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Abstract The secondary structure of the feline leukaemia virus
(FeLV) fusion peptide was investigated using circular dichroism
(CD). Our results show that this peptide can readily flip between
random, ot-helical and B-sheet conformations, depending upon its
environment. The CD spectrum changes from one characteristic
of random coil to predominantly -sheet type, and finally to that
showing the characteristics of o-helical structure on moving from
an aqueous solvent, through several increasingly hydrophobic
systems, to a highly hydrophobic solvent. Electron microscopy
confirmed the presence of B structure. We propose that the
structural plasticity demonstrated here is crucial to the ability of
the fusion peptide to perturb lipid bilayers, and thus promote
membrane fusion.
© 1998 Federation of European Biochemical Societies.

Key words: Spectrophotometry; Circular dichroism; Electron
microscopy; Feline leukemia virus; Fusion peptide;
Structural plasticity

1. Introduction

Membrane fusion, the merging of two distinct lipid bilayers
to form one common bilayer, is essential to life, occurring
many times daily within every animal cell [1]. Intercellular
fusion is also important, for example between sperm and
egg in the mammalian fertilisation process [2]. In addition,
many intracellular parasites, including all enveloped animal
viruses, utilise fusion to gain entry to their target cells, and
thus cause disease [3]. However, despite the clear importance
of fusion, the precise mechanisms involved in this process are
still not known.

Enveloped viruses have specific envelope glycoprotein
‘spikes’, viral fusion proteins, which mediate fusion between
the virus and its target cell [4]. Each fusion protein contains a
fusion peptide, a span of relatively hydrophobic amino acids,
which is thought to insert into the host cell target membrane
and disrupt bilayer stability, so initiating the fusion process
[S]. The active participation of fusion peptides in the fusion
process, for example those of influenza virus and human im-
munodeficiency virus (HIV), has been shown by a variety of
techniques including hydrophobic affinity labelling experi-
ments [6] and site-directed mutagenesis studies [7,8]. Studies
using synthetic peptides, which correspond to the sequences of
viral fusion peptides, have helped to determine some of the
molecular mechanisms involved in viral-mediated fusion. In
particular, these synthetic peptides appear to be most useful
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for studies on the minimum and precise molecular and struc-
tural requirements for membrane destabilisation [9-11].

Translocation from an aqueous environment, such as ex-
tracellular fluid, to a lipid environment is likely to involve
substantial structural alterations of a peptide. Many proteins
and peptides insert into membranes, and concomitantly alter
their own secondary structure, but they do not trigger huge
changes in the arrangements of the lipid molecules in their
target membranes.

There is much conflicting evidence on the active secondary
structure of fusion peptides. A modelling study of several viral
fusion peptides assumed that they completely formed o helices
on membrane insertion [5]. However, Gallaher et al. have
cautioned against the earlier assumption that all fusion pep-
tides are ‘sided’ helices in their active form [12]. Indeed, the
measles virus fusion peptide was found to adopt a conforma-
tion of 73% P sheet in one study [13], and, under different
experimental conditions, fusion peptides from different HIV
strains have been shown to be mainly o-helical [14] or con-
versely mainly B-sheet [15] in their active forms. Hepatitis B
virus fusion peptide favours a B-sheet conformation in the
presence of lipid vesicles [16], as does PH-30, a sperm fusion
peptide involved in sperm-egg fusion [17]. However, none of
these studies examines the same fusion peptide in a whole
range of different solvent systems.

We wished to examine the secondary structure of the fusion
peptide from the retrovirus feline leukemia virus (FeLV) in a
variety of environments. The FeLV peptide contains signifi-
cant numbers of amino acids that characteristically favour
three different secondary structures, namely the o helix, the
B sheet and a coiled conformation. The conclusion drawn
from the various studies mentioned above is that fusion pep-
tides change from one defined, inactive secondary structure to
another different and equally well-defined active secondary
structure. We speculated that this might lead to a large
amount of dynamic structural flexibility for the FeLV fusion
peptide. Indeed, computer modelling work has hinted that this
might be an important factor for fusion peptides in general
[18]. Since membrane fusion is a dynamic process, involving
large changes in the component molecules, structural plastic-
ity may be an essential property of these initiators of fusion.

2. Materials and methods

A 28-residue peptide (sequence EPISLTVALMLGGLTVG-
GIAAGVGTGTK), which corresponds to the common sequence of
the amino-terminal fusion peptide of all documented strains of FeLV
[19], was synthesised. A lysine (which is the next naturally occurring
carboxy-terminal residue in the fusion protein) was included on the
carboxy-terminus to increase peptide solubility. Peptide synthesis and
purification were performed by Albachem Ltd, 26 Craigleith View,
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Edinburgh EH4 3JZ, UK. The peptide was synthesised on an Applied
Biosystems 430A instrument, using Fmoc chemistry with the side
chain protecting groups selected as tBu (Ser, Thr) and OtBu (Glu).
The completed peptide was cleaved with a solution of TFA/H,O
(95:5) plus scavengers (ethanedithiol/thioanisole/triisopropanesilicane)
and the solution was evaporated under vacuum. The crude peptide
was dissolved in 50% TFA/H,O and purified by reverse phase HPLC,
using a RPC4 (10X 100 mm) column, eluting with a linear gradient
from 10% acetonitrile in water (0.1% TFA) to 60% acetonitrile in
water (0.1% TFA) over 30 min. The peptide was characterised by
mass spectra (MALDI, PerSeptive Biosystem laserTec), amino acid
analysis (LKB 4150 alpha amino acid analyser) and analytical
HPLC using PRC4 (4.6 X100 mm), RPC8 (4.6 X220 mm) and Vydac
C8 (4.6 X250 mm) columns, running a linear gradient of 10% aceto-
nitrile in water (0.1% TFA) to 90% acetonitrile in water (0.1% TFA)
over 30 min. The assembly of the peptide was reasonably efficient but
the purification process was found to be very difficult. The peptide
was found to be very insoluble; accordingly 50% TFA was added to
take it into solution. However, a very broad peak without any reso-
lution was obtained under normal eluting conditions, unless a very
dilute solution was applied. Thus the purification could only be car-
ried out batchwise on a small scale (0.5-1.0 mg per run).

The fusion peptide was added at a concentration of 1 mg/ml to (a)
2 M guanidine/50% ethanol, a solvent often used for peptide addition
to fusion assays, (b) trifluoroethanol (TFE), and (c) hexafluoroisopro-
panol (HFIP). These samples were then diluted 1:1 with distilled
water, giving a final peptide concentration of 0.5 mg/ml. Peptide
was also added to sodium dodecylsulphate (SDS) at concentrations
(c) 3 mM, (d) 6 mM in distilled water, to give a final peptide concen-
tration of 0.5 mg/ml. The resulting suspensions were sonicated in a
bath sonicator until the peptide dissolved. All chemicals were supplied
by Sigma Chemical Co., UK.

CD spectra were recorded using a JASCO J-600 spectropolarimeter,
over the wavelength range 195-260 nm, in a cell of path length of 0.02
cm, at 25°C. At least four spectra were averaged for each sample.
Analysis of the spectra for secondary structure content utilised the
CONTIN procedure of Provencher and Glockner [20] to determine
the amounts of o helix and B sheet present, and the method of Chang
et al. [21] was used to verify the overall trend in o helix contents.

Negative staining transmission electron microscopy was used to
examine the peptide samples for the presence of B structure. The
peptide solutions were dried onto plastic-coated carbon grids, and
then negatively stained using 4% sodium phosphotungstate at pH
7.2. A Philips 400 TEM was used, at 80 kV, and X 60000 magnifica-
tion. Negative controls were performed by staining an empty plastic-
coated carbon grid, and also by staining the corresponding pure sol-
vent.

3. Results

The far ultraviolet CD spectra of the FeLV fusion peptide
in the various solvents are shown in Fig. 1. Satisfactory data
could be obtained down to 195 nm; below this wavelength the
noise levels prevented accurate determination of ellipticity.
The CD spectra exhibit an increase in a-helical character on
moving from 1 M guanidine/25% ethanol, through a selection

Table 1
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Fig. 1. CD spectra of the FeLV fusion peptide in a variety of sol-
vents. Solid line: in 1 M guanidine/25% ethanol; short dash: in
50% TFE; dotted line: in 50% HFIP; long dash: in 3 mM SDS;
medium dash: in 6 mM SDS.

of increasingly hydrophobic solvents, to 50% HFIP. In the
guanidine/ethanol sample, the peptide shows a spectrum char-
acteristic of random coil secondary structure, which is to be
expected for a hydrophobic peptide in a polar solvent con-
taining a chaotropic agent. The critical micellar concentration
(CMC) of SDS is 8 mM at 20°C. In 3 mM SDS, the CD
spectrum is typical of a B sheet, but as the concentration of
SDS increases towards the CMC, the spectrum indicates that
some o-helical structure is present. The CD spectrum in 50%
TFE shows considerably more o-helical character and this is
even more pronounced in 50% HFIP. Analysis of the spectra
gives the percentages of o helix and B sheet in each sample
listed in Table 1. The exact values of these estimates should be
viewed with caution, since (a) ellipticity data could only be
collected down to 195 nm instead of 190 nm, which is the
preferred lower limit, and (b) it may be inappropriate to apply
the methods of analysis which have been derived for proteins
to oligopeptides. Moreover, the amounts of helix present may
well be underestimated, as up to twofold reductions in ellip-
ticity have been found in membrane-bound proteins [22].
However, an overall trend from random coil through predom-
inantly B sheet to significant amounts of o helix can clearly be
seen.

Fig. 2 shows electron micrographs of FeLV peptide in 3
mM SDS, FeLV peptide in 50% HFIP and negative control:
stained empty grid. Beta fibrils are visible in the 3 mM SDS
sample, and were only seen when there was little evidence of
o-helical content by CD spectroscopy (other data not shown).

Percentages of FeLV peptide secondary structure, as calculated by the methods of Provencher and Glockner [20] and Chang et al. [21]

Sample FeLV peptide (0.5 mg/ml) in:

% Secondary structure as calculated by the methods of:

Provencher and Glockner [20] (helix, sheet)

Chang et al. [21] (helix)

1 M guanidine in 25% ethanol 0, nd®
50% TFE 20, 36
50% HFIP 30, 35
3 mM SDS 2, 57
6 mM SDS 12,47

2The value for the sheet content of this sample could not be determined using the method of Provencher and Gléckner [20] without an unacceptably

large error.
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Fig. 2. Electron micrographs of (top) FeLV peptide in 3 mM SDS,
(middle) FeLV peptide in 50% HFIP and (bottom) stained grid con-
trol.

These B fibrils appeared long and unbranched and were ar-
ranged in a meshwork.

4. Discussion

A limited amount of Fourier transform infrared spectros-
copy has been performed on the fusion peptides of two
retroviruses simian immunodeficiency virus (SIV) [23] and
HIV [24]. These peptides were found to show a partial con-
version from a B-sheet conformation in an aqueous solvent to
an o helix in a lipid environment. Filtration to remove the
non-lipid bound peptide yielded an increase in the amount of
recorded a helix. Certainly the increase in the proportion of o
helix which we observed for the FeLV peptide on increasing
the solvent hydrophobicity agrees with these data. However,
the assumption from the SIV and HIV studies was that the o-
helical form is the single, fusion-active conformation. Work
on other fusion peptides [15,16] and a different study on the
HIV peptide [14] have all suggested that the B conformation
may be the fusion-active state.

Fusion is an extremely rapid, multi-step process, and so
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structural measurements are obtained mainly on fusion end
products. Thus only the final peptide conformations are ob-
served, but none of the intermediate changes in conformation,
which are adopted during the different stages of fusion, are
seen. We propose that structural flexibility, rather than the
rigid adoption of a particular secondary structure, may be a
key property of fusion peptides. Membrane fusion is a dynam-
ic process involving large structural changes in the participat-
ing molecules. We therefore suggest that it is possible that the
critical feature of these catalytic peptides is their ability to
‘flip” between different secondary structures extremely rapidly,
rather than the adoption of any single, well-defined secondary
structure. The energy barriers between these different second-
ary conformations must be low: the peptide must be able to
adopt, at least transiently, these various structures, which pre-
sumably represent local energy minima. Clearly the secondary
structures adopted under certain conditions may vary between
individual fusion peptides, due to differences in their primary
structures. However, previous computer modelling has hinted
that structural flexibility may be a common property of fusion
peptides [18]. Here we provide direct experimental proof of
such flexibility for one fusion peptide. It is interesting to note
that there is an analogy with the structural plasticity previ-
ously observed in a pathogenic prion peptide, PrP(106-126)
[25], which has been implicated in prion-related diseases.
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