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Europhys. Lett., 20 (7), pp. 589-593 (1992) 

1 December 1992 

Distribution of Matrix Elements of a 
Classically Chaotic System. 

E. J. AUSTIN and M. WILKINSON 
Department of Physics and Applied Physics, John Anderson Building 
University of Strathclyde - Glasgow, Gh ONG, Scotland, UK 

(received 7 July 1992; accepted in final form 24 September 1992) 

PACS. 03.653 - Semiclassical theories and applications. 

Abstract. - The statistics of matrix elements of a perturbation of a classically chaotic quartic 
oscillator system are investigated. Our numerical results confirm that the local variance of the 
matrix elements can be obtained from a classical correlation function. The probability 
distribution of the matrix elements (normalised using their local variance) was investigated. This 
is expected to  be a Gaussian distribution in the semi-classical (high-energy) limit. The expected 
Gaussian form emerges slowly as the energy is increased. The form of the distribution a t  lower 
energies is identified. 

In this letter we describe some results on the statistical properties of the matrix elements 
of an operator with a classical limit, in the basis formed by the eigenstates of a Hamiltonian 
with a chaotic classical limit. These matrix elements are important for problems in which the 
response of a classically chaotic system to a perturbation is required [l], and a theoretical 
understanding of these matrix elements is important for potential experimental 
investigations of (<quantum chaos,,. It is natural to examine these matrix elements from a 
statistical viewpoint because the spectra and eigenfunctions of classically chaotic systems can 
only be described statistically: there are no methods available which provide explicit 
formulae for a given energy level or eigenfunction. Berry [2] has given an excellent review of 
the quantum mechanics of systems with a chaotic classical limit. 

Berry[3] has argued that the eigenfunctions of systems with a chaotic classical limit 
resemble Gaussian random functions and gives a theory for the autocorrelation function. This 
model clearly predicts that the matrix elements of an operator should be Gaussian 
distributed. The Gaussian-random-function model for the wave functions does not predict the 
correct variance for the matrix elements, however (we discuss the correct formula later in 
this letter). This observation suggests that it would be prudent to check that the matrix 
elements really are Gaussian distributed. 

We recently investigated the matrix elements of the operator corresponding to  deforming 
the boundary of a quantum billiard [4], as part of an extensive study of statistics 
characterising the parameter dependence of energy levels of systems with a chaotic classical 
limit. This paper also contains references to important earlier work in related areas. Our 
results showed that the matrix elements are in fact Gaussian distributed in the semi-classical 
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(high-energy) limit, but that the Gaussian distribution only emerges slowly as the 
semi-classical limit is approached. We found that a t  lower energies the matrix elements 
(normalised in a manner we will describe shortly) have the following probability 
distribution: 

This is the distribution of the elements of an N-dimensional vector, distributed randomly 
over the surface of an N-dimensional sphere of radius f i [5 ] .  This function approaches a 
Gaussian as N + W .  The values of the parameter N fitted to the empirical matrix element 
distribution for the billiard were surprisingly small in view of the large number of matrix 
elements involved. A tentative explanation for this result was given, in terms of a 
semi-classical sum rule [6] which constrains the values of the matrix elements. The argument 
leading to (1) is general for systems possessing a chaotic classical limit, which suggests that 
the same distribution should be observed in other systems. 

The purpose of the investigation reported here was twofold. Firstly we wanted to 
establish whether eq. (1) describes the distribution of matrix elements of other systems, or 
whether it is due to some special feature of quantum billiards. The results given below 
suggest that it is, in fact, universal. Secondly we wanted to verify that the semi-classical 
relation [6] between the variance of the matrix elements and the classical correlation function 
of the perturbation provides a useful means of calculating the former quantity. We were not 
able to investigate this latter question for the quantum billiard system because the derivation 
of the semi-classical formula for the variance depends on the classical limit of the operator 
being a smooth function, and this condition does not hold for deformations of a billiard. 

Before considering our model system we discuss the theory for the variance of the matrix 
elements. The typical size of the matrix elements A,, = 12 1 &), where 1 $, ) and 1 $,) are 
eigenstates of 2, will clearly depend on the energies E,, E,  of these two states. It is 
therefore useful to define a local variance of the matrix elements as follows: 

where no is the smoothed density of states, and the S E ( ( x )  are pseudo-&functions spread out 
over an energy range E which is large compared to the mean level spacing, but small 
compared to the classical energy scales of the problem. When studying the statistics of the 
distribution of matrix elements, the matrix elements must be normalised by dividing each 
one by the local standard deviation T(E, AE) before computing their distribution. 

The quantity g2 (E,  AE)-can be related to the correlation function of the classical function 
A(q ,p )  corresponding to A under the motion generated by the classical Hamiltonian [6]: 

where the correlation function C(E, t )  is 
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Here ( q ' , p ' )  is the phase space point that the point ( q , p )  evolves into after time t under the 
classical equations of motion, and the weight of the energy shell Q(E)  is 

The derivation of the relationship (3) for a system with a semi-classical limit also generates a 
series of correction terms related to periodic orbits of the classical Hamiltonian [61, and it is 
not clear how to sum their contributions. This makes it desirable to check that the 
leading-order term (3) provides a useful approximation. 

Our numerical experiments used a quartic oscillator 

- P; Py" x 4  H = - + - + - + yy4  + 2i \x2y2,  2 2 Y  

with 1, < 0 and Y f 1, as an example of a classically chaotic quantum system. For this 
Hamiltonian the classical motion becomes unbounded when A = - 1. As A approaches - 1 
from above, the classical dynamics are kno-m to be chaotic [7]. The eigenvalues and 
eigenvectors of the totally symmetric states of H were obtained for h = 1, y = 1.2 and several 
values of A by diagonalising (6) in a basis formed from one-dimensional quartic oscillator 
stat+ The matrix elements of the operator 2' were calculated in the basis of the eigenstates 
of H. 

Some scaling properties of the quartic Hamiltonian (6) which arise because the potential is 
a homogeneous polynomial can be used to simplify the analysis of the statistics of the matrix 
elements. The coordinates and momenta can be seen to  obey the scaling relations 

(7) p = E 1/2po (E 'I4 t )  , x = E 'I4xg ( E  V4t) . 
Substituting into (3), (4) and (5 )  and taking A = x 2 ,  the scaling relation 

cr2(E, AE) = E 'I4g ( i E 4 )  - 

can be obtained, where g 2 ( E ,  AE) is the variance of the off-diagonal elements of X 2  and the 
function g is related to the Fourier transform of the classical correlation function of x 2  at 
E = 1. For this system the smoothed density of states is no = cxE '1' ; the numerical value of cx 
can be obtained either directly from the eigenvalue spectrum or by performing the 
corresponding classical phase space integral of Q with respect to  energy numerically using 
the Monte Carlo method. For the case illustrated in fig. 1 the value I = 0.24 was found. The 
function g(y) can be obtained as 

m , 

with y = AE/E1l4 and c ( t )  = C(1, t) .  By dividing each matrix element by the local standard 
deviation obtained from (8), we obtained the scaled matrix elements, q = Anm/o(E,  AE). For 
a system with GOE behaviour, the result of scaling the matrix elements in this manner will 
be a Gaussian of unit variance. 

Figure 1 shows a plot of the function g(y) obtained numerically from the quantum- 
mechanical matrix elements (displayed as a histogram) with the Fourier transform of the 
classical correlation function (continuous curve) superimposed. The correlation function was 
obtained by integrating the classical equations of motion and calculating the average value of 
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Fig. 1. - Scaling function g( y) for the variance of the matrix elements of 2' (histogram), compared with 
the Fourier transform of the classical correlation function of x 2  for the quartic oscillator at energy 
E = 1. 

x 2 ( t ) x 2 ( t  + 7 )  over a range of 7 from 0 to 50. The convergence of this function was checked 
both by increasing the averaging time and by doubling the range of 7 .  The small-amplitude, 
high-frequency oscillations in the Fourier transform are an artefact of the numerical method 
employed and have no physical significance. The agreement between the approximate 
semi-classical formula (3) and the numerical data is very good except for the height of the 
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4 3.0 -3.00 0.00 

b )  

4 3.00 

Fig. 2. - Histogram of the probability distribution function of the scaled matrix elements q of the 
operator i?* for the quartic oscillator with y = 1.2, i, = - 0.7, a) E < 60, b)  100 < E < 120. The smooth 
curves a re  a Gaussian of unit variance, and a fit to  the distribution (1) with N = 6.96, 19.65, 
respectively. In  each case the Gaussian is the curve with the larger maximum at q = 0. 
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principal peak at  y = 1.6. Since the classical correlation function was checked for 
convergence, the principal peak of the function g(y) obtained numerically must include a 
contribution from the periodic-orbit corrections to (3). By integrating the classical equations 
of motion, it was possible to verify that the principal peak corresponds to  a periodic orbit 
along the x-axis. 

Figure 2 shows histograms of the distribution of the scaled matrix elements q for a) 
E < 60 and b)  100 < E c 120. The best fit to eq. (1) and a Gaussian curve are also shown. As 
was found previously for the quantum billiard, the value of N increases with increasing 
energy, so the Gaussian behaviour expected for a system with a chaotic classical limit 
emerges gradually as E increases. The mean-square deviations of the fit of (1) and a Gaussian 
to the data are 6 .  respectively. For fig. 2b) the corresponding figures are 
1.05. and 1.1. indicating that in this case the data is much closer to the limiting 
Gaussian form. When the distribution approaches a Gaussian, the value of the fitting 
parameter N becomes very sensitive to small changes in the data, and we were not able to 
identify unambiguously how N diverges as E + W .  

The results presented above provide evidence that the semi-classical relation (3) is a useful 
method for estimating the variance of matrix elements in systems with a chaotic classical 
limit. The underlying Gaussian statistics of the system at high energy are also confirmed, 
thus providing additional strong evidence for the applicability of parametrised GOE 
models [ l ]  t o  Hamiltonians with a chaotic classical limit. The deviation from Gaussian 
behaviour at low energy confirms the form of the distribution (1) previously observed [41 for a 
quantum billiard, and provides evidence that this distribution is universal. 

and 1.2. 
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