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Does Conditioning Information Matter in
Estimating Continuous Time Interest Rate
Diffusions?
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Abstract

We examine an important aspect of empirical estimation of term structure models; the role
of conditioning information in dynamic term structure models. The use of both real world
or simulated data implicitly incorporates conditioning information. We examine the bias
created in estimating the drift by a specific form of conditioning, namely truncation. Using
the theory of enlargement of filtrations we provide estimates of the extent of thistruncation
bias for commonly used short rate models. We find that this truncation bias causes the drift
of these models to have a nonlinear structure.

I. Introduction

The short rate is a key building block in many continuous time models of the
term structure of interest rates. For example, in time-homogenous single-factor
models (Vasicek (1977), Cox, Ingersoll, and Ross (1985)), the state variable is
taken to be the short rate. It is not surprising, therefore, that empirical research
has focused on estimating the parameters of diffusion processes used to model
the short rate. Recent research using nonparametric techniques (e.g., Ait-Sahalia
(1996)) provides some evidence that the drift is highly nonlinear. This finding
presents a considerable challenge to existing term structure models. Several au-
thors (e.g., Chapman and Pearson (2000)) show that biases in the nonparametric
estimators might lead to spurious nonlinearities being observed. Further, Bandi
(2000), using estimation methods robust to nonstationarity, finds statistical ev-
idence of martingale behavior over the lower range of interest rate values but is
unableto draw strong conclusions about nonlinearity during episodes of very high
interest ratesin the 1973-1995 period. Jones (1999), using a Bayesian approach,
concludes that the large negative drift for high interest rates reported in previous
work can be confirmed only under prior distributions that are best described as
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informative. He shows that the finding of nonlinear mean reversion may be gen-
erated solely by the finite sample bias of frequentist estimators such as maximum
likelihood.

The main purpose of this paper is to show that the empirically observed non-
linear behavior in the drift term (for interest rate diffusions) may be neither spuri-
ous nor an artifact of the poor statistical properties of the estimators used. Werely
on theintuition that empirical estimation of the parameters of diffusion processes
necessarily involvesthe use of conditioning information whether using real world
data or simulated data. In the case of empirical estimation, any real world data
is implicitly conditioned by the fact that interest rates in whatever period con-
sidered have, in practice, some finite upper bound. Empirical research typically
employs a variety of proxies for the short rate.! For example, Stanton (1997)
uses the yield on the three-month Treasury bill, Chan, Karolyi, Longstaff, and
Sanders (1992) use the one-month Treasury bill yield, while Ait-Sahalia (1996)
and Bandi (2000) use the one-week Eurodollar rate. Since the stylized facts of
short rate data are relevant to our main point, we now briefly describe them. The
data set used, for example, in Ait-Sahalia (1996) covers the period 1973-1995.
During this period, the short rate proxy has a mean value of 8.36% with a mini-
mum value of 2.9% and amaximum value of 24%. Similar patternsare seeninthe
one-month Treasury bill rate over the 1960-1997 period: the mean rate is 5.69%
and the minimum and the maximum values are 1.54% and 16.71%, respectively.
Chapman and Pearson (2000) were the first to consider this phenomenon, which
they term the truncation bias, and to analyze its impact on non-parametric and
semi-nonparametric short rate estimators. They observe that the drift estimator in
Stanton (1997), which uses only local information, is particularly susceptible to
this bias and exhibits nonlinearities even when applied to sample paths simulated
from alinear mean-reverting square root process. Relative to Chapman and Pear-
son (2000), this paper contributes explicit closed-form expressionsfor the drift of
certain short rate processes under truncation bias. We do this using the theory of
enlargement of filtrations and show that the drift term is highly nonlinear when
the truncation bias is incorporated. We demonstrate the significance of this bias
for specific interest rate processes. The first application of the theory of enlarge-
ment of filtrationsin finance is Brown, Goetzmann, and Ross (1995), where they
use the idea of conditioned diffusions to analyze the role of survivorship biasin
the magnitude of the equity premium. Other examples that apply this method in
finance include Grorud and Pontier (1998), Karatzas and Pikovsky (1996), and
Taskin (1999).

The paper is organized as follows. In Section Il, we provide the theoreti-
cal background and the derivation of drift corrections in the case of the Vasicek
model, the Cox-Ingersoll-Ross model, and the case of a Brownian motion con-
strained to remain in an interval. The constrained Brownian motion process dis-
plays many of the characteristics of the empirical behavior of the short rate pro-
cesses. Section 11 discusses the impact of the truncation bias on the drift and the
estimation of the drift of these short rate processes. Section IV concludes.

1Chapman, Long, and Pearson (1999) highlight the possible biases that might result from the use
of these proxies for the unobservable short rate.



Abhyankar and Basu 337

lI. Theory

We now describe the effect of conditioning in the case of processes commonly
used to model the short rate. These are i) a standard Ornstein-Uhlenbeck process
first used in Vasicek (1977) and ii) the Cox, Ingersoll, and Ross (1985) model.
In these cases, we enlarge the “natural” filtration, i.e., the filtration generated by
the Brownian motions that drive the processes, by an event. This is equivalent
to conditioning the diffusion processes on the event. The diffusion processes,
with respect to the enlarged filtration, have a different drift term and the same
diffusion coefficients as the origina diffusions (Brown, Goetzmann, and Ross
(1995), Jeulin and Yor (1985)). Assume that we have a diffusion process,

drs = p(s rs)ds+o(s,rs)dWs,

with respect to the filtration { Fs}. The new drift x*, with respect to the enlarged
filtration {Fs} V o(A), where we have conditioned on an event A with non-zero
probability is

s
pe(srs) = M(SaVS)"'?pUZ(SJS),

where 7 (s, rs) = P(A | r(s) = &) and m, denotes the derivative with respect to the
spatia variable.

The volatility of the conditioned process remains the same, i.e., 0 2(s,rs) =
0*?(s, 1s).? The expression for the drift of the conditioned process may be rewrit-
ten as (see Jeulin and Yor (1985))

d<7r(5,r5),rs>1A> ds

pr(srs) = <“ (81s)* m(s.rs)

Example 1. We now derive the effect of conditioning information on the drift
of the Vasicek model of the short rate. This model assumes that the short rate
satisfies the diffusion equation,

drs = a(b - I'S)dS"' UdWS.

In this case, the drift function is linear and given by a(b — rs). The new drift
function with respect to the filtration enlarged by event A as above again leads to
anon-linear drift function. We have

rr = exp(—a(t—9))rs+(1—exp(—alt—-s))b

+exp(—at)/ exp(au)dw(u).

2See Lemma 1, on pp. 857-858 of Brown, Goetzmann, and Ross (1995) for a proof.
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It follows from this representation that

M® = P(Mr <xFs)
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It follows from Ito's Lemma that

d<MS,rs> =
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The new drift with respect to the enlarged filtration Fs V o (A) is given by

M3 s> 1
(a(b— g+ ISMuTe> 1 o A) ds,

again using the result in Jeulin and Yor (1985). The diffusion coefficient in this
case also remains unchanged. It is clear that thisdrift functionis highly nonlinear.

We thus see that incorporating conditioning information has the effect of
changing the linear drift to a highly nonlinear drift structure.

Example 2. The CIR model of interest rates specifies the short rate as
drs = k(0 —rs)ds+o/rdWs.

We condition this diffusion process over the time interval [T, T2] on event
A i.e, the short rate r; on [Ty, T2] liesin the interval (O, b), which introduces an
upper truncation bias,

A = {(rS)S €e[T1,T2] € (O’ b)} .
The drift of the conditioned process with respect to the enlarged filtration

{Fs} VoA is
<n(9 —rg) + 77; ((:rrss)) azrs> ds,
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wheren (s, rs)=P(A | Fs). To computethis probability, we need to solve the Kol-
mogorov backward equation subject to suitable boundary conditions. The solu-
tion involvesthe confluent hypergeometric function andis extremely complicated.
To simplify the analysis, we assume that the process has reached its stationary
distribution, which is agammadistribution with parameters ((2x/0 2), (2k6/5?))
(Cox, Ingersoll, and Ross (1985)). With this assumption,

b
r(srs) = w(r) = c/ 6 % ~Lx.
r

Hence, the new drift with respect to the enlarged filtration is

We note that this new drift term is highly nonlinear in r. We use this new
drift to calculate the quantity E(rtsa — 1t | 1t, A), which is analyzed in Chapman
and Pearson ((2000), Section 4), assuming the process has reached a steady state
distribution as

E(rtea —re| 1, A) = p(r, A) A +0(4),

where the second term can be ignored for small A.
Thetrue conditional expectation for the unconditional processE(r +a — It | I't)
isgiven by

E(fea—re|n) = 6(1—e ") — (1—e ")y,

whichisequal to (6 — ry) A for small A. 3

The conditional expectationincorporatingthistruncation biasisdifferent from
the conditional expectation of the unconditional process. This is illustrated in
Chapman and Pearson (2000), Figure 9, where they run an ordinary least squares
(OLS) regression of (rga — 1) onrg for ry > 0.14 that is obtained from asingle
simulated sample of a square root process. They find that the slope of the OLS

3An analysis for the CIR process conditioned on the event B that r > | for some positive constant
I, i.e., introducing a lower truncation bias shows that, for values of r close to the lower limits of the
data, local estimators would also find a high degree of mean reversion. The drift of this conditioned
process is given by

For values of r close to u, we can use L'Hospital’s Rule to evaluate the second term in the above
expression and we obtain the following expression for the drift term,

k(0 —r)A — 26 Ar + (2kr1) A.

This shows that for values of r close to the lower limit of the data, the lower truncation bias causes
drift estimators that use local information, such as that of Stanton (1997), to find a higher degree of
mean reversion.
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regression is more negatively sloped than would be expected from the theoretical
slope in the above equation. Their regression illustrates clearly the effect of the
truncation bias on the conditional expectation. Asthe quantity E(rwa —r¢ | 1) /A
is essentially the Stanton (1997) estimator of the drift process, the discussion
in Chapman and Pearson ((2000), Section 4), shows that the drift estimator is
significantly affected by the truncation bias near the edges of the data.

The conditional expectation incorporating the truncation biasis given by

In the above expression, we now take b = 0.1583, which is the upper limit of
the single simulated sample used in Chapman and Pearson (2000). For valuesof r
closeto b, we can use L' Hospital’s Rule to eval uate the second term in the above
expression and we obtain the following expression for the drift term,

k(@ —r)A — (25r)A + (260) A.

We now take the parameters, as in Chapman and Pearson, to be x = 0.85837,
o = 0.15660, A = 1/250, and find that the coefficient of r is —0.0102969, which
is more negatively sloped than would be expected from the theoretical slope for
the conditional expectation of the unconditioned process.

The above numerical example providestheoretical evidencefor the conclusion
in Chapman and Pearson ((2000), Section 4, Figure 9), whereiit is shown that the
Stanton (1997) estimator of the drift does exhibit significant bias dueto truncation
effects particularly near the extremes of the data.

Example 3. We now provide another example that further confirms Chapman and
Pearson’s (2000) observation that the nonlinearity of the short rate drift is not a
robust stylized fact.

Since many papers have found that there is no mean reversion in the heart of
the density of the short rate data, we consider the effect of conditioning informa:
tion when the short rate follows a drift-free Brownian motion. Let us consider the
process given by*

drs - dWS,

conditionedto remainin aninterval (a, b) uptotimeT. We assumethat T islarge
so that this process has converged to its steady state diffusion, which is given by

r—a

m b—a
da = dt + dw.
(b—a) Sin7r(r—a)

b—a

4This, of course, isarather unappealing model of the short rate as the process can take on negative
values and does not capture the stylized facts of interest rate processes such as mean reversion.
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This follows from Pinsky ((1985), p. 375) by replacing the interval (—c, c)
with the interval (a,b). The drift of this process is zero when r = (b — a/2),
which is the mid-point of the interval (a,b). Asr tendstoward either a or b, the
process mean revertsin a highly nonlinear fashion, i.e., the drift displays nonlin-
ear behavior. We now choose plausible values of a and b in terms of the historical
range of the short rate specifically by taking a = 1.9% and b = 24.5%. Figure
1 illustrates the behavior of the drift for these values of a and b. It is clear from
Figure 1 that the above model exhibits many of the features of the short rate noted
by Ait-Sahalia (1996). Specificaly, near its mean (which, in our example, is the
middle of the range (a, b)), the spot rate behaves like a random walk and then
mean reverts nonlinearly when far away from the mean. Our Figure 1 is remark-
ably similar to Ait-Sahalia's (1996) Figure 4b, p. 408, which depicts a nonlinear
parametric drift function that is not rejected by his data and methodol ogy.

FIGURE 1
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Figure 1 shows the drift 1(r) of the process
r—a
. cos ﬂl() )
dr = —2_gt+aw
(b—a) . w(r—a)
sin
b—a

for various values of rand a= 1.9 and b = 24.5.

Our analysis shows that the truncation bias could cause local estimators of
the drift to find nonlinear behavior near the edges of the data even when the true
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drift is actually zero. This also illustrates that the truncation bias is an important
specification bias as Ross (1987) observes.

[ll. Significance of the Bias

We now consider the case of the Vasicek model conditioned on event A that
the maximum over a time period is less than a fixed constant x. The new drift
process with respect to the enlarged filtration FsVo (A) is given by

d<MSrg>1
where
d < MS, Is > =
252 7 (1— el-aT=9)) p)?
__z o | 2 10,
O™ (1 _ o(—2a(T—s) 29 (1 g~2a(T—s)
\/ 2a (1 € ) 2a ( )

as obtained in Section 111 earlier wherez = x — (e(=aT=9)rg,

We can now obtain, based on the above, numerical estimates of the size of
the drift correction for various short rate values. The parameter values we use,
based on Ait-Sahalia (1996), are as follows: a = 0.85837, b = 0.089102, and
02 = 0.0021854. We assume that T — s = one year and 0.x = 0.24. Figure 2
depicts, for values ranging from a low of 2% to a high of 22%, the drifts of
the unconditioned and conditioned processes. Figure 2 illustrates the dramatic
influence of the upper truncation bias for large values of the short rate, i.e., near
the upper edges of the data. The nonlinear nature of the drift of the conditioned
processis also clearly apparent for large values of the short rate. We also see that
the size of the upper truncation bias is small for low values of the short rate. Of
course, therewill be alower truncation bias associated with the smallest realized
valuein the sample.

We next discussthe effect of truncation bias on the estimators such asthat used
in Stanton (1997) for the Vasicek process. Again, for the sake of tractability, we
assume that the process has reached its stationary distribution, which is normal
with mean b and variance 02/2a. As in the previous section, we calculate the
quantity E(reea — 1 | e, A), which is approximately equal to p(ri, A)A, where A
isthe event that ry < ufor some fixed constant u. A calculation similar to that in
Section Il shows

_ (n=b)?
29—

e

s 52
u 7(y—g)

/ e % dy

It

For r closeto u, we may use L' Hospital’s Rule to obtain

w(re,A) = a(b-—r)—2a(rr—b).

p(re,A) = a(b-—ry)—
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FIGURE 2
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Figure 2 shows the drift correction for various values of the short rate rs. The drift correction Cs for
the Vasicek process conditioned on the event that the short rate is less than 24% is given by the
expression((d < M°,rs > 14)/M®) and is depicted by the unbroken line. The drift of the uncondi-
tioned process a(b — rs) is depicted by the broken line. Note that the drift correction and, hence, the
truncation bias for driftless Brownian motion dr = odW (an uncorrelated process), conditioned on the
process being less than a fixed value x, is —o2/(x — r), which for values of r much smaller than x, is
close to zero. This shows that the truncation bias is not always and everywhere equally important.

This shows that for values of r close to the upper limit of the data, the trunca-
tion bias causes drift estimators that use local information, such as that of Stanton
(1997), to find a higher degree of mean reversion.

IV. Conclusions

A number of empirical studies have noted that the estimated drift function
shows considerable evidence of nonlinearity. However, theoretical term structure
models have linear drift specifications. Research has, therefore, re-examined the
robustness of these findings and has rai sed i ssues about the biasesin the estimators
used (see, for example, Chapman and Pearson (2000) and Pritsker (1998)). In the
case of empirical estimation, any real world datais implicitly conditioned by the
fact that interest rates in whatever period considered have, in practice, somefinite
upper bound. Chapman and Pearson (2000) were the first to consider this trun-
cation bias and to analyze its impact on non-parametric and semi-nonparametric
short rate estimators. They observe, for example, that the drift estimator in Stan-
ton (1997) is particularly susceptible to this bias. We show, using the theory of
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enlargement of filtrations, that, in the presence of conditioning information, the
drift has a nonlinear structure in the case of diffusion processes commonly used
to model the short rate. We aso find that the presence of conditioning creates
a bias in the estimation of the drift for which we provide some estimates. Our
contribution, relative to Chapman and Pearson (2000), is that we provide explicit
closed-form expressions for the drift of certain short rate processes under trunca-
tion bias. The techniques of this paper may be relevant for studying other price
processes, for example, the behavior of exchange rates in target zones.
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