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Abstract The 4.1 superfamily of proteins contain a 4.1 ezrin
radixin moesin (FERM) domain and are described as linking
the cytoskeleton with the plasma membrane. Here, we describe
a new FERM domain-containing protein called Willin. Willin
has a recognizable FERM domain within its N-terminus and is
capable of binding phospholipids. Its intra-cellular distribution
can be cytoplasmic or at the plasma membrane where it can
co-localize with actin. However, the plasma membrane location
of Willin is not influenced by cytochalasin D induced actin
disruption but it is induced by the addition of epidermal growth
factor.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Family members of the 4.1 superfamily include: the closely

related proteins ezrin, radixin and moesin (ERM), merlin, talin

and protein-tyrosine phosphatases. All of these proteins are

involved in maintaining the submembrane cytoskeleton. In

some cases, they directly link transmembrane proteins to the

cytoskeleton or link kinase and/or phosphatase enzymatic

activity to the plasma membrane [all reviewed in 1]. Therefore,

it has been suggested that these proteins are involved not only

in cell–extracellular matrix interactions and cell–cell communi-

cation but also in apoptosis [2], carcinogenesis and metastasis.

For example, merlin has been shown to function as a tumor

suppressor [1], whilst ezrin has a role in sarcoma metastasis

[3] and moesin has been implicated in oral squamous cell car-

cinomas [4].

Despite their physiological significance, the understanding of

their molecular mechanisms is still in its infancy. The 4.1 pro-

tein family has a conserved region called the FERM (4.1

ERM) domain, which is predominantly situated in the N-ter-

minus [1]. Distal to this FERM domain, the ERM proteins

have a �coiled-coil� a helical central domain, followed by a

C-terminal domain. These proteins are capable of intra-molec-

ular head-to-tail interactions between the N-terminal FERM

domain and the C-terminal tail. This has the effect of masking

the FERM domain, rendering the protein essentially dormant

[1]. However, by a poorly understood mechanism involving

phospholipids and kinases, the FERM domain can be released,

allowing these proteins to bind to other proteins such as other

ERMs, various transmembrane receptor proteins, e.g. CD44,

ICAM-1/2/3, CD43, membrane-associated proteins, e.g.

EBP-50 (ERM-binding phosphoprotein of 50 kDa) and also

the cytoskeletal protein, actin [all reviewed in 5].

A recent yeast two-hybrid screen of the transmembrane L1

family member neurofascin, by this laboratory, identified a

new FERM-binding motif within neurofascin which bound ez-

rin [6] and also a novel FERM-containing cDNA. This new

protein was given the name �Willin�, and here we describe for

the first time some of the features of this novel FERM-contain-

ing protein.

2. Materials and methods

2.1. Cloning
Willin was cloned into pEGFP-N3 or pGEX-KG by PCR using Taq

polymerase and the full-length cDNA clone Image:3941276 (Accession
No.: BC020521). The following primer combinations were used for
cloning into pEGFP-N3 to produce GFP tagged full-length Willin
(pWillin-GFP): sense 5 0-GGAATTCATGAACAAATTGAATTTTC-
AT-3 0 and anti-sense 5 0- CGGGATCCCACAACAAACTCTGGA-
AG-3 0 containing EcoRI and BamHI restriction sites, respectively.
The resulting PCR product was digested with EcoRI/BamHI and
cloned into the same sites of pEGFP-N3. For cloning into pGEX-
KG to produce glutathione S-transferase (GST) tagged full-length
Willin (pGEX-Willin): sense 5 0-CGGGATCCATGAACAAATTG-
AATTTTCAT-3 0 and anti-sense 5 0-GGAATTCTTACACAACA-
AACTCTGGAAG-30 were used, containing BamHI and EcoRI
restriction sites, respectively. The resulting PCR product was digested
with BamHI/EcoRI and cloned into the same sites of pGEX-KG. For
cloning into pCMV-Tag4A to produce FLAG tagged full-length
Willin (pFLAG-Willin): sense 5 0-CCACCTCGAGCTCTTCAG-3 0

and anti-sense 5 0-CGGGATCCCACAACAAACTCTGGAAC-3 0

containing SacI and BamHI, respectively, were used for PCR using
pWillin-GFP as template and Pfu Turbo (Stratagene) polymerase.
The resulting PCR product was digested with SacI/BamHI and cloned
into the same sites of pCMV-Tag4A (Stratagene). The coding sequence
of human moesin was amplified from the full-length cDNA clone
Image:4908580 (Accession No. BC017293) by PCR using High Fidelity
Taq DNA polymerase (Roche), and the sequence specific primers
(sense 5 0-CGGAATTCCATGCCCAAAACGATCAGTGTG-3 0 and
anti-sense 5 0-CGCGTCGACTTACATAGACTCAAATTCGTCA-
AT-3 0) containing EcoRI and SalI restriction sites, respectively. The
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resulting PCR product was digested with EcoRI/SalI and cloned into
the same sites of pGEX-4T3 (Amersham Biosciences) vector to express
as a GST-fusion protein in bacteria. For red fluorescent protein-
ADP-ribosylation factor nucleotide-binding-site opener (RFP-ARNO)
production, full-length ARNO was excised from pEGFP-C1 ARNO
[7] using the EcoRI and SalI restriction sites and ligated into the cor-
responding sites of pDSRed monomer-C1 (Clontech). The authenticity
of all constructs was verified by sequencing prior to use.

2.2. Northern and antibody production
RNA was extracted from the brains and sciatic nerves of 21-day-old

mice [8] and polyA mRNA isolated using the polyATtract system (Pro-
mega). Four micrograms of brain and sciatic nerve polyA mRNA was
denatured and electrophoresed on a 1% agarose formaldehyde gel.
After vacuum blotting [9] and baking, the filters were prehybridized
at 65 �C then probed for 2 h in QuikHyb (Stratagene) at 65 �C with
the 32P-labelled [10] 163SciII clone (Accession No.: AF441249). Filters
were washed to a final stringency of 0.2·SSC at 65 �C. Blots were ex-
posed to Agfa RF1 film and developed using Kodak LX24 developer
and FX40 fixer.
A rabbit polyclonal antibody was generated against the unique se-

quence KEASKGIDQFGPPMIIHC of Willin (residues 86–102,
Fig. 1A) which was also used to affinity purify the antibody from
the resulting serum [11]. Sections of human normal oral mucosa and
squamous carcinoma were prepared and immunostained with Willin
antibody as previously described [11]. In brief, sections were stained

with rabbit polyclonal anti-Willin antibodies (1:200) using an Avi-
din-Biotin technique. Sections, 4–6 lm thick, were deparaffinized,
rehydrated, blocked with 3% hydrogen peroxide, antigen-retrieved
with sodium citrate (pH 6.0), blocked with normal goat serum (5%)/
bovine serum albumin (2.5%), and then consecutively incubated with
the primary antibody (60 min), the biotinylated secondary antibody
(30 min), horseradish-peroxide linked avidin-biotin complex (30 min).
Finally, diaminobenzidine was added as a substrate (15 min).

2.3. Cell culture
PC12 cells were grown in Dulbecco�s modified Eagle�s medium sup-

plemented with 10% foetal calf serum, 5% horse serum, 100 lg/ml
streptomycin, 100 units of penicillin/ml and 10 mM HEPES, pH 7.4.
HEK293 cells were grown in minimum essential medium supplemented
with 10 mM non-essential amino acids, 10% foetal calf serum, 2 mM
glutamine, 100 lg/ml streptomycin, 100 units of penicillin/ml. All cells
were cultured at 37 �C and atmosphere of 5% CO2.

2.4. GST-fusion protein expression and purification and lipid-protein

overlay assay
The Escherichia coli strain BL21 DE3 was transformed with the

pGEX (empty), pGEX-Willin or pGEX-Moesin plasmids and grown
in LB broth containing 0.1 mg/ml ampicillin to an A600 of 0.5–0.6.
The cells were harvested and lysed by sonication. GST-tagged protein
was then isolated using glutathione Sepharose 4B resin (Amersham)

Fig. 1. Willin sequence and size. (A) Sequence of Willin (in bold) and multiple alignment of FERM domains of human Radixin, Moesin and Ezrin. *
– identical residue, : – conserved substitution, . – semi-conserved substitution. Underlined region is peptide antibody sequence. (B) Northern blot of
Willin in post-natal 12 day rat brain and sciatic nerve. Size markers were �Millenium markers� (Ambion). (C) Western blots indicating size and
expression of both recombinant GST-Willin (left panel) and Flag-Willin in HEK293 (right panel), as indicated by arrows.
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and eluted using 0.1 M Tris–HCl, pH 8.0, containing 20 mM reduced
glutathione and 0.1% Triton-X-100. Protein concentrations were esti-
mated and purity analyzed by SDS–polyacrylamide gel electrophoresis
(SDS–PAGE). Proteins were stored at �20 �C in 50% glycerol until
further use [12].
This lipid overlay assay was carried out as described previously [13].

Synthetic DiC16 lipids (Cell Signals inc., USA) were dissolved in meth-
anol:chloroform:water (2:1:0.8). Serial dilutions were performed to
create lipid concentrations in the range of 1.6–100 pmol/ll. One micro-
litre of the lipids was spotted onto Hybond-C nitrocellulose filters
(Amersham) and left for 1 h at room temperature to dry. The mem-
branes were blocked in Tris-buffered saline (50 mM Tris–HCl, pH
7.5, 150 mM NaCl) containing 0.1% Tween-20 (TBS-T) and 5%
skimmed milk powder (BLOTTO) for 1 h at room temperature. The
membranes were incubated with 1 lg/ml of GST-fusion protein in
BLOTTO, incubated overnight at 4 �C with gentle rocking and washed
with TBS-T at room temperature. The protein bound to lipids was de-
tected by an anti-GST antibody raised in goat (Amersham) at 1/2000
dilution in BLOTTO and an HRP conjugated anti-goat IgG antibody
(Sigma). The binding was detected using enhanced chemiluminescence
reagent (Amersham) and exposing to X-ray film (Amersham) for 1–
5 min.

2.5. Transfections, extractions and cell imaging
HEK293 cells were plated onto glass coverslips and transfected with

1 lg of DNA per coverslip using lipofectamine (Invitrogen) according
to the manufacturer�s instructions. Cells were left for 24 h after which
they were washed twice with phosphate-buffered saline (PBS), fixed in
4% paraformaldehyde, washed again and then mounted with moviol
(Calbiochem). Cells were imaged with a DeltaVision� RT Restoration
Imaging System. For Western blot analysis, 1 · 106 HEK293 cells
expressing Flag-Willin were suspended in ice-cold PBS with 4% prote-
ase inhibitor cocktail (Roche) and boiled in 2· protein sample buffer
(125 mM Tris, pH 6.8, 2% (w/v) b-mercaptoethanol, 0.01% (w/v)
bromophenol blue, 20% (v/v) glycerol, 4% (w/v) SDS) for 5 min.
Whole cell extracts were separated on 4–12% Bis–tris precast gels
(Invitrogen) and probed with a monoclonal antibody to the Flag
epitope (Sigma).
PC12 cells were plated onto glass coverslips and transfected with

1 lg of DNA per coverslip using Fugene-6 reagent (Roche) according
to the manufacturer�s instructions. Cells were left to recover for 24 h at
37 �C and 5% CO2, before serum starvation for 2–3 h prior to imaging.
Confocal imaging of Willin-GFP in live cells was performed with a
Wallac UltraVIEW confocal microscope (Perkin–Elmer LifeSciences,
UK) as described previously [14]. Cells were treated with either
50 ng/ml epidermal growth factor (EGF), 100 ng/ml NGF or 2 lM
cytochalasin D for the times indicated in the figure legends.

3. Results

3.1. Willin, a new FERM-containing protein

Recently, by a yeast two-hybrid screening of a rat sciatic

nerve library, we discovered that the transmembrane receptor

protein neurofascin can bind to the FERM-containing protein

ezrin [6]. In this process, another FERM-containing cDNA

was identified. This open reading frame was called �163ScII�
(Accession No. AF441249) which contained an ATG initiator

Met (an in-frame stop codon is present 39 bases upstream) but

an unknown 3 0 end. This DNA sequence was BLAST-searched

against appropriate databases and was found to have 86%

identity at the DNA level and 91% identity at the protein level

to a full-length cDNA human clone (MGC:17921 im-

age:3941276) which has also been identified as Open Reading

Frame 31 Chromosome 14 (Accession No.: BC020521) from

the human genome. The cDNA image clone of this protein

was obtained from the MRC IMAGE consortium DNA bank

and was given the name Willin (after William Dick, founder of

the Royal (Dick) School Veterinary College, University of

Edinburgh, Scotland, UK). This cDNA clone from a human

uterine leiomyosarcoma tissue was fully sequenced and found

to contain 614 amino acids predicting a 71-kDa protein. The

amino acid sequence of Willin indicated a FERM domain be-

tween residues 14 and 322, which showed similarity with the

FERM domain proteins: radixin, ezrin and moesin

(Fig. 1A). The length and localization of the FERM domain

of Willin and the ERM proteins appeared to be almost the

same.

3.2. Willin expression

cDNAs corresponding to the sequence of Willin have been

found in human uterus (Accession No. BC020521), placenta

(Accession No. BX161430) and cervix (Accession No.

AL833158). Gene Card analysis also indicates expression in

brain, heart, liver, prostate and lung. Northern blot analysis

confirmed Willin expression in the rat sciatic nerve as an

approximate 5 kb message (Fig. 1B). More directly, an affinity

purified peptide antibody to a unique region in the N-terminus

of Willin but not in the ERM proteins (Fig. 1A) has confirmed

specific expression of Willin antigen in human material from

liver, kidney and oral mucosa [11]. However, protein levels

of Willin appear to be low, as Western blot analysis failed to

detect native expression but it did detect a GST-Willin recom-

binant protein of �100 kDa (71 + 27 kDa) protein and also a

Flag-tagged Willin construct expressed in HEK293 cells, was

shown to be �70 kDa in size (Fig. 1C), thereby confirming

Willin�s size.
The overall similarity with the ERM proteins suggested

that Willin would bind to phospholipids. Therefore, we

tested a GST-Willin chimeric protein for its ability to bind

phospholipids immobilized on nitrocellulose. This qualitative

technique showed that purified GST-Willin bound to the same

profile of phospholipids as purified GST-Moesin (Fig. 2A),

namely phosphoinositol-3-phosphate (PI(3)P), phosphoinositol-

4-phosphate (PI(4)P) and phosphoinositol-5-phosphate

(PI(5)P).

3.3. Intracellular distribution of Willin

Immunohistochemistry studies have indicated that Willin

can have different intracellular sites of expression, including

the cytoplasm and the plasma membrane [11]. The factors that

effect this distribution appear to be complex. For example,

Willin localizes predominantly in the cytoplasm of both nor-

mal human oral mucosa (Fig. 2B) and squamous cell carci-

noma [11]. However, on a rare occasion Willin is found

along the plasma membrane in squamous cell carcinoma

(Fig. 2C). At present what influences these locations is

unknown.

To investigate its intracellular distribution further, we li-

gated Willin upstream of the green fluorescent protein

(GFP), forming the plasmid pWillin-GFP which was then

transfected into HEK293 cells. Willin-GFP expression could

be observed as punctate staining throughout the cytoplasm

but also occasionally at the plasma membrane (Fig. 2D).

The plasma membrane location appeared to be enhanced at

the mid-point of cleavage furrow of dividing cells (Fig. 2E)

where it had a propensity to co-localize with actin (Fig. 2E).

PC12 cells expressing Willin-GFP showed a stronger peri-nu-

clear location (Fig. 3A and C). However, in some cells there

was an increase in Willin-GFP expression at the plasma mem-

brane, in particular at places of cell to cell contact, though the

level of plasma membrane location varied from not at all, to
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only at points of contact (Fig. 3A), to a more global effect

(Fig. 3B).

3.4. Manipulation of the cellular distribution of Willin

The factors controlling this plasma membrane location were

unknown. Previous studies from our laboratories have shown

that the addition of growth factors to PC12 cells expressing a

phospholipid binding pleckstrin homology (PH)-GFP chimeric

protein, results in the rapid redistribution of these proteins

from the cytoplasm to the plasma membrane [12,15]. There-

fore, similar experiments were performed in PC12 cells trans-

fected with Willin-GFP. Following the addition of EGF

(Fig. 3C, t = 0), the perinuclear pool of Willin-GFP dissipated

within 350 s with a resultant increase of fluorescence in the

plasma membrane (Fig. 3C) and a subsequent decrease in

the cytoplasm as indicated in the change in the ratio of plasma

membrane to cytoplasm fluorescence (Fig. 3D). The same phe-

nomenon also occurred after the addition of nerve growth fac-

tor (data not shown). However, Willin-GFP redistribution was

never seen under these conditions in HEK293 and COS7 cells.

EGF induced redistribution of PH-GFP proteins is inhibited

by the addition of wortmannin, implying dependence on PI3

kinase activity [12,15]. Therefore, we performed experiments

where 100 nM wortmannin was added either 30 min prior to

or after the addition of EGF. Under no conditions was the

movement of Willin-GFP to the plasma membrane influenced

by the addition of 100 nM wortmannin, though as a control,

within the same cells it did block redistribution of the PH do-

main-containing chimeric protein RFP-ARNO (Fig. 4A). This

indicates that PI3 kinase activity is not required for the EGF

induced translocation of Willin to the plasma membrane.

The presence of a polymerized actin cytoskeleton was also

not required for the plasma membrane location of Willin-

GFP in PC12 cells, as cytochalasin D induced disruption of

the actin cytoskeleton did not prevent Willin-GFP expression

at the plasma membrane (Fig. 4B).

Fig. 2. Phospholipid-binding profile of Willin and its expression in human tissue and HEK293 cells. (A) A lipid blot overlay experiment was
performed using purified GST, GST-Moesin and GST-Willin. (B) Immunohistochemistry of Willin in normal human oral mucosa (showing general
cytoplasmic staining). (C) A human squamous cell carcinoma (showing membrane localization as indicated by arrows). (D,E) HEK293 cells were
transfected with Willin-GFP and then fixed, permeabilized and stained with phalloidin and imaged using fluorescent microscopy (arrows indicate
membrane location).
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4. Discussion

Here, we show that a novel FERM-containing protein, Wil-

lin, has characteristics associated with the 4.1 super-family of

proteins. Firstly, it has a FERM domain situated in its N-ter-

minus. Secondly, a purified recombinant GST-Willin fusion

protein can bind to the same phospholipid profile as GST-

Moesin. Thirdly, immunohistochemical staining of primary

human material and also expression of Willin-GFP in mam-

malian cell-lines showed that Willin can exist in both the

plasma membrane and the cytoplasm. The cytoplasmic expres-

sion in HEK293 cells was seen as punctate points throughout

these cells, whilst in PC12 cells it appeared more concentrated

in a perinuclear location. The amount of Willin in the plasma

membrane was variable. Though there was a tendency in both

HEK293 and PC12 cells for contacting cells to display Willin

expression at points of contact, a very distinct expression

was seen in the cleavage furrows of dividing HEK293 cells as

was first observed for radixin [16]. Such diverse intracellular

distribution has been commonly observed for the 4.1 super-

family and is influenced by many differing factors [1]. In partic-

ular, for the ERM proteins it has been hypothesized that the

cytoplasmic pool is an inactive form caused by a head-to-tail

intramolecular binding of the ERM proteins. This inactive

form can then be activated by phosphorylation such that it be-

comes active and can then bind to various transmembrane and

membrane-associated proteins, including actin [1,5]. Willin

may also exist in such an inactive form within the perinuclear

region of PC12 cells. Upon addition of growth factors, Willin

may become activated via a tyrosine kinase pathway into an

active form that can associate with unknown proteins within

the plasma membrane. In the contacting cells, and also possi-

bly in the squamous cell carcinoma, Willin may already be in

the active form and hence already is associated with its protein

binding partners. The identification of the binding proteins of

Willin will help to uncover this mechanism. The ability to stim-

ulate translocation of Willin-GFP by the addition of EGF in

PC12 cells but neither HEK293 nor COS7 cells may also reflect

differing binding proteins and/or signalling pathways; though

we have shown that differences in PI3 kinase activity are not

responsible.

Fig. 3. Cellular localization of Willin in PC12 cells. (A,B) Examples of
PC12 cells transfected with Willin-GFP showing varied amounts of
membrane location, as indicated by arrows. (C) Time-lapse confocal
microscopy of the growth factor-induced translocation of Willin-GFP
in PC-12 cells. PC-12 cells were transfected with Willin-GFP. After
24 h, cells were serum-starved and a selected cell was imaged. The
number in the panel refers to the time after the addition of 100 ng/ml
EGF. (D) Ratio of plasma membrane to cytoplasmic fluorescent
intensity of Willin-GFP with time. Each time point is 10 s and the ratio
was obtained by comparing fluorescent intensity from two regions of
interest in the plasma membrane to a region in the cytoplasm using the
UltraView software (Perkin–Elmer LifeSciences, UK). Measured areas
are circled and are shown in C and D as i is plotted as diamonds; ii is
plotted as squares, respectively.

Fig. 4. Plasma membrane location of Willin in PC12 cells is unaffected
by addition of wortmannin or cytochalasin D. (A) PC12 cells were co-
transfected with RFP-ARNO and Willin-GFP. Cells were treated with
or without the addition of 100 nM wortmannin 30 min prior to the
addition of 100 ng/ml EGF for 10 min. (B) PC12 cells were transfected
with Willin-GFP and stimulated with 100 ng/ml EGF for 10 min, and
then treated with cytochalasin D for 10 min resulting in disruption of
the actin cytoskeleton but not Willin-GFP distribution.
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Intriguingly, though Willin can colocalize with actin, which

is commonly observed for the 4.1 super-family [1], at present

the nature of this association is uncertain. Colocalisation of

Willin with actin appears to be strongest when Willin is distrib-

uted along the plasma membrane. However, cytochalasin D

treatment had no effect on the distribution of Willin at this

location, implying that the plasma membrane location of Wil-

lin is not dependent on the actin cytoskeleton. Future studies

will attempt to identify whether Willin does bind actin and also

identify its phospholipid binding motifs. However, the deter-

mination of these motifs in the 4.1 superfamily is complex as

actin binding domains are poorly defined, can exist as multiple

sites within a protein, and can be present in either the N- or

C-terminus [17]. Phospholipid-binding motifs are equally com-

plex as again more than one site can exist [18,19] which require

cooperation between the different sites for binding [19].
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and Cullen, P.J. (1998) Nerve growth factor- and epidermal
growth factor-stimulated translocation of the ADP-ribosylation
factor-exchange factor GRP1 to the plasma membrane of PC12
cells requires activation of phosphatidylinositol 3-kinase and the
GRP1 pleckstrin homology domain. Biochem. J. 335, 139–146.

[13] Dowler, S., Currie, R.A., Campbell, D.G., Deak, M., Kular, G.,
Downes, C.P. and Alessi, D.R. (2000) Identification of pleckstrin-
homology-domain-containing proteins with novel phosphoinosi-
tide-binding specificities. Biochem. J. 351, 19–31.

[14] Fletcher, L.M., Welsh, G.I., Oatey, P.B. and Tavaré, J.M. (2000)
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