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Abstract

Many models have been defined in order to describe the evolution of a disease in a population. The modelling
of diseases is helpful to understand the mechanisms for their spread and to predict their future evolution.
Most of the models in the literature are defined in terms of systems of differential equations and only a few
of them propose stochastic simulation for the analysis.
The main aim of this work is to apply the process algebra Bio-PEPA for the modelling and analysis of
epidemiological models. As Bio-PEPA has been originally defined for biochemical networks, we define a
variant of it suitable for representing epidemiological models. Some features of Bio-PEPA are useful in
the context of epidemiology as well: location can abstract spatial structure and event can describe the
introduction of prophylaxis in a population infected by a disease at a given day. Concerning the analysis,
we can take advantage of the various kinds of analysis supported by Bio-PEPA, such as, for instance,
stochastic simulation, model checking and ODE-based analyses. In particular, the modeller can select the
most appropriate approach for the study of the model and analysis techniques can be used together for a
better understanding of the behaviour of the system.
In this paper we apply Bio-PEPA to the study of epidemiological models of avian influenza, based on different
assumptions about the spatial structure and the possible kind of treatment. These models demonstrate that
Bio-PEPA has several features that facilitate epidemiological modelling.

Keywords: Process algebra, epidemiological models, modelling, stochastic simulation, model checking,
ordinary differential equations

1 Introduction

The outbreak and spread of epidemics have been studied for many years and many
models have been defined in order to describe the evolution of a population infected
by one or more diseases [1,2,25,6,23,8,18]. The modelling of diseases is helpful to
understand the mechanisms for their spread, to predict the future course of an
outbreak and to evaluate strategies to control it. The possibility to predict the
evolution of the disease can help scientists to evaluate plans to handle it and may
have a significant impact on the extinction (i.e. eradication) of a particular epidemic.
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Most epidemiological models have been defined in terms of ordinary differential
equations (ODEs) or partial differential equations (PDEs) and just a few stochastic
models have been proposed. Differential equations are generally a good approach
when the population can be assumed to be large and the focus is on the average
behaviour. However, when the population is small and characterized by a certain
variability, stochastic models can be a more faithful representation of the system
and are therefore more appropriate.

Process algebras were originally defined in the context of concurrent systems in
computer science. They offer a formal model of a system in terms of interacting
components, and support a compositional approach to model construction. From
the perspective of epidemiological modelling they offer the possibility of describing
the individuals in the population as distinct components with precise specifications
of the interactions between them. Recently, there have been several explorations
of process algebra modelling in the epidemiological context [33,28,27,4,7]. Most of
these have focussed on the derivation of ODE-based models from the process algebra
description, and stochastic simulation is considered only in [4]. Furthermore, simple
epidemiological models are presented in these papers.

In recent years there has been considerable interest in applying process alge-
bra modelling to biochemical networks [30,17,32,29,10]. In several cases process
algebras have been developed specifically for this purpose, using slightly different
assumptions about how components interact than would be standard in the com-
puting context. In this work we apply one such process algebra, Bio-PEPA [15,16].
This is a modification of the stochastic process algebra PEPA which was originally
developed for performance modelling of computer and communication systems [24].
The new language is equipped with functional rates to allow the rate of an action
to depend on the current state of the system, classification of actions according to
their impact on the number of entities and locations for segregating actions.

Since Bio-PEPA has been originally proposed for biochemical networks, we need
to define a variant of it that is more suitable for describing epidemiological models.
In particular, some details about biochemical species and locations are eliminated.
Note that several features of Bio-PEPA remain useful in this new context. Indeed
functional rates can express complex dynamic laws and locations can abstract spatial
structures. Furthermore, Bio-PEPA has been enriched with events [11], which can
represent, for instance, the introduction of prophylaxis in a population infected by
a disease at a given day.

Concerning the analysis, from a Bio-PEPA model we can derive an associated
system of ODEs, a model for stochastic simulation and a PRISM model [26,31] for
model checking. Access to a variety of analysis techniques can help develop a better
understanding of the behaviour of the system and allows the modeller to select the
most appropriate approach for the study of the model considered.

We apply our variant of Bio-PEPA to modelling and analysis of epidemiological
models for avian influenza [19], based on different assumptions about the spatial
structure and the kind of treatment given (i.e. prophylaxis or introduction of a
drug). Specifically, we start by considering a simple model describing the disease
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without locations and without treatment, then we extend it with locations and
finally we add treatment and the possibility of drug resistance. In the study of
these models the following quantities are of interest [19]: the maximum number
of infective individuals with respect to time (the epidemic’s peak value), the time
when it occurs (the epidemic’s peak time), total number of instantaneous infectives,
cumulative number of infectives generated during epidemic and the total number of
resistant infectives. Furthermore, we would like to investigate the impact of different
population structures on the outcome of influenza and the effect of treatment and
prophylaxis on drug resistance. In the simplest models the stochastic and determin-
istic analyses are in full agreement. However, when spatial structure is taken into
account the variability of the system increases and the use of stochastic simulation
seems more appropriate and essential to capture the behaviour of the system.

The rest of the paper is structured as follows. An introduction to epidemiological
models and a description of Bio-PEPA for biochemical networks are reported in
Sect. 2 and Sect. 3, respectively. The variant of Bio-PEPA for epidemiological
models is introduced in Sect. 4. In Sect. 5 the Bio-PEPA systems describing three
models concerning the avian influenza are presented and some analyses are reported.
Finally, in Sect. 6 we report some concluding remarks.

2 Epidemiological models

There is a vast literature of models describing populations infected by one or more
diseases [1,2,25,6,23,8,18]. These models differ from each other in terms of the
dynamics in the absence of disease (i.e. the total population can be constant or birth
and death rates can be prescribed by some laws) and in terms of assumptions about
the infection. For instance, the disease can be transmitted directly by contact with
an infective individual or through a vector, and it can be assumed that offsprings of
infected parents can be born infected or not. Furthermore, there is a distinction in
terms of the number of diseases active in a population and the relationship between
them.

With respect to a disease, the population can be divided into classes: susceptibles
(S), those who are infective (I) 3 and those who have recovered and are immune (R).
In addition to these, we can have other classes, describing, for instance, symptomatic
or asymptomatic infectives, treated, untreated or immune individuals. According to
the kind of disease and the classes in which the population is divided, the following
classification of models has been proposed: SI, in which susceptibles can be infected
but do not recover, SIS, in which infectives can recover and become susceptible
again, SIR, in which infectives can recover and remain immune to the disease and
SIRS, where infectives can recover and recovereds can become susceptible again.
More complex models are obtained by considering other classes and assumptions.

In epidemiology (as in all ecological systems), spatial structures can have a large
impact on the evolution of a population and on the outcome of a disease [19,22].
Generally, an abstract view of space is sufficient to describe the spatial evolution of

3 In this work we assume that infected individuals correspond to infective ones.
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the epidemic. The term metapopulation is used to indicate a population distributed
over a number of patches or subpopulations, i.e. groups of hosts in the model.
Individuals can migrate from one patch to another and this can be described by a
migration matrix, that determines the topology and the strength of the connections
between the patches. The dynamics of a metapopulation are a function of both
within-population dynamics and among-population dynamics.

Different population structures, depending on the number of subpopulations and
how they are connected, can be defined. Some possible structures, reported in Fig.
1, are:

• island-type: all patches are equally accessible from all other patches in a single
step;

• spider-type: individuals can travel between the central patch and outer patches
in a single step. All the possible movements are via the central patch;

• necklace-type: individuals can move only to adjacent patches in one step;
• loop-type: individuals can move only to adjacent patches in one step and all

patches are connected to another two patches in a loop.

ISLAND  MODEL LOOP MODELSPIDER  MODEL NECKLACE  MODEL 

Fig. 1. Example population structures. The blue circle illustrates the patch with disease initially in the
experiments in Section 5.

An example of a population divided into subpopulations with migration between
them is illustrated in Fig. 2. The population (blue circle) consists of 5 subpopu-
lations (white circles). Each subpopulation is composed of different numbers of
susceptibles, infectives and recovereds. The arrows between the circles represent
the possible migration of individuals from one patch to another.
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Fig. 2. Example of subpopulations. The whole population (blue circle) is divided into some subpopula-
tions (white circles), arrows represent migration of individuals between subpopulations. S, I, R stand for
susceptible, infective and recovered individuals.

F. Ciocchetta, J. Hillston / Electronic Notes in Theoretical Computer Science 261 (2010) 43–6946



3 Bio-PEPA

In this section we give a short description of Bio-PEPA [15,16], a language that
has recently been developed for the modelling and analysis of biochemical systems.
The main components of a Bio-PEPA system are the species components, describing
the behaviour of each species, and the model component, describing the interactions
between the various species. The species initial amounts are given in the model
component.

The syntax of the Bio-PEPA components is defined as:

S ::= (α, κ) op S | S+S | C with op = ↓ | ↑ | ⊕ | � | � P ::= P ��
L P | S(x)

where S is the species component and P is the model component. In the prefix
term (α, κ) op S, κ is the stoichiometry coefficient of species S in reaction α, and
the prefix combinator “op” represents the role of S in the reaction. Specifically, ↓
indicates a reactant, ↑ a product, ⊕ an activator, � an inhibitor and � a generic
modifier. We can use “α op ” and “(α, κ) op ” as abbreviations for “(α, 1) op S”
and “(α, κ) op S”, respectively. The operator “+” expresses the choice between
possible actions, and the constant C is defined by an equation C

def= S. The process
P ��

L Q denotes synchronisation between components P and Q, the set L determines
those activities on which the operands are forced to synchronise, with ��∗ denoting
a synchronisation on all common action types. In the model component S(x), the
parameter x ∈ R represents the initial amount of the species.

Recently Bio-PEPA has been extended to incorporate events [11] and biological
locations [14].

Events are constructs that represent changes in the system due to some triggering
conditions. This allows biochemical perturbations to the system to be represented,
such as the timed introduction of reagents or the modulation of system components
by external stimuli. A Bio-PEPA event has the form (id, trigger, event assignment,
delay), where id is the event name, trigger is a mathematical expression involving
the components of the Bio-PEPA model and/or time, event assignment is a list of
assignments causing some changes to elements in the system, and delay is either
0 (immediate events) or a positive real value (delayed events). Events are added
to the language as a set of elements and the rest of the syntax is unchanged in
order to keep the specification of the model as simple as possible. Furthermore,
this approach is useful when the same biochemical system is studied under different
experimental regimes as the list of events can be modified without any changes to
the rest of the system.

Locations represent both biological compartments and membranes. They form
a static hierarchy (i.e. they have a fixed structure) but they can change size with
time. The notation C@L indicates that the species represented by the component
C is in the location L. If we have just one location, it is treated implicitly and we
simply write C. The locations are defined as follows.

Definition 3.1 Each location is described by “L : s unit, kind”, where L is
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the (unique) location name, “s” expresses the size and can be either a positive
real number or a more complex mathematical expression depending on time t; the
(optional) “unit” denotes the unit of measure associated with the location size, and
“kind” ∈ {M,C} expresses if it is a membrane or a compartment, respectively.

A Bio-PEPA system representing a biochemical network consists of a set of se-
quential components, a model component, and a context (kinetics rates, parameters,
locations, events, etc.).

Definition 3.2 A Bio-PEPA system P is a 7-tuple 〈L,N ,K,FR, Comp, P,Events〉,
where: L is the set of locations, N is the set of auxiliary information, K is the set of
parameters, FR is the set of functional rates, Comp is the set of species components,
P is the model component and Events is the set of events.

Bio-PEPA is given an operational semantics [15,16]. In this context species
amounts are abstracted by discrete levels, representing intervals of values. There
are two relations over the processes: the capability relation, which supports the
derivation of qualitative information, and the stochastic relation, defined in terms
of the capability relation and equipped with rates for the associated action types.

The capability relation is −→c ⊆ C×Θ×C, where C is the set of model components
and Θ is the set of labels. The labels θ ∈ Θ are defined as θ := (α,w), where w

is a list recording the species that participate in the reaction and is defined as
[S : op(l, κ, species location)] | w :: w, with S the name of the species component,
l the level, κ the stoichiometry coefficient and species location is the location of
species. The relation −→c is the minimum relation satisfying the rules reported in
Table 1.

The stochastic relation is
γ�−→ ⊆ P̃ × Γ × P̃, where the label γ ∈ Γ is defined

as γ := (α, rα, reaction location), with rα ∈ R
+ and P̃ is the set of well-defined

Bio-PEPA systems [15]. In this definition rα is the rate associated with the action
type α and is calculated using the functional rate and the information in w. This
rate represents the parameter of a negative exponential distribution. The dynamic
behaviour of processes is determined by a race condition: all activities enabled
attempt to proceed but only the fastest succeeds. The element reaction location

indicates the location of the reaction. For instance, it can be a compartment, if all
the reagents are in a given location, or it can be of the form L1 ⇒ L2, if the reaction
is a transport of a species from L1 to L2. The relation

γ�−→ is defined as the minimal
relation satisfying the rule

Final
P

(αj ,w)−−−−→cP
′

〈V,N ,K,F , Comp, P 〉 (αj ,rα,reaction location)�−−−−−−−−−−−−−−−→〈V,N ,K,F , Comp, P ′〉

The Bio-PEPA language is supported by a suite of software tools which auto-
matically process Bio-PEPA models and generate other representations in forms
suitable for different kinds of analysis [16,13,5]. These tools capture mappings from
Bio-PEPA to differential equations, stochastic simulation models [21], continuous
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prefixReac ((α, κ, )↓S)(l)
(α,[S:↓(l,κ,species location)])−−−−−−−−−−−−−−−−−−−−−→c S(l − κ) κ ≤ l ≤ N

prefixProd ((α, κ)↑S)(l)
(α,[S:↑(l,κ,species location)])−−−−−−−−−−−−−−−−−−−−−→c S(l + κ) 0 ≤ l ≤ (N − κ)

prefixMod ((α, κ) op S)(l)
(α,[S:op(l,κ,species location)])−−−−−−−−−−−−−−−−−−−−−−→c S(l) with op = �,⊕,	 and

0 < l ≤ N if op = ⊕, 0 ≤ l ≤ N otherwise

choice1
S1(l)

(α,w)−−−−→c S′
1(l′)

(S1 + S2)(l)
(α,w)−−−−→c S′

1(l′)
choice2

S2(l)
(α,w)−−−−→c S′

2(l′)

(S1 + S2)(l)
(α,w)−−−−→c S′

2(l′)

constant
S(l)

(α,S:[op(l,κ,species location)])−−−−−−−−−−−−−−−−−−−−−−→c S′(l′)

C(l)
(α,C:[op(l,κ,species location)])−−−−−−−−−−−−−−−−−−−−−−→c S′(l′)

with C
def
= S

coop1
P1

(α,w)−−−−→c P ′
1

P1 ��L P2
(α,w)−−−−→c P ′

1
��

L P2

with α /∈ L

coop2
P2

(α,w)−−−−→c P ′
2

P1 ��L P2
(α,w)−−−−→c P1 ��L P ′

2

with α /∈ L

coop3
P1

(α,w1)−−−−−→c P ′
1 P2

(α,w2)−−−−−→c P ′
2

P1 ��L P2
(α,w1::w2)−−−−−−−−→c P ′

1
��

L P ′
2

with α ∈ L

Table 1
Axioms and rules for Bio-PEPA.

time Markov chains (CTMC) with levels [12] and PRISM models [26] 4 .

4 A variant of Bio-PEPA for epidemiological models

As we extend the use of Bio-PEPA from biochemical networks to epidemiological
models there are some key issues which need to be considered:

• In epidemiology each species will correspond to a set of individuals exhibiting the
same behaviour (e.g. susceptible, infective or recovered individuals). In this new
context the role of a “species” with respect to an action does not have the same
significance as in the biochemistry. Nevertheless, we can still use the operators
for the species role to indicate that the species decreases, remains invariant or
increases in an interaction. The distinction between inhibitors, enzymes and
generic modifiers is no longer needed and it is sufficient to retain only the generic
modifier.

• It is possible to have an interaction of the form I + S → 2I or similar, where a
species (I) is present on both sides of the interaction with different stoichiometry

4 At the moment, in the case of models with events, just stochastic simulation and ODE numeric integration
are supported.
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or multiplicity. Note that this cannot be represented in Bio-PEPA 5 .
• Spatial structures are often present in epidemiological models. These can be

translated as Bio-PEPA locations; however the distinction between membranes
and compartments is not meaningful here.

4.1 The syntax of Bio-PEPA for epidemiological models

A Bio-PEPA model for epidemiological system is described by the following syntax:

S ::= (α, κ) ↓ S | (α, κ) ↑ S | (α, (κ1, κ2)) � S | S + S | C | S@L

P ::= P ��
I P | S(x)

where the terms have the same meaning as explained in Sec. 3 [16,14]. With respect
to the standard Bio-PEPA syntax, we do not have the operators for the enzyme and
the inhibitor and we use a new prefix (α, (κ1, κ2)) � for species present on both
sides of an interaction. The pair (κ1, κ2) represent the species’ two multiplicity
coefficients, before and after the interaction, respectively.

Note that the definition of location is as reported in the previous section, but
here we do not have the attribute kind because it not meaningful in this context.
Thus the one kind of location becomes implicit.

Definition 4.1 Each location is described by “L : s unit”, where L is the loca-
tion name, “s” expresses the size and can be either a positive real number or a
more complex mathematical expression depending on time t; the (optional) “unit”
denotes the unit of measure of the location size.

A Bio-PEPA system is defined as previously (i.e. Def. 3.2). The operational
semantics for this variant of Bio-PEPA differs from the one reported in the previous
section only in the axiom describing modifiers; specifically, the axiom prefixMod is
replaced by the following:

prefixGenMod (α, (κ1, κ2)) � S(l)
(α,[S:�(l,(κ1,κ2),species location)]−−−−−−−−−−−−−−−−−−−−−→c S(l − κ1 + κ2) .

Note that in epidemiological models species are expressed in terms of number of
individuals; this feature is reflected in the Bio-PEPA model too.

4.2 Abstraction

The translation of epidemiological models into Bio-PEPA is based on the following
correspondences:

• Each subpopulation/patch is abstracted by a location.
• Each species is represented by a species component, whose subterms describe its

interaction capabilities.

5 In the biochemical context if a species is present on both side of a reaction it must be a modifier and the
two stoichiometric coefficients must be the same.
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• Each interaction is represented by an action type. The dynamics are described
by a functional rate.

• The model component represents how the species interact and contains informa-
tion about the initial state.

4.3 Mappings to analysis

As in the context of biochemical networks, we can take advantage of the mappings
which have been defined from Bio-PEPA to various mathematical models for anal-
ysis, including stochastic simulation [21], analysis based on ordinary differential
equations (ODEs), numerical solution of the CTMC with levels [12] and stochastic
model checking using PRISM [31,26]. It is worth noting that each of these analyses
can aid understanding complementary aspects of the behaviour of the system. Fur-
thermore, when two analyses overlap in scope, the results obtained can be used for
verification. Specifically, stochastic simulation and numerical integration of ODEs
are useful to study the temporal evolution of the system, whereas model checking
can be applied to investigate some properties of the system that cannot be easily
seen from simulation. In particular, stochastic simulation is appropriate when the
system is composed of small numbers of species and we are interested in capturing
the variability within the system; on the other hand the ODE model is suitable
when the number of entities is large and the focus is on the average behaviour of
the system.

Below we report just some observations, the interested reader is refered to [16]
for details. The mapping from a Bio-PEPA model to the corresponding systems of
ODEs is the same as for the standard Bio-PEPA [16], except for a small change
to take account of the new generic modifier with two multiplicity coefficients. The
mapping to stochastic simulation is identical to the one proposed in [16], but the
conversion from concentrations to number of individuals is not necessary since the
model is already expressed as numbers of individuals. Finally, the mapping to
CTMC with levels and to a PRISM model [31,26] are identical to those for standard
Bio-PEPA [12] with the addition of the case of species present on both side of a
interaction due to the new generic modifier. Species are represented in terms of
levels, but here, differently from [12], each level abstracts an interval of integer
values instead of an interval of concentrations, since the models are expressed in
terms of number of individuals. Given a species amount, the corresponding level is
derived by dividing the amount value by the step size H. The step size expresses
the granularity of the system. The information about the step size is contained in
the set N . A maximum amount (MMax) is assumed for all the species. This allows
us to have a finite CTMC and therefore guarantees that the CTMC-based analysis
is feasible.

In PRISM it is possible to specify quantitative properties of the system using
the temporal logic CSL (Continuous Stochastic Logic) and rewards [3,31]. In the
context of epidemiological systems some properties of interest are:
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• Probability of coexistence of the species at or before time t.

P=?[ true U≤t S > 0 & I > 0 & R > 0]

• Probability of extinction of the disease at or before time t :

P=?[ true U≤t I = 0 ]

• Long run probabilities (steady states) of coexistence of the species and extinction
of infection:

S=?[ S > 0 & I > 0 & R > 0] S=?[I = 0]

• Expected time until extinction of the disease.

Rtime
=? [F I = 0 ]

where the operator R=? is used to express a reward and F indicates the case of a
reachability reward.

In the properties above we assume three subclasses for the population (S, I, R),
but the properties can be easily extended to models with more subclasses.

5 Examples: models of H5N1 avian influenza

In this section we apply Bio-PEPA to the study of models from [19] concerning the
spread of H5N1 avian influenza. The Bio-PEPA Workbench [34] is used for the anal-
ysis. Specifically, we consider the mapping to the Dizzy simulator tool supported by
the Bio-PEPA Workbench and use the version of Dizzy developed at the University
of Edinburgh [20] for both numeric integration of ODEs and stochastic simulation.
The ODE solver ODEtoJava-dopr54-adaptive (with a variable time-step size that
is controlled by an adaptive method involving a formula for estimating the error)
is used for the numerical integration whereas Gillespie’s direct method [21] is the
algorithm chosen for stochastic simulation. Furthermore, we consider the mapping
to the PRISM model checker [31] and we use it to verify some properties for one of
the models.

Both stochastic simulation and numerical integration of the ODE models are
fast: a few seconds for all the models (in the most complex case we have seven
seconds for 100 stochastic simulation runs and less than one second for the ODE
numerical integration). The verification of properties in PRISM is relatively time-
consuming even for the simplest of the models considered (about ten minutes for
each property).

The results obtained are compared with the known behaviour of the disease
reported in [19]. In that paper the authors use systems of ODEs and bespoke
simulation models.
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5.1 Assumptions and definitions

The time unit in all our models is one day and this is reflected in the graphs. The
models considered in this work are based on the following assumptions:

• The total population is constant and composed of N = 500 individuals. The
assumption of a constant population is appropriate as we limit our attention to
a short period of time (50 days).

• The basic model is an SIIsR model: we have susceptibles (S) who can be in-
fected by direct contact with infectives and infectives who can recover (R). The
infectives can be of two types: I, asymptomatic, and Is, symptomatic. Both are
infectious, but their infectiousness varies, and only those who develop clinical
symptoms will be treated, when treatment is provided.

• The transmission of the influenza is by direct contact between an infective and a
susceptible.

• We consider all the spatial arrangements discussed earlier — island-, spider-, loop-
and necklace-type — but due to space limitations we present only island-type and
necklace-type space. The population is divided into n = 5 patches. Each patch
has (initially) N/n individuals. All the patches have the same dynamics and the
migration rates are the same for all the connected patches.

¿From the basic model we can obtain other more complex models, adding the
possibility of treatment and resistance to the drug. A resistant virus is a virus
resistant to the drug and resistant cases are individuals with drug resistant viruses
and thus the drug has no effect on them. Concerning treatment, the following two
possibilities are considered:

• Treatment for symptomatic infectives. Infected people can receive drugs and
become less infective and recover faster. Treatment for symptomatic infectives is
a continuous intervention.

• Prophylaxis. Both asymptomatic infectives and susceptibles can receive prophy-
laxis. Susceptibles treated with prophylaxes become less susceptible to infection,
while prophylaxed infectives are less infectious and recover faster. Prophylaxis is
made at one (or more) specific time.

Treatment and prophylaxis do not work in the case of resistant viruses.
If we consider treatment and drug resistance, we have to define some specific

subclasses for the population. Specifically, infectives can be divided into treated (tr)
or not, with resistance (r) or not, symptomatic (s) or not and all the possible com-
binations of these cases. Susceptibles can receive prophylaxis (pr) or not. A schema
of the species involved is reported in Fig. 3. The eight classes of infectives can be
represented on a cube. The axes are resistance, treatment, symptoms. New infected
individuals enter the cube from the bottom (no symptoms), as the symptoms do
not appear immediately. On this side the new infectives go to the resistant edge if
they are infected by an individual with resistant viruses and they go to the treated
edge, if they have received prophylaxis. The classes are: S (susceptibles), Spr
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(susceptibles receiving prophylaxis), I (infectives, untreated and asymptomatic), Is

(infectives, untreated, symptomatic), Ir (infectives, untreated, with resistant virus,
asymptomatic), Itr (infectives, treated, asymptomatic), Isr (infectives, untreated,
with resistant virus, symptomatic), Istr (infectives, treated, symptomatic), Irtr (in-
fectives, treated, with resistant virus, asymptomatic), Isrtr (infectives, treated, with
resistant virus, symptomatic), R, recovered.

The notation Xi is used to indicate the class X (from the classes listed above) in
the patch i. In the analysis, we are interested in the total number of individuals of a
class in all the possible locations. So for each class, the total number of individuals
is X =

∑n
i=1 Xi, where n is the number of locations.

Ir
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treatment

Is

Is, tr Is,r,tr

Spr

Is,r

Ir,trItr

resistance

sy
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Fig. 3. Population reactions for the metapopulation model with treatment and drug resistance.

In this paper we consider the following kinds of models:

(i) Simple SIIsR model with single (implicit) location;

(ii) Simple SIIsR models with locations;

(iii) SIIsR models with locations, extended with treatment, prophylaxis and resis-
tance.

In the study of these models the following quantities are of interest [19]:

• Epidemic’s peak value and time; i.e. the maximum number of infectives with
respect to time and the time when this occurs.

• Instantaneous number of total infectives at a time t :

TInfectives(t) =
n∑

i=1

( Ii(t)+Is,i(t)+Itr,i(t)+Ir,i(t)+Irtr(t)+Isr,i(t)+Isrtr,i(t)+Istr,i(t) )

where i is an index indicating the location of the species and n is the number
of locations. In our study n = 1 (no spatial structure) or n = 5 (for spatial
structure). Note that in the first two models we have just Ii and Is,i, so the
expression is reduced to TInfectives(t) =

∑n
i=1( Ii(t) + Is,i(t) ).
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• Cumulative number of total infectives generated during epidemic within a time t :

TItot(t) = S0 −
n∑

i=1

(Si(t) + Spr,i(t))

where S0 is the total number of susceptible individuals over all the locations
initially and n and i are as above. Note the in the first two models we have just
the species Si as we have no prophylaxis.

• Total number of infectives resistant to drugs at time t (for models with resistant
virus):

TResistants(t) =
n∑

i=1

(Ir,i(t) + Irtr,i(t) + Isr,i(t) + Isrtr,i(t))

Furthermore, we investigate the impact of the population structure on the out-
come of the influenza and the effect of treatment and prophylaxis on drug resistance.

5.2 SIIsR models without drug treatments and with single location

The first kind of model is an SIIsR without drug treatments and explicit locations.
The species involved are S, I, Is and R and the interactions are:

(i) contact between S and I described as S + I → 2I, with a contact parameter
β1 (contact1 );

(ii) contact between S and Is described as S+Is → Is+I, with a contact parameter
β2 (contact2 );

(iii) the appearance of symptoms in I, described as I → Is, with rate δ1 (symp);

(iv) recovery from I, with rate γ1: I → R (recovery1 );

(v) recovery from Is, with rate γ2: Is → R (recovery2 ).

We define the unique location for all the species as location 1 : size = 1. The
set N , containing the information about species, is:

S : H = 10; MMax = 500, location = location 1

R : H = 10; MMax = 500, location = location 1;

I : H = 10; MMax = 500, location = location 1;

Is : H = 10; MMax = 500, location = location 1;

the species components’ names correspond to the names of the classes. We assume
the step size (H) of 10 and a maximum number of individuals (MMax) for all the
species equal to the total population.

The functional rates are defined as:

fαcontact1 = β1·S·I; fαcontact2 = β2·S·Is; fαsymp = δ1·I; fαrecovery1 = γ1·I; fαrecovery2 = γ2·Is;
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where the action types correspond to the interactions listed above and the pa-
rameters are as reported in the paper [19]: δ1 = 0.5 d−1; γ1 = 0.5 d−1; γ2 =
0.25 d−1; β1 = 3.5 · 10−2; β2 = 5 · 10−3.

The species components are:

S
def= (contact1, 1)↓S + (contact2, 1)↓S R

def= (recovery1, 1)↑R + (recovery2, 1)↑R
I

def= (contact1, (1, 2)) � I + (contact2, 1)↑I + (recovery1, 1)↓I + (symp, 1)↓I
Is

def= (contact2, (1, 1)) � Is + (recovery2, 1)↓Is + (symp, 1)↑Is

and the model component is: S(s0) ��∗ I(i0) ��∗ Is(is0) ��∗ R(r0), with the ini-
tial values s0 = 450, i0 = 10, is0 = 40, r0 = 0.

Some analysis results are reported in Figs. 4, 5 and 6. Fig. 4 reports the
behaviour of all the species obtained from numerical integration of the associated
system of ODEs and stochastic simulation (average over 100 runs). The results ob-
tained from the ODEs and stochastic simulation are in full agreement: susceptibles
are infected rapidly and drop to zero very quickly. By time 20 days all the infec-
tives become recovered. Indeed there is not a large variability between the different
simulation runs (Fig. 5) and the ODEs are therefore a good approximation for the
behaviour of the system. Fig. 6 shows the instantaneous number of infectives and
the cumulative number of infective cases up to time t of the epidemic, with the
original contact parameters and with smaller values (β1 = 3.5 ·10−3, β2 = 5 ·10−4).
With the original contact parameters the peak of infection happens quickly and the
extinction of the disease is rapid. All the susceptibles are infected. With smaller
values for the constant parameters, the cumulative number of infectives is smaller
and the peak happens later. Furthermore, not all the susceptibles are infected.

Finally, the PRISM model is considered to verify the properties listed in Sect. 4.3,
under different assumptions about the contact parameters. The results are reported
in Fig. 7. For the original values, the probability of coexistence of all the species
is non-zero immediately after the initial time and then drops to zero quickly. The
probability of extinction of the disease increases from zero to one. The long-run
probabilities are zero and one, respectively, whereas the expected time of extinction
of the disease is 12 days. In the case of smaller values for the contact parameters,
the probability of coexistence is greater than zero for longer, but then it drops
to zero. The probability of extinction tends to one, but more slowly than in the
original case. The expected time of extinction is 15 days. These results are in full
agreement with the results obtained from the previous analyses and the expected
behaviour of this kind of epidemiological systems.

5.3 SIIsRs model without drug treatments and with multiple locations

The second considered model is an SIIsR model with 5 patches, initially with 100
individuals each. We analyse models with different spatial structures (spider-type,
loop-type, island-type, necklace type). All the patches have the same behaviour in
terms of the kind of interactions and rates, but the initial situation in terms of
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Fig. 4. Simulation results for the SIIsR model without drug treatment and single location: all species
(ODE, left), all species (Gillespie’s direct method, average of 100 runs, right).
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Fig. 5. Simulation results for the SIIsR model without drug treatment and single location: confidence
intervals, all species (Gillespie’s direct method, average of 100 runs). The thick lines (bars) represent the
endpoint of the confidence intervals (with confidence level 1 − α = 0.95) whereas the thin lines (shadows)
illustrates the highest and the lowest values obtained from the set of simulation runs.
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Fig. 6. Simulation results for the SIIsR model without drug treatment and single location: instantaneous
number of total infectives (left) and cumulative number of infective cases (right). Standard values for the
contact parameters (β1 = 3.5 ·10−2, β2 = 5 ·10−3) against smaller values (β1 = 3.5 ·10−3, β2 = 5 ·10−4).

disease can be different. Specifically, all the infectives are initially in one single
patch i (as depicted in Figure 1). Initially in this patch we have Ii = 10, Isi = 40,
Si = 50, Ri = 0. The other patches initially have 100 susceptible individuals.

The Bio-PEPA model for the SIIsR model with single location in Sect. 5.2 is
extended in order to consider a location for each patch, the species for all the
locations and the action types for migration between locations. The Bio-PEPA
specification of this second model is reported briefly below.

A location is defined for each patch 6 :

location 1 : size = 1; location 2 : size = 1; · · · location 5 : size = 1;

As usual, each interaction is associated with an action type and a functional
rate. For the parameters, the same interaction in different locations has the same
rate, therefore the parameters are as for the previous model, with the addition of
the migration rates (μ).

In Bio-PEPA species in different locations are considered different species, so

6 We assume size 1 for all the locations as this information is not important here.
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Fig. 7. Analysis obtained from PRISM for the SIIsR model without drugs and single location: probability
of extinction of the disease (left) and probability of coexistence of all the species at each time (right),
under different assumptions on the contact parameters. The red line shows the results corresponding to the
original values and the blue line, the smaller values. These results are based on a CTMC with levels and
step size of 10.

if there are 5 locations we have 5 · 4 = 20 species components. The class Xi is
represented in Bio-PEPA by the species component X@locationi. All the classes are
listed in the set N as seen for the model without location. The species components
representing the same class in different locations can be defined using the “compact
form” presented in [14]: a unique component for the same class in all the possible
locations is defined and the interactions that are common to all the locations are
represented by a unique action type. If an action type is associated with just one
location, the information about the location is added to the prefix term. In the
case of susceptibles we have the following definition (the other classes are defined
similarly):

S
def= (contact1, 1)↓S + (contact2, 1)↓S

+
5∑

i=1

5∑

j=1, j �=i

(mij,S [location i → location j], (1, 1)) � S

The action types contactj, j = 1, 2, abstract the action types contactj@location i,
with i = 1, ..., 5, one for each location, whereas the prefix m(ij),S [location i →
location j]�, i, j = 1, · · · , 5, i �= j, indicates the migration of S from the patch i to
the patch j. All the possible migrations between any two patches are listed; when a
migration is not possible the value 0 is assigned to the associated migration rate μ,
otherwise μ = 0.01. This allows us to easily modify the model in order to consider
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the different spatial structures.
Finally, the model component is:

S@location 1(s10) ��∗ S@location 2(s20) ��∗ · · ·
· · · ��∗ S@location 5(s50) ��∗ I@location 1(i10) ��∗ · · ·

Figs. 8, 9 and 10 show the results for the island-type structure. Fig. 8 reports
deterministic and stochastic simulations for the total number of S, I, Is and R

over all the locations; Fig. 9, the confidence intervals for the species over 100
runs of stochastic simulation; Fig. 10 shows the instantaneous number of total
infectives and the cumulative number of infective cases. Figs. 11, 12 and 13 report
the results for the necklace-type structure. The results for the spider-type structure
(not shown) are in agreement with those for the island-type and the results for the
loop-type (not shown) are similar to those for the necklace-type.
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Fig. 8. Simulation results for the SIIsR model with locations (island-type) and without drug treatment:
all species (ODE, left), all species (Gillespie’s direct method, average of 100 runs, right).

¿From Figs. 8 and 11 we can observe that there are some differences between
the results obtained from numerical integration of ODEs and Gillespie’s average
simulation when locations are considered, in contrast to the single location case
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Fig. 9. Simulation results for the SIIsR model with locations (island-type) and without drug treatment:
confidence intervals, all species (Gillespie’s direct method, average of 100 runs). The thick lines (bars)
represent the endpoint of the confidence intervals (with confidence level 1−α = 0.95) whereas the thin lines
(shadows) illustrates the highest and the lowest values obtained from the set of simulation runs.
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Fig. 10. Simulation results for the SIIsR model with locations (island-type) and without drug treatment:
instantaneous number of infectives at a given time point (left) and cumulative number of infectives(right)
under different assumptions for the migration rate. Red line is the result for μ = 0.01, blue line for μ = 0.001
and dashed green line for μ = 0.0001.
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Fig. 11. Simulation results for the SIIsR model with locations (necklace-type) and without drug treatment:
all species (ODE, left), all species (Gillespie’s direct method, average of 100 runs, right).
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Fig. 12. Simulation results for the SIIsR model with locations (necklace-type) and without drug treatment:
confidence intervals (Gillespie’s direct method, average of 100 runs). The thick lines (bars) represent the
endpoint of the confidence intervals (with confidence level 1 − α = 0.95) whereas the thin lines (shadows)
illustrates the highest and the lowest values obtained from the set of simulation runs.
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Fig. 13. Simulation results for the SIIsR model with locations (necklace-type) and without drug treatment:
instantaneous number of total infectives at a given time point (left) and cumulative number of infective
cases (right). Red line is the result for μ = 0.01, blue line for μ = 0.001 and dashed green line for μ = 0.0001.
The results show the average over 100 runs of stochastic simulation, Gillespie’s direct method.

(Fig. 4). In particular, for stochastic simulation the peak of the disease is less
evident than in the basic SIIsR model. This is especially clear for the necklace-
type structure; in this case we can observe a large variability between the runs
(Fig. 12). Although less pronounced, variability is still evident for the island-type
structure (Fig. 9). The presence of spatially separated patches means that the
population is fragmented and number of individuals in each location is smaller
(initially just 100). Thus we would expect greater variability and less justification for
the deterministic fluid approximation offered by ODEs. Thus we focus on stochastic
simulation to study the instantaneous number of total infectives and cumulative
number of infective cases (see Figs. 10 and 13), for these cases.

Furthermore, note that in the case of subpopulations, susceptibles are infected
less rapidly than in a single population (Figs. 8 and 11) and the peak of infectives
is lower (Figs. 10 and 13).

Moreover, we can observe that when locations are considered, the cumulative
number of infectives at the end of epidemic is lower than the case without locations;
not all susceptibles are infected. In the case of the island-type structure we have
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about 7 susceptibles that are not infected (Fig. 10). For the necklace-type structure
we have even more uninfected susceptibles during the epidemic (about 110 cases
for the original migration rates (see Fig 13)). These results are as expected: the
epidemic is less explosive in a fragmented population than in a homogeneous one.

Finally, in the case of island-type structure, the epidemic peak decreases and
occurs later with decreasing migration rates, but the total number of infective cases
at the end of epidemic does not depend on the migration rates (Fig. 10). This is
not true for the necklace-type structure: the cumulative number of total infectives
at the end of epidemic is influenced by the migration rates: the lower the migration
rate, the lower the cumulative number of infectives.

These observations are in agreement with the results shown in the literature [19].

5.4 SIIsR with locations, treatment and drug resistance

The models presented in the previous section can be extended in order to consider
treatment, resistance to drugs and prophylaxis. We consider all the 11 species defined
in Fig. 3. The possible interactions are:

• As before, contact between a susceptibles and an infective results in a new infec-
tive but now we distinguish different types. Globally, there are 16 possible kinds
of contact interactions. If the susceptible S contacts an infective without resis-
tance the result is a simple infective I, if S contacts an infective with resistance
the result is Ir. For a susceptible with prophylaxis, the contact with an infective
without resistance is Itr, whereas if the contact is with an infective with drug
resistance the result is Irtr. Similar interactions are defined for all the other cases
of infectives. These interactions are described by appropriate transmission rates.
The transmission rates for the treated infectives are lower than the usual ones
(we assume that they are 30 per cent of the usual ones).

• Development of symptoms. Asymptomatic infectives can become symptomatic
after some time.

• Treatment. Treatment is for all the symptomatic individuals. The treatment does
not work immediately but with a certain delay (0.7 d−1).

• Recovery. All the infectives can recover.
• Drug resistance. Infectives that are treated and non-resistant to drugs can become

resistant to them.

In addition to these interactions, prophylaxis is added at time 1 day after the
beginning of the study 7 and involves just the patches with disease. We consider
that only a part of the population is subjected to prophylaxis (one third of the
susceptibles and asymptomatic infectives). Furthermore, the transmission rates for
individuals with prophylaxis is just 30 per cent of the usual one.

In this model we assume an island-type structure with 5 patches. Each patch
has 100 individuals and initially all the infectives are in the same patch. The initial

7 We assume that the infection has started some days before the start of the simulation and therefore
prophylaxis is added, realistically, some days after the spread of the disease.
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situation for this patch is 50 susceptibles, 50 total infectives (asymptomatic and
symptomatic) and all the other species are zero.

The Bio-PEPA model corresponding to this case it not reported. The translation
is similar to the simpler models, but more species and action types are added to
describe the new species and interactions. The main difference is the addition of an
event representing the prophylaxis at time 1 day of the simulation time:

(prophylaxis, t = 1 day,

S@location i ← S@location i · 2/3; Spr@location i ← S@location i · 1/3;
I@location i ← I@location i · 2/3; Itr@location i ← I@location i · 1/3;
Ir@location i ← Ir@location i · 2/3; Irtr@location i ← Ir@location i · 1/3,

i = 1, 2, 3, 4, 5, 0)

The event prophylaxis is immediate and the effect is that one third of susceptibles
and asymptomatic infectives become treated susceptibles and treated asymptomatic
infectives, respectively. This is obtained by resetting the number of individuals of
the species components concerned.

The analysis results for this model are shown in Figs. 14 and 15. Again, the
results obtained from Gillespie’s simulation are somewhat different from those ob-
tained from the ODEs. In particular, a significant variability between the various
simulation runs is present (not shown) and can be explained as for model 2. Further-
more, a larger number of susceptibles resist infection compared with the scenarios
without treatments and therefore the total number of infectives is less. The infec-
tion peak is lower than the peak for the model with the same structure and without
treatment. Finally, there are some resistant cases and there is quite quickly a peak
of drug resistance (see Fig. 15).

6 Conclusions

In this paper we proposed a variant of the process algebra Bio-PEPA for the mod-
elling and analysis of epidemiological models. Bio-PEPA has been shown to be
useful in this context: it offers a high level of abstraction and allows us to represent
easily features of epidemiological systems, such as complex dynamic laws, abstract
spatial structures and changes to the system due to some trigger conditions. These
features are represented in Bio-PEPA using functional rates, locations and events,
respectively.

Note that there is a vast literature of models for epidemiology and most of them
are defined directly in terms of systems of ODEs. However, in recent years there
has been some interest in the use of process algebras for the modelling and anal-
ysis of epidemiological models [33,28,27,4,7]. In [33,28,27] the WSCCS (Weighted
Synchronous Calculus of Communicating Systems) process algebra has been used.
In [28,27] McCaig et al. define a systematic mapping from WSCCS to the ODEs
generally associated with epidemiological models. In [4] Benkirane et al. devel-
oped some PEPA models of disease spread (SIR models with direct and indirect
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Fig. 14. Simulation results for the SIIsR model with treatment/prophylaxis, drug resistance and locations
(island-type): all species (ODE, left) and all species (Gillespie, average over 100 runs, right).
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Fig. 15. Simulation results for the SIIsR model with treatment/prophylaxis, drug resistance and locations
(island-type): instantaneous number of total infectives at a given time point (left), cumulative number of
total infectives (middle) and total resistant cases (right).

transmission) and proposed a new mapping from PEPA to ODEs, able to capture
some properties of epidemiogical systems. In [7] Bradley et al. applied PEPA to the
modelling of Internet worm attacks using the SIR abstraction; analysis was based
on the mapping from PEPA to ODEs. In all these cases the models proposed were
simple, without spatial structure, and stochastic simulation was used only in [4].

In this work we constructed some models describing the spread of influenza
under different assumptions about spatial structure and treatment and we studied
them using the various analysis techniques supported by Bio-PEPA. The use of
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different kinds of analysis can foster a better understanding of the behaviour of the
system, and help to discover errors due to the use of a particular solver/simulator
[9]. Furthermore the modeller can select the approach that is most appropriate
for specific model under study. The first model considered assumed a constant
population without spatial structure and treatment. The numerical integration of
the associated system of ODEs and the stochastic simulation (average of 100 runs)
showed the same behaviour. The system was characterized by a small variability
and therefore the ODE solution is a good approximation of the behaviour of the
system. For this model, a map to PRISM was also considered in order to formally
verify some properties. The results of all the analyses were in full agreement. The
other models were characterized by some spatial structure and for them the use of
stochastic simulation was essential in order to represent the behaviour of the system.
Indeed the subpopulations were characterized by a small number of individuals and
the variability in the system was significantly increased. In this case it is not clear
that the deterministic fluid approximation offered by an ODE model is appropriate.

Future work will concern the study of other epidemiological models in Bio-PEPA,
the application of PRISM to the models with spatial structure and the application
of further analysis techniques supported by the Bio-PEPA tools, such as sensitivity
analysis.
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