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Abstract

Objective—The etiology of Parkinson disease (PD) is complex and multifactorial, with

hereditary and environmental factors contributing. Monogenic forms have provided molecular

clues to disease mechanisms but genetic modifiers of idiopathic PD are still to be determined.

Methods—We carried out whole-genome expression profiling of isolated human substantia nigra

(SN) neurons from patients with PD vs. controls followed by association analysis of tagging

single-nucleotide polymorphisms (SNPs) in differentially regulated genes. Association was

investigated in a German PD sample and confirmed in Italian and British cohorts.

Results—We identified four differentially expressed genes located in PD candidate pathways, ie,

MTND2 (mitochondrial, p = 7.14 × 10−7), PDXK (vitamin B6/dopamine metabolism, p = 3.27 ×

10−6), SRGAP3 (axon guidance, p = 5.65 × 10−6), and TRAPPC4 (vesicle transport, p = 5.81 ×

10−6). We identified a DNA variant (rs2010795) in PDXK associated with an increased risk of PD

in the German cohort (p = 0.00032). This association was confirmed in the British (p = 0.028) and

Italian (p = 0.0025) cohorts individually and reached a combined value of p = 1.2 × 10−7 (odds

ratio [OR], 1.3; 95% confidence interval [CI], 1.18–1.44).

Interpretation—We provide an example of how microgenomic genome-wide expression studies

in combination with association analysis can aid to identify genetic modifiers in

neurodegenerative disorders. The detection of a genetic variant in PDXK, together with evidence

accumulating from clinical studies, emphasize the impact of vitamin B6 status and metabolism on

disease risk and therapy in PD.

Parkinson’s disease (PD) is a neurodegenerative disorder, characterized by age-related

dysfunction and loss of dopaminergic neurons in the substantia nigra (SN) pars compacta

(SNc). Hereditary forms of PD have provided evidence for linkage to 13 loci and nine

causative genes, and their functional study has greatly helped to elucidate molecular disease

mechanisms.1 For idiopathic PD, both genetic and environmental factors are believed to

modulate disease risk, but the impact of genetic variants remains unclear.2 Genome-wide

association (GWA) studies offer an unbiased approach for detecting effects in common

variants, but large studies with sufficient power are still lacking. Restriction to candidate

genes increases the a priori odds for phenotypic involvement and thus the chance of

detecting significant associations. Here, we applied a functional genomic approach for the

discovery of candidate genes and key regulatory pathways. We focused directly on the
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affected tissue and specifically on dopaminergic neurons of the SNc using single cell,

whole-genome expression profiling followed by a genetic association study of differentially

regulated genes.

Materials and Methods

Tissue Samples for Expression Profiling

Frozen human brain tissue was obtained from the Newcastle Brain Tissue Resource.

Samples were available from patients with a clinical history of PD fulfilling UK PD Brain

Bank criteria and from age-matched control individuals without neurological disease. The

cases were clinically well documented and neuropathologically confirmed. Inclusion criteria

comprised the neuropathological diagnosis of Lewy body disease with typical pathological

features, including moderate to severe dopaminergic neuronal loss in the SNc and gliosis.

The local research ethics committee approved all procedures.

Sectioning, Staining, Laser Microdissection, In Vitro Transcription, and Microarray

In order to isolate high-quality RNA from frozen human brain tissues, tissue pH and RNA

integrity numbers (RIN) were measured in homogenates of frontal cortex and mid-brain

sections from 41 suitable cases and 39 controls. This provided eight cases and nine age-

matched controls of good RNA quality for laser microdissection (LMD). Postmortem data

for matched cases/controls were as follows: age at death 78.6 ± 6.5/76.8 ± 9.8 years;

postmortem delay 28.3 ± 11.9/20.5 ± 10.2 hours; pH 6.5 ± 0.1/6.61 ± 0.21; and RIN 7.7 ±

0.8/7.6 ± 1.1 (Supporting Table 1; Supporting Fig 1).All procedures were carried out under

RNAse-free conditions. Frozen 20μm midbrain sections were mounted on Leica PEN-slides

(Leica, Wetzlar, Germany), rapidly stained with toluidine blue, dehydrated in an ethanol

series, and processed on a Leica LMD microscope. A total of 100 neurons per case/control

were collected and RNA was extracted with the PicoPure® Kit (Molecular Devices,

Sunnyvale, CA) according to the manufacturer’s protocol. In two cases and two controls

sampling and experiments were repeated to enable analysis of reproducibility. In vitro

transcription (IVT) comprised one round of linear amplification with MessageAmpII

(Applied Biosystems/Ambion, Austin, TX), followed by a second round of IVT with the

Illumina® TotalPrep™ RNA Amplification Kit (Ambion). Second-round IVT yielded >3μg

cRNA with an average length of 800bp and was used for hybridization on Illumina WG6v1

expression chips (Illumina, San Diego, CA). On average, more than 12,000 transcripts were

detected (p < 0.01). For validation of microarray results, excess aRNA was reverse-

transcribed using SuperScript™ III First-Strand Synthesis SuperMix (Invitrogen, Carlsbad,

CA) and assayed on a StepOnePlus™ Real-Time PCR System (Applied Biosystems, Foster

City, CA) using TaqMan® Gene Expression Assays (Applied Biosystems, Foster City, CA)

by following standard protocols. Beta-actin was used as a housekeeping gene and relative

expression of the two most significant genes was determined. Data was analyzed using the

comparative C(T) method.3

Statistical Analysis of Microarray Data

Raw data were exported from the Illumina Beadstudio software to R (http://cran.r-

project.org), log-scale transformed (log2) and normalized (nonlinear transformation
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employing the LOESS smoother).4 A total of 8,491 transcripts were detected in all samples.

Statistical analysis (t test) revealed no significant difference for age, postmortem delay,

tissue pH, and RIN number of postmortem samples, and no associated effect was seen on

gene expression. To select significant signals in the transcriptome-wide differential (t test)

screening, conservative Bonferroni thresholds were used, which corresponded to a nominal

level of 0.05.

Single-Nucleotide Polymorphism Analysis and German Cohort

Single-nucleotide polymorphism (SNP) selection was performed with the Tagger algorithm

in Haploview 4.1 (http://www.broad.mit.edu/mpg/tagger) using pairwise tagging only, an r2

threshold of 0.8, and a minor allele frequency (MAF) of 0.1. Genotype data were taken from

the CEU population in HapMap (data Rel 23a/phaseII Mar08). Selection of SNPs was

restricted to those that were covered by the Illumina Hap550 array, since genotyping data

from this platform in universal German controls was used for analysis. The genomic regions

of both genes were defined as the transcriptional unit plus 10kb upstream and downstream.

Twelve tagging SNPs for PDXK and five tagging SNPs for TRAPPC4 were selected.

German PD patients were recruited by participating institutions in Munich and Tuebingen.

Specialists in movement disorders examined the patients. Diagnosis was established

according to UK PD Brain Bank criteria. Geno-typing of 676 German PD patients were

performed on a Sequenom MassArray system with the iPlex Gold assay (Sequenom, San

Diego, CA). A total of 15 assays had call rates of >98%. With the exception of one SNP

(rs743463; Pearson p = 0.04) no deviations from Hardy-Weinberg equilibrium (HWE) were

observed. The Armitage Trend Test was performed for association using our genotype data

for the 676 PD patients and available Illumina Hap550 genotyping data from 485 KORA

and 487 POPGEN universal German controls.5,6

British Cases and Controls

For the British cohort, a group of community-based cases with PD fulfilling UK PD Brain

Bank criteria (n = 203) were compared to a group of ethnically age- and gender-matched

controls (n = 142), with no clinical evidence of PD. All were of UK Caucasian origin. Two

additional UK control groups were included to increase statistical power: The Orkney

Complex Disease Study (ORCADES) is an ongoing, family-based, cross-sectional study in

the isolated Scottish archipelago of Orkney. Data for participants aged 18 to 100 years, from

a subgroup of 10 islands, were used for this analysis. The mean age was 53 years and 53%

were female. Genetic diversity in this population is decreased compared to Mainland

Scotland, consistent with the historically high levels of endogamy. Therefore, from 719

available samples, first-, second-, and third-degree relatives were excluded, resulting in 483

samples used for this study. All participants gave informed consent and the Research Ethics

Committees in Orkney and Aberdeen approved the study. In the Study of Colon Cancer

Survivors (SOCCS), 1,012 colorectal cancer cases were recruited from throughout mainland

Scotland; 1,012 age- and gender-matched cancer-free population controls were selected at

random according to matching criteria from a population-based register (518 males, 494

females; age 51.0 ± 5.9 years, mean ± standard deviation [SD]). From these, 503 samples

were randomly selected for our study. Genotyping was conducted using Illumina

HumanHap300 and Illumina Human-Hap240S arrays according to established protocols.7
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Italian Cases and Controls

The Italian cohort comprised 356 unrelated, nonfamilial PD patients, fulfilling the criteria

for PD reported in Ghezzi et al.8 The study was in agreement with the UK PD Brain Bank

criteria. The male/female ratio was 1.72; the age range was 50 to 75 years (67 ± 6.6). The

control group included 171 unrelated, ethnically- and age-matched controls (male/female

ratio 0.4; age range 50–75 years; age 59 ± 16.3 years) with no clinical evidence of PD. All

were Italians of Caucasian origin. All of the participants gave informed consent. One

additional control group from Italy was included to increase statistical power. The Val

Borbera Project is an ongoing family-based, cross-sectional study in the isolated population

of the Val Borbera in Northwest Italy. Data for participants aged 18 to 102 years, from the

seven villages of the valley, were used for this analysis. The mean age was 55 years and

56% were female. The population presents a high level of endogamy until around 1950.

From the 1,436 samples genotyped, individuals presenting a Ks coefficient ≥ 0.05 (first-,

second-, and third-degree relatives) were excluded, resulting in 532 samples used for this

study. All participants gave informed consent and the Ethics Committees of the San Raffaele

Hospital and of the Piemonte Region approved the study.

Results

Gene expression profiles of 100 SNc neurons collected from the same brain sample, which

were carried through LMD, IVT, and array hybridization individually, displayed an

extremely high correlation (Fig 1). This degree of reproducibility strengthened confidence in

the method used. Statistical analysis of the genome-wide expression profiles using stringent

Bonferroni correction revealed four transcripts to be significantly altered between PD and

control samples: the mitochondrial encoded complex I subunit gene ND2 (mtND2),

pyridoxal (pyridoxine, vitamin B6) kinase (PDXK), SLIT-ROBO Rho guanosine

triphosphatase (GTPase) activating protein 3 (SRGAP3), and trafficking protein particle

complex 4 (TRAPPC4) (Fig 2; Table 1). Upregulation of ND2 and PDXK was confirmed by

real-time analysis (ND2: +2.5-fold; PDXK: +1.8-fold). In addition to ND2, a further 17

genes coding for subunits of the mitochondrial respiratory chain were among the top 320

differentially regulated transcripts (significantly changed applying a false discovery rate, p <

0.025).9 The Database for Annotation, Visualization, and Integrated Discovery (DAVID)

gene functional classification tool revealed a highly significant enrichment in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway “oxidative phosphorylation” (p =

5.6 × 10−9).10 Interestingly, the mtDNA-encoded genes were all found to be upregulated:

ND1 (p = 0.0002; +1.65-fold), ND2 (p = 7.14 × 10−7; +1.7-fold), ND4 (p = 0.0005; +1.27-

fold), ND5 (p = 0.0002; +1.69-fold), and COXII (p = 0.00039; +1.31-fold). In contrast, the

13 nuclear genes coding for different members of the five respiratory chain complexes were

robustly downregulated. Mitochondrial dysfunction in the pathogenesis of PD is clearly

established,11 but our findings demonstrate an inverse regulation of mtDNA and nuclear-

encoded subunits of the respiratory chain on a single-cell basis, which has been reported by

Noureddine et al.12 and Duke et al.13 in gross dissections of SN tissue.

In order to validate a causal involvement of the new candidates in the pathogenesis of PD,

we decided to follow a genetic approach. Since mtDNA variants and polymorphisms in the
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axon guidance pathway have already been shown to be involved in prior studies, our

investigation was restricted to PDXK and TRAPPC4.14,15 No association was seen for

tagging SNPs in the TRAPPC4 gene. By contrast, in PDXK, two SNPs with r2 = 0.29

reached significant p values for association with disease status: rs2010795 (p = 3.2 × 10−4;

odds ratio [OR], 1.319; 95% confidence interval [CI], 1.134–1.534) lies in intron 8 and

rs2070535 (p = 6.4 × 10−4; OR, 0.783; 95% CI, 0.681–0.901) in the 3′ untranslated region

of the PDXK gene (Fig 3). Replication genotyping of the two lead SNPs in 203 PD and

1,126 control samples from the UK cohort confirmed the association of rs2010795 with PD

(p = 0.028) giving a similar MAF in PD cases (0.34) and controls (0.29), and resulting in a

similar OR of 1.3 (95% CI, 1.03–1.61). In the Italian cohort, association for rs2010795 was

confirmed in 353 cases and 704 controls with a p value of 0.00252, again with a similar

MAF (PD = 0.35, controls = 0.29) and OR (1.35; 95% CI, 1.11–1.63). In the combined

analysis of 1,232 PD and 2,802 control individuals, the association of SNP rs2010795

reached a p value of 1.18 × 10−7 (combined OR, 1.304; 95% CI, 1.178–1.444). Details on

allele frequency are given in Table 2. The geographic distribution of PD and control

sampling sites is shown in Supporting Figure 2.

Discussion

Integrating gene expression with association analysis data is a promising approach for the

study of disease biology. This concept, termed genomic convergence, was first proposed by

Hauser et al.16 and aims to narrow down a large pool of candidate genes to a few selected

choices. With four biologically plausible candidates being differentially expressed in SNc

neurons of PD samples, we aimed to evaluate their contribution in idiopathic PD. If

differential regulation of these genes is involved in the pathogenesis of PD, their genetic

variants might affect the risk for disease.

mtDNA variants and polymorphisms in the axon guidance pathway have been investigated

in prior genetic studies. For example, the mitochondrial UKJT haplogroup was shown to be

associated with a decreased risk of PD.2,8,14 We also demonstrate that multiple mtDNA

genes are upregulated, supporting previous observations that mitochondrial abnormalities

are present in SN neurons from patients with PD.11 The axon guidance pathway was

recently implicated in the pathogenesis of PD by a systematic analysis of GWA PD

studies.15,17 Ephrin, netrin, semaphorin, and slit proteins are the main effectors of the axon

guidance pathway and are important for brain development, dopaminergic axonal

maintenance, regeneration, and target recognition. Lesnick et al.15 used the combined SNP

information, rather than individual variants, to predict PD susceptibility, survival free of PD,

and PD age at onset with extremely high power.15 Together with subsequent studies, two out

of four GWA PD studies show this significant association.18,19 With the identification of

differential regulation of SRGAP3 in dopaminergic neurons of the SNc, we provide

functional data supporting the importance of the axon guidance pathway in the development

of PD.

TRAPPC4 appears to be a good candidate as it is localized in neuronal synapses and is part

of the human transport protein particle complex I that is required for tethering endoplasmic

reticulum (ER)-derived vesicles to Golgi membranes.20,21 Evidence for impaired synaptic
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vesicle endocytosis as well as disrupted ER-to-Golgi transport in PD comes from recent

studies into the role of the PD proteins alpha-synuclein and LRRK2.22,23 Since no SNP in

TRAPPC4 was significantly associated with disease in our study based on 676 cases, the

causal involvement could not be shown. Either the differential expression pattern of

TRAPPC4 is a consequence of the PD pathology or the effect size is to small to be shown in

a study of this size.

PDXK catalyzes the conversion of vitamin B6 (pyridoxine, pyridoxal, and pyridoxamine) to

pyridoxal 5′-phosphate (PLP), which is thought to be a cofactor in multiple eukaryotic

enzyme-catalyzed reactions. Of direct relevance to PD, the second step in the biosynthesis of

dopamine by the enzyme aromatic L-amino acid decarboxylase (dopa decarboxylase

[DDC]) is dependent on PLP as a cofactor and becomes rate-limiting in patients receiving L-

DOPA therapy (L-DOPA + pyridoxal phosphate = dopamine + pyridoxal phosphate +

CO2).24 A recent clinical phase I trial showed promising results of intrastriatal induction of

DDC gene expression in PD patients.25 Upregulation of PDXK in dopaminergic neurons

may be explained by an adaptive mechanism to increased dopamine metabolism in the

remaining functional dopaminergic neurons of the SNc or to L-DOPA therapy. Treatment

strategies of PD with pyridoxine were published as early as 1954, but abandoned because of

metabolic interaction with the therapeutically more potent L-DOPA in the periphery.26

Today, this effect can be negated in the presence of a peripheral DDC inhibitor and a recent

study showed that high doses of pyridoxine therapy (at 400mg/day) might be beneficial for

the treatment of PD.24 Independent of L-DOPA therapy, a prospective, population-based

cohort study showed that dietary vitamin B6 might decrease the risk of PD, although this

effect was restricted to smokers.27

SNP analysis showed a significant influence of the marker rs2010795 on disease status in

our study. Our data is the first to indicate an effect of polymorphisms in the PDXK gene on

the risk for PD, possibly by influencing enzyme amount or activity in dopaminergic neurons

of the SNc. The effect size of this marker is small and the power of current GWA studies

would be to low for significant detection. Candidate gene selection for association studies

was based on experimental data coming from microarray gene expression analysis, thus

providing the link to a likely biological effect. We therefore introduce this promising

approach for the study of genetic risk factors in complex neurodegenerative disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
Correlation of individual genome-wide expression profiles. Plot shows correlation of two

genome-wide expression profiles after individual LMD and IVT of 100 neurons collected

from the same SNc. Axes show normalized expression values (log2) with a range of

expression levels nearing three orders of magnitude. The resulting Pearson product-moment

correlation coefficient is r = 0.986.
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Fig 2.
Differentially regulated genes identified by whole-genome expression analysis. Four

significant genes after stringent Bonferroni correction: Box plots are showing normalized

expression (log2) of significant genes in PD samples (light gray) compared to controls

(black). Insets show fold change of gene expression as measured by real-time PCR.
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Fig 3.
Gene structure of PDXK and position of SNPs. The gene structure of PDXK and position of

SNP rs2010795 in intron 8 and of rs2070535 in the 3′ untranslated region. OR = odds ratio;

CI = confidence interval.
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Table 1
Description of Significant Genes Identified by Whole Genome Expression

Symbol Definition Fold change p-Value KEGG pathway/reactome event Biological process

MTND2

Homo sapiens
NADH
dehydrogenase,
subunit 2 (complex
I)

up 1.70 7.14 × 10−7 Oxidative phosphorylation/electron
transport chain

ATP synthesis coupled electron
transport

PDXK

Homo sapiens
pyridoxal
(pyridoxine, vitamin
B6) kinase

up 1.32 3.27 × 10−6 Vitamin B6/dopamine metabolism Pyridoxine biosynthetic process

SRGPA3
Homo sapiens SLIT-
ROBO Rho GTPase
activating protein 3

up 1.23 5.65 × 10−6 Axon guidance/signaling by Rho
GTPases Signal transduction

TRAPPC4
Homo sapiens
trafficking protein
particle complex 4

down 1.69 5.8 × 10−6 Vesicle tethering and fusion ER to Golgi vesiclemediated
transport

KEGG = Kyoto Encyclopedia of Genes and Genomes; NADH = reduced nicotinamide adenine dinucleotide; ATP = adenosine triphosphate; SLIT-
ROBO = SLIT-roundabout; GTPase = guanosine triphosphatase; ER = endoplasmic reticulum.
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