed to cost more than a regular order (i.e. E > c), as

otherwise it would be optimal to use emergency orders to satisfy all demand. Let Ti,j denote

the cost of transshipping an item from location i to location j. Lead time for emergency orders

and transshipments is zero.

For a given replenishment decision, the problem of minimizing the expected cost until the

next review epoch is modelled as a Markov decision process. The state of the system is defined

to be a vector describing the stock level in each of the locations at the beginning of an interval.

When the state of the system is described by the vector i, the stock level in location k is ik. Due

to the limited storage capacity at the locations, the number of possible states is finite. Define

Y (i) and Z(i) to be the set of locations with local stock and no local stock respectively when

the system is in state i (i.e. Y (i) = {k : ik > 0, 1 ≤ k ≤ m} and Z(i) = {k : ik = 0, 1 ≤ k ≤ m}).
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Define ωt(i) to be the minimum expected cost until the next review epoch when the time until

the next review epoch is δt and the state of the system is i. Following the assumptions of the

model above, ω0(i) must account for the cost of holding the stock remaining at the next review

epoch. Define xt(k, i) to be the minimum expected cost until the next review epoch when the

time until the next review epoch is δt, the state of the system is i where ik = 0 and a customer

demand will arise at location k in the next interval. There are at most m ways of satisfying such

demand, by emergency order or by transshipment from one of at most m− 1 locations in Y (i).

The problem is therefore a finite horizon, discrete time Markov decision process with finite state

and action spaces (see e.g. Puterman, 1994), and the value functions must satisfy the following

optimality equations.

ωt(i) = p0ωt−1(i) +
∑

k∈Y (i)

pkωt−1(i− ek) +
∑

k∈Z(i)

pkxt(k, i) (1)

for 0 ≤ i ≤ M , 1 ≤ t ≤ T

xt(k, i) = min

{
E + ωt−1(i), min

j∈Y (i)
(Tj,k + ωt−1(i− ej))

}
(2)

for 1 ≤ k ≤ m, 0 ≤ i ≤ M with ik = 0, 1 ≤ t ≤ T

ω0(i) =
m∑

k=1

hkik for 0 ≤ i ≤ M (3)

(Notation: M is the m-vector with Mk in position k and ek is the m-vector with 1 in position

k and 0 elsewhere.)

Let the T -vector d represent the pattern of demand between successive review epochs in the

following way. When the time until the next review epoch is δt, let dt > 0 indicate that a demand

occurs at location dt in the next interval and dt = 0 indicate that no demand occurs in the next

interval. Let D be the finite set of all such demand patterns and define P (d) = pd1pd2 . . . pdT
to

be the probability of demand pattern d occurring. Define uk(t, i, d) to be the stock remaining

in location k at the next review epoch under the optimal transshipment policy (determined by

equations (1)–(3)) when the time until the next review epoch is δt, the current stock levels are

i and the pattern of demand between review epochs is d.

The problem of minimizing the long run average cost per period is modelled as a Markov

decision process. The state of the system is the stock level in each of the locations at a review

epoch. The decision is the number of items to order for each location. Due to the limited

storage capacity at the locations, the number of states and decisions are finite. The problem is

an infinite horizon, average cost Markov decision process with finite state and action spaces (see

e.g. Puterman, 1994). Define g to be the minimum average cost per period and v(i) to be the

bias term associated with starting the system in state i. The optimality equation of the model

of the system under the above assumptions is as follows.

g + v(i) = min
i≤j≤M




m∑

k=1

(jk − ik)c + ωT (j) +
∑

d∈D

P (d)v(u(T, j,d))


 for 0 ≤ i ≤ M (4)

(Notation: u(T, i, d) is the m-vector with uk(T, i, d) in position k.)
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3 An optimal replenishment policy

This section establishes the form of an optimal replenishment policy for the model developed in

Section 2.

Proposition 1

There exist non-negative integers S1, . . . , Sm such that, provided the initial state of the process

is less than or equal to S, an optimal replenishment policy is to order Sk − ik items for location

k whenever the process is in state i, satisfying 0 ≤ i ≤ S, at a review epoch.

Proof

Define S1, . . . , Sm to be the values of j1, . . . , jm that minimize the right hand side of (4) for

i = 0. Note that the right hand side of (4) can be written as

−
m∑

k=1

ikc + min
i≤j≤M




m∑

k=1

jkc + ωT (j) +
∑

d∈D

P (d)v(u(T, j, d))




= −
m∑

k=1

ikc +
m∑

k=1

Skc + ωT (S) +
∑

d∈D

P (d)v(u(T, j,d))

whenever i ≤ S from the definition of S. Hence the policy that orders up to Sk items at location

k is optimal for any state i satisfying 0 ≤ i ≤ S. Between review epochs the stock level at a

location cannot increase, so {i : 0 ≤ i ≤ S} forms a closed set of recurrent states in the Markov

chain corresponding to this optimal policy. Hence, provided the initial state of the process lies

in this set, the long run average cost per period is minimized by ordering up to Sk items at

location k at each review epoch. ◦

4 A heuristic transshipment policy

This section proves results about the form of an optimal transshipment policy for the special

case of a two location system. These results provide useful insight into the important problem

of organizing transshipments in a cost effective manner. A heuristic is developed that uses an

instance of the two location problem to determine if it is advisable to transship an item between

a pair of locations in the general multilocation problem.

Proposition 2

In the two location problem (m = 2), if it is optimal to use transshipment to satisfy a demand

at one location when there are i items in stock at the other location and t intervals until the

next review epoch, then it is also optimal to use transshipment to satisfy such demand when

the other location:

(i) has more than i items in stock and there are t intervals until the next review epoch;
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(ii) has i items in stock and there are fewer than t intervals until the next review epoch.

Proof

See the appendix for details. ◦

The importance of Proposition 2 is that it establishes the existence of an optimal

transshipment policy for two location systems with the following form. There exist threshold

times τj(1), τj(2), . . . , τj(Mj) such that location j should agree to satisfy a transshipment request

when it has i items in stock if and only if the time until the next replenishment is less than

τj(i). A policy of this form is straightforward to implement with or without computer support

because the criterion for transshipment is easy to understand and verify. This form of policy

is particularly attractive for systems with many locations for two reasons. Firstly the location

facing the stockout can always contact the other locations to request a transshipment in the

same order, for example in order of increasing transshipment cost. Secondly the criterion for

transshipment depends only on factors local to the location receiving the transshipment request.

Unfortunately results similar to Proposition 2 do not hold for general multilocation inventory

systems as the following simple example shows.

Example

Consider a three location inventory system (m = 3) with pk = 0.25 for 0 ≤ k ≤ 3, E = 30,

T1,3 = 12, T2,3 = 16 and T2,1 = 28. Assume hk = c for 1 ≤ k ≤ 3, so that ω0(i) = 0 for all i.

Let i3 = 0 and i2 > 0. If i1 > 0 then ω1(i) = 3 and the optimal decision is to meet demand

at location 3 by transshipment from location 1. If i1 = 0 then ω1(i) = 11 and the optimal

decision is to meet demand at locations 1 and 3 by transshipment from location 2.

If i3 = 0, i2 > 1 and i1 = 1 then ω2(i) = 0.25 (3 + 11 + 3 + min(30 + 3, 12 + 11, 16 + 3)) = 9

and the optimal decision is to meet demand at location 3 by transshipment from location 2. ◦

In this example it is only optimal for location 2 to transship to location 3 when there

is 1 interval until replenishment if location 1 has no stock. This shows that, in an optimal

transshipment policy, locations must consider the inventory levels of other locations when

deciding whether or not to agree to a transshipment request. Further when the state of the

system is i = (1 2 0)′, the optimal location from which to transship to location 3 depends on the

number of intervals until replenishment. This shows that even if it were practical to consider

every state of the system, it would not be possible to characterize an optimal transshipment

policy using a single threshold time for each state. Hence the optimal transshipment policy has

no obvious structure that would simplify the formulation of the problem. The number of states

that must be considered in the calculation of an optimal transshipment policy directly from

equations (1)–(3) increases exponentially with the number of locations in the system. Hence

this approach is not practical in general due to the excessive time required to compute an optimal

policy.
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The discussion above motivates the study of a heuristic for multilocation problems which

models every pair of locations as a two location system and finds an optimal transshipment

policy of the form described above for each pair independently. One advantage of this approach

is that the time required to calculate the policy is quadratic in the number of locations, while,

as noted above, the time required to calculate an optimal policy is exponential in the number of

locations. Define τj,k(i) to be a threshold time with the property that, in the two location system

consisting of locations j and k, it is optimal to transship from location j to location k when

location j has i items in stock whenever the time until the next replenishment is less than τj,k(i).

Under the heuristic a location facing a stockout requests a transshipment from other locations

in order of increasing transshipment cost. When location j has i items in stock, it will agree

to a transshipment request from location k if and only if the time until the next transshipment

is less than τj,k(i). In many cases this approach will also limit the delay to the customer,

as the cost of transshipment between locations is often proportional to the time required for

transshipment. This heuristic is referred to as the τ -heuristic. The τ -heuristic requires that

each location knows its own inventory level, the location making the transshipment request

and the time until replenishment. In most systems this information is readily available, so the

τ -heuristic would be easy and cheap to implement.

Under the τ -heuristic it is likely that, for a given time and stock level, a location will agree

to transship to some locations and refuse to transship to others. This might be confusing to

staff and create the impression that some locations are less important. Consequently the τ -

heuristic could be considered impractical by some companies. Consider two modifications of the

τ -heuristic which remove the dependency of the transshipment decision on the location making

the request. The first modification says that if one is willing to transship to one location then

one should be willing to transship to all locations. Define αj(i) = maxk{τj,k(i)}. Location j

will agree to any transshipment request when it has i items in stock provided the time until

the next transshipment is less than αj(i). The second modification says that until one is willing

to transship to all locations, one should not transship to any. Define ωj(i) = mink{τj,k(i)}.
Location j will agree to any transshipment request when it has i items in stock provided the

time until the next transshipment is less than ωj(i). These modifications are referred to as the

α-heuristic and the ω-heuristic respectively.

5 Numerical comparison

This section compares the performance of the proposed heuristics with that of an optimal

transshipment policy and the commonly used heuristics of complete pooling and no pooling.

The comparison is based on a five-location inventory system with no location having storage

capacity for more than 8 units. Limiting the number of locations and the storage capacity in this

way means it is possible to compute an optimal transshipment policy using equations (1)–(3) for

comparison. By varying the storage capacity, demand rates, holding costs and transshipment
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costs a total of 1512 problems were created. This allows the effect of the problem parameters

on the performance of the heuristics to be investigated.

The time between successive review epochs is one week and this is divided into T = 5000

intervals for the purposes of modelling demand. Replenishment orders cost 1 per item and

emergency orders cost 10 per item. Four sets of storage capacities are considered with the

capacity at a location always in the range 4 to 8. Seven sets of demand rates are considered

with the average weekly demand at a location (i.e. pkT at location k) in the range 1 to 5.

Three values for the holding cost per item per week in the range 0.002 to 0.008 are considered.

This corresponds to an annual holding cost of between 10% and 50% of the cost of inventory.

Two distinct transshipment cost structures are considered. Firstly, the transshipment cost is

modelled as a fixed cost plus a multiple of the distance between the locations (with |i− j| being

used as a proxy for the distance between locations i and j). Secondly, the transshipment costs

are assumed to be symmetric (i.e. Ti,j = Tj,i), but otherwise random. Transshipment costs are

always in the range 5 to 9. The data for the test problems is summarized in Table 1.

Tables 2 to 6 compare the performance of the five heuristic transshipment policies considered

in this paper on the test problems. The performance measure used in the comparison is the

“percentage suboptimality” for a problem which is defined as:

100
(

expected cost under heuristic
optimal expected cost

− 1
)

.

Each row of a table compares the performance of the heuristics on a different subset of the test

problems. The following notation is used:

n — number of problems in the subset;

w c — worst case performance, i.e. maximum percentage suboptimality;

ave — average percentage suboptimality;

s d — standard deviation of percentage suboptimality.

Table 2 shows that overall the three proposed heuristics perform far better than complete

pooling and no pooling in terms of worst case, average and standard deviation of percentage

suboptimality. In fact the expected cost with no pooling is never lower than the expected cost

under any of the proposed heuristics, while the expected cost with complete pooling is lower

than the expected costs under the τ -, α- and ω- heuristics for only 3%, 2% and 23% of the cases

respectively. Figure 2 depicts one case of the proposed heuristic transshipment policies. It is

interesting to note that, under the proposed heuristics, transshipments are not used until 60% of

the period between replenishments has elapsed and the last item of inventory is never used in a

transshipment until at least 95% of this period has elapsed. So the proposed heuristics all start off

like no pooling, but become more willing to agree to transshipment as the time to replenishment

decreases until, by the end of the period, they all behave like complete pooling. This is typical
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of the behaviour of the proposed heuristics, but the point at which transshipments are first used

and the speed of transition to complete pooling vary greatly from problem to problem.

The figures in Table 2 suggest that the best heuristic is the α-heuristic which performs

slightly better than the τ -heuristic. Both the α- and τ - heuristics appear to be considerably

better than the ω-heuristic. This is reinforced by the fact that the α-heuristic is the best

performing heuristic in 67% of cases while the τ - and ω- heuristics are only best in 32% and

27% of cases respectively. (Note these percentages do not sum to 100 because of ties.) When

evaluating a possible transshipment, the τ -heuristic only considers the inventory level at the

source location. Hence if other locations have plenty of inventory on hand, the heuristic is likely

to be rather conservative. It is perhaps not surprising therefore that the α-heuristic, which

effectively relaxes the criterion for transshipments, performs better than the τ -heuristic. The ω-

heuristic on the other hand tightens the criterion for transshipments and so makes the situation

worse. The arrows in Figure 2 illustrate this effect. The left arrow shows that the boundary

between transshipment and no transshipment for the ω-heuristic generally lies to the left of that

for the τ -heuristic, while the right arrow shows that for the α-heuristic it generally lies to the

right. Hence compared to the τ -heuristic, the ω-heuristic is less likely to use transshipment and

the α-heuristic is more likely to use transshipment.

Table 3 shows the effect of varying the storage capacities of the locations. As the depot

capacities increase from Mk = 4 for all k to Mk = 6 for all k, the performances of all the

heuristics improve. This is due to higher order quantities which reduce the opportunities for

transshipments. For all depot capacities considered, the α-heuristic is the best heuristic and no

pooling is the worst.

Table 4 shows the effect of varying the average weekly demand at the locations. With low

demand (pkT = 1 for all k) all five heuristics are very close to optimal. This is to be expected

as there are very few opportunities for transshipments in this case. As demand increases,

the performances of all the heuristics deteriorate. With high demand (pkT = 5 for all k)

complete pooling is never within 3.7% of optimal making it the worst heuristic. This is because it

frequently transships items from locations that subsequently suffer stockouts. This demonstrates

clearly that when demand is high relative to the depot capacity, it can pay to be selective about

transshipments. All the heuristics apart from no pooling perform better when each location

faces a different demand rate than they do when the demand rate is constant and greater than

or equal to 4 units per week. When the demand rates vary, no pooling is never within 2.2%

of optimal and is sometimes more than 30% worse than optimal. No pooling is also the worst

heuristic by far when the demand parameters are constant and less than 5 units per week. These

observations demonstrate that transshipments can be an important factor in the management

of inventory costs. For all choices of demand parameters the α-heuristic is the best performing

heuristic.

Tables 5 and 6 show the effect of varying the holding costs and the transshipment costs

respectively. The holding cost has no noticeable effect on the performance of any of the heuristics
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in the test problems. With the structured transshipment costs, all the heuristics apart from

complete pooling perform better as the mean and variance of the transshipment costs increase.

Complete pooling is the worst heuristic in several cases. (No pooling is the worst heuristic

in all other cases of transshipment cost.) This is further evidence that being selective about

transshipments can help to keep inventory costs down. The α-heuristic is the best heuristic for

all cases of transshipment cost.

6 Conclusions

A model of a multilocation inventory system, found in highly competitive retail environments,

has been analysed to show that an “order-up-to” replenishment policy is optimal, but that the

form of an optimal transshipment policy is not easy to characterize for more than two locations.

It is not practical to use the model to compute an optimal transshipment policy for systems with

many locations due to the high-dimensional state and action spaces involved. Therefore three

heuristic transshipment policies, based on the simple form of optimal transshipment policies for

two-location systems, have been developed. These heuristic policies are practical to compute for

large systems, because the complexity of the solution algorithm is only quadratic in the number

of locations. The heuristic policies are also easy to implement, only requiring information that

is local to the location receiving a request for a transshipment.

Comparing the structure of the proposed heuristics, the main differences lie in their readiness

to agree to transshipment requests and their ease of implementation. When deciding whether

or not to transship, the τ -heuristic concentrates on the locations at the source and destination

of the potential transshipment, and so neglects the total inventory held in the system and the

possibility of other locations facing stockouts. This simplification may result in the heuristic

being too willing or too reluctant to agree to a transshipment request. Hence the α-heuristic and

the ω-heuristic, which are, respectively, more and less willing to agree to transshipment requests,

were developed. Under the τ -heuristic, the decision to transship is based on the inventory level

at the location receiving the request, the time until the next replenishment and the identity

of the location making the request. However under the other heuristics, this decision is based

only on the inventory level at the location receiving the request and the time until the next

replenishment. Consequently the τ -heuristic is slightly less convenient to operate in practice.

The computational results show that the proposed heuristic transshipment policies work well

across a range of test problems with different characteristics. Importantly the results show that

the proposed heuristics can be much better than the simple policies of complete pooling and no

pooling, which are often used in practice. Based on the computational results, the best heuristic

appears to be the α-heuristic, which is the least conservative of the three proposed heuristics

and one of the easiest to apply.
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Appendix

Proof of Proposition 2

Suppose location k has no local stock, so that ik = 0, where k = 1 or k = 2. Let j be the other

location, so j = 3− k. Define:

Wt(λ) = ωt((λ + 1)ej)− ωt(λej) for 0 ≤ λ < Mj , 0 ≤ t ≤ T (5)

Xt(λ) = xt(k, (λ + 1)ej)− xt(k, λej) for 0 ≤ λ < Mj , 0 < t ≤ T

XE
t (λ) = E + ωt−1((λ + 1)ej)− E − ωt−1(λej) = Wt−1(λ) for 0 ≤ λ < Mj , 0 < t ≤ T

XT
t (λ) = Tj,k + ωt−1(λej)− Tj,k − ωt((λ− 1)ej) = Wt−1(λ− 1) for 0 < λ < Mj , 0 < t ≤ T

For any t and λ satisfying 0 < t ≤ T and 0 < λ ≤ Mj , an emergency order is preferable to

a transshipment from location j to satisfy a demand at location k when the state of the system

is λej and the time until the next review epoch is δt if and only if

E + ωt−1(λej) < Tj,k + wt−1((λ− 1)ej) ⇔ Wt−1(λ− 1) < Tj,k − E (6)

Hence to prove (i) it is sufficient to prove that Wt(λ) is non-decreasing in λ for 0 ≤ λ < Mj

and 0 ≤ t < T , while to prove (ii) it is sufficient to prove that Wt(λ) is non-increasing in t for

0 ≤ t < T and 0 ≤ λ < Mj .

First prove that for 0 ≤ t ≤ T , Wt(λ) is non-decreasing in λ for 0 ≤ λ < Mj and Wt(0) ≥ −E.

The proof is by induction on t. From (3) and (5), W0(λ) = hj − c which is constant, and hence

non-decreasing in λ, and W0(0) ≥ −E since hj ≥ 0 and E > c. Hence the result holds for t = 0.

Assume that for some t satisfying 0 < t ≤ T , Wt−1(λ) is non-decreasing in λ for 0 ≤ λ < Mj

and Wt−1(0) ≥ −E. From (6), either xt(k, λej) = E + ωt−1(λej) for 0 ≤ λ ≤ Mj , in which case

Xt(λ) = XE
t (λ) = Wt−1(λ) is non-decreasing in λ by the inductive hypothesis, or there exists

λ∗ such that xt(k, λej) = E + ωt−1(λej) for 0 ≤ λ ≤ λ∗ and xt(k, λej) = Tj,k + ωt−1((λ− 1)ej)

for λ∗ < λ ≤ Mj . In this latter case:

Xt(λ) =





XE
t (λ) = Wt−1(λ) for 0 ≤ λ < λ∗

Tj,k + ωt−1(λej)−E − ωt−1(λej) = Tj,k − E for λ = λ∗

XT
t (λ) = Wt−1(λ− 1) for λ∗ < λ < Mj

(7)
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From (6) and the definition of λ∗, Wt−1(λ∗ − 1) < Tj,k − E ≤ Wt−1(λ∗). This fact and the

inductive hypothesis show that Xt(λ) is non-decreasing in λ for 0 ≤ λ < Mj .

From (1) and (5):

Wt(λ) =

{
p0Wt−1(λ) + pjWt−1(λ− 1) + pkXt(λ) for 0 < λ < Mj

p0Wt−1(0)− pjE + pkXt(0) for λ = 0
(8)

Hence, using the inductive hypothesis, Wt(0) ≤ p0Wt−1(0)+pjWt−1(0)+pkXt(0). Since Wt−1(λ)

and Xt(λ) are non-decreasing in λ and p` ≥ 0 for 0 ≤ ` ≤ 2, it follows that Wt(λ) is non-

decreasing in λ for 0 ≤ λ < Mj . Note that either Xt(0) = Wt−1(0) ≥ −E by the inductive

hypothesis or Xt(0) = Tj,k − E ≥ −E since Tj,k is a transshipment cost and so non-negative.

From (8) it follows that Wt(0) ≥ −E. Therefore it is proved by induction that for 0 ≤ t ≤ T ,

Wt(λ) is non-decreasing in t for 0 ≤ λ < Mj and Wt(0) ≥ −E. Hence (i) is proved.

Finally use these properties of Wt(λ) to prove that Wt(λ) is non-increasing in t for 0 ≤ t ≤ T

and 0 ≤ λ < Mj . The argument above shows that for 0 < t ≤ T , either Xt(λ) = Wt−1(λ) for

0 ≤ λ < Mj or

Xt(λ) =





Wt−1(λ) for 0 ≤ λ < λ∗

Tj,k −E ≤ Wt−1(λ∗) for λ = λ∗

Wt−1(λ− 1) ≤ Wt−1(λ) for λ∗ < λ < Mj

Hence Xt(λ) ≤ Wt−1(λ). From (8) it follows that Wt(λ) ≤ Wt−1(λ) and (ii) is proved. ◦
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Figure 1: Structure of the inventory system showing the inventory flows caused by replenishment
orders, emergency orders and transshipments.
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Figure 2: An example of the transshipment decision from location 1 to location 2 as a function of
inventory level and time to replenishment for the proposed heuristics (when Mk = 5, pkT = 6−k,
hk = 0.002 and Ti,j ∼ U [5, 9]). A heuristic only uses transshipment in situations corresponding
to points above and to the left of its line.
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Table 1: Characteristics of the 1512 test problems. In each case, T = 5000, c = 1 and E = 10.

Storage capacities: Mk = 4, Mk = 5, Mk = 6 and Mk = 3 + k where 1 ≤ k ≤ 5.

Demand parameters: pkT = 1, pkT = 2, pkT = 3, pkT = 4, pkT = 5,
pkT = k, and pkT = 6− k where 1 ≤ k ≤ 5.

Holding costs: hk = 0.002, hk = 0.005 and hk = 0.008 where 1 ≤ k ≤ 5.

Transshipment costs: 9 cases with Ti,j = a + b|i− j| for a = 5, 6 & 7 and b = 0, 0.25 &
0.5 where 1 ≤ i, j ≤ 5 and i 6= j.
9 cases with Ti,j = Tj,i drawn from a Uniform [5, 9] distribution
where 1 ≤ i < j ≤ 5.



TW Archibald—Multilocation inventory systems 18

Table 2: Overall performance of the heuristic transshipment policies on the test problems.

Complete
Pooling No Pooling τ -heuristic α-heuristic ω-heuristic

n w c ave s d w c ave s d w c ave s d w c ave s d w c ave s d
All problems 1512 19.2 3.6 4.3 31.2 8.0 6.3 4.4 0.8 0.9 4.0 0.7 0.8 7.9 1.2 1.5
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Table 3: Effect of storage capacity on the performance of the heuristic transshipment policies.

Problems
Complete
Pooling No Pooling τ -heuristic α-heuristic ω-heuristic

with Mk = n w c ave s d w c ave s d w c ave s d w c ave s d w c ave s d
4 328 19.2 6.5 5.4 31.2 8.9 7.0 4.4 1.2 1.1 3.7 1.2 0.9 7.9 2.0 1.7
5 328 14.6 3.5 3.8 25.5 8.4 6.2 3.5 0.8 0.7 3.5 0.7 0.7 6.1 1.3 1.2
6 328 7.8 1.5 2.0 17.5 6.4 4.8 3.3 0.4 0.7 3.3 0.4 0.7 5.1 0.8 1.1

3 + k 328 12.7 2.8 3.4 31.0 8.4 6.9 4.0 0.6 0.8 4.0 0.6 0.8 6.9 0.9 1.3
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Table 4: Effect of demand parameters on the performance of the heuristic transshipment policies.

Problems
Complete
Pooling No Pooling τ -heuristic α-heuristic ω-heuristic

with pkT = n w c ave s d w c ave s d w c ave s d w c ave s d w c ave s d
1 216 0.0 0.0 0.0 1.7 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
2 216 1.5 0.3 0.4 12.2 3.6 2.8 0.6 0.1 0.2 0.6 0.1 0.2 2.3 0.3 0.5
3 216 6.4 1.9 1.7 19.8 7.9 3.5 3.6 0.7 0.8 3.6 0.7 0.8 7.0 1.3 1.4
4 216 14.7 5.5 3.6 20.6 9.3 3.9 3.5 1.3 0.6 3.5 1.3 0.6 5.6 2.1 1.1
5 216 19.2 10.0 4.1 22.5 7.8 4.7 4.0 1.4 0.9 4.0 1.4 0.8 6.9 2.2 1.4
k 216 10.1 2.5 2.7 31.2 11.6 6.4 3.6 0.8 1.0 3.3 0.7 0.8 7.5 1.4 1.7

6− k 216 14.0 4.8 3.6 31.2 15.4 6.2 4.4 0.9 1.0 3.7 0.8 0.8 7.9 1.5 1.6



TW Archibald—Multilocation inventory systems 21

Table 5: Effect of holding costs on the performance of the heuristic transshipment policies.

Problems
Complete
Pooling No Pooling τ -heuristic α-heuristic ω-heuristic

with hk = n w c ave s d w c ave s d w c ave s d w c ave s d w c ave s d
0.002 504 19.2 3.5 4.2 31.2 8.0 6.4 4.4 0.8 0.9 4.0 0.7 0.8 7.4 1.2 1.4
0.005 504 19.2 3.6 4.3 31.2 8.0 6.3 4.4 0.8 0.9 4.0 0.7 0.8 7.9 1.3 1.5
0.008 504 19.2 3.6 4.3 31.2 8.0 6.4 4.4 0.7 0.9 4.0 0.7 0.8 7.2 1.2 1.4
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Table 6: Effect of transshipment costs on the performance of the heuristic transshipment policies.

Problems
Complete
Pooling No Pooling τ -heuristic α-heuristic ω-heuristic

with Ti,j = n w c ave s d w c ave s d w c ave s d w c ave s d w c ave s d
5 84 11.3 3.4 3.7 31.2 13.7 9.7 4.4 1.4 1.5 4.0 1.3 1.4 4.5 1.4 1.5
6 84 13.8 4.0 4.4 21.5 9.5 6.6 3.2 1.0 1.0 2.8 0.9 0.9 3.3 1.0 1.0
7 84 16.9 4.7 5.2 13.4 5.8 4.0 2.1 0.6 0.6 1.8 0.6 0.5 2.2 0.6 0.6

5 + |i− j|/4 84 11.8 3.5 3.5 25.6 11.5 7.8 3.1 1.1 1.2 2.9 1.0 1.0 3.3 1.1 1.2
6 + |i− j|/4 84 14.7 4.3 4.3 16.8 7.6 5.0 2.1 0.7 0.7 1.8 0.6 0.6 2.3 0.7 0.8
7 + |i− j|/4 84 17.9 5.0 5.1 9.2 4.1 2.6 1.1 0.4 0.3 0.8 0.3 0.3 1.2 0.4 0.4
5 + |i− j|/2 84 12.9 3.5 3.6 21.1 9.7 6.3 2.4 0.9 0.9 2.3 0.8 0.8 2.9 1.0 1.1
6 + |i− j|/2 84 15.9 4.2 4.4 12.9 6.0 3.7 1.5 0.5 0.5 1.3 0.5 0.4 1.8 0.7 0.7
7 + |i− j|/2 84 19.2 5.1 5.4 5.8 2.8 1.6 0.6 0.3 0.2 0.6 0.2 0.2 1.4 0.6 0.5

U [5, 9] 756 19.2 3.0 3.9 27.2 8.2 6.0 3.3 0.8 0.8 3.6 0.7 0.8 7.9 1.7 1.7
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Captions for Figures and Tables

Figure 1: Structure of the inventory system showing the inventory flows caused by replenishment

orders, emergency orders and transshipments.

Figure 2: An example of the transshipment decision from location 1 to location 2 as a function of

inventory level and time to replenishment for the proposed heuristics (when Mk = 5, pkT = 6−k,

hk = 0.002 and Ti,j ∼ U [5, 9]). A heuristic only uses transshipment in situations corresponding

to points above and to the left of its line.
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