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abstract: Understanding of ectopic implantation within the Fallopian tube (FT) is limited. In the human uterus, the putative ‘window of
implantation’ in the mid-luteal phase of the menstrual cycle is accompanied by increased endometrial epithelial expression of the integrins
a1b1, a4b1 and avb3 and its ligand osteopontin. Similar cyclical changes in FT integrin expression have been proposed to contribute to
ectopic implantation, but supporting data are limited. In the current study, we present quantitative data on human FT transcription and trans-
lation of the integrin subunits a1, a4, aV, b1 and b3 during the follicular and mid-luteal phases of the menstrual cycle, together with a sup-
porting immuocytochemical analysis of their spatial distribution within the FT, and that of osteopontin. In contrast to previous studies, our
data indicate that all five integrin receptivity markers are constitutively transcribed and translated in the FT, with no evidence for changes in
their expression or distribution during the window of implantation in the mid-luteal phase of the cycle. Furthermore, we could find no evi-
dence for cyclic redistribution of the integrin avb3 ligand osteopontin within the FT. Although we do not rule out the involvement of integrin
endometrial receptivity markers in the establishment of ectopic pregnancy, our findings do not support their differential expression during a
tubal implantation window.
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Introduction
An ectopic pregnancy is defined as any pregnancy implanted outside
the uterus, with the vast majority (.98%) occurring in the Fallopian
tube (FT) (Varma and Gupta, 2009; Sivalingam et al., 2011). The con-
dition has a major clinical and socioeconomic impact worldwide and
remains the leading cause of death in the first trimester of pregnancy
in the developed world (Farquhar, 2005; Varma and Gupta, 2009). In
developing countries, it has been estimated that 10% of women admit-
ted to hospital with a diagnosis of ectopic pregnancy ultimately die
from the condition (Leke et al., 2004).

The etiology of tubal implantation is still far from complete, but the
bulk of the existing literature supports the hypothesis that it arises
from a combination of impaired embryo-tubal transport and changes
in the FT environment (Shaw et al., 2010; Brown and Horne, 2011).
In the uterus, implantation only occurs when the endometrium is

receptive during a putative ‘window of implantation’ in the mid-luteal
phase of the menstrual cycle that is associated with marked changes in
integrin expression within the endometrial epithelium (Lessey, 1998).
The integrins are a family of widely expressed heterodimeric cell
surface receptors that mediate cell–cell and cell–extracellular matrix
adhesion and, in doing so, regulate many aspects of cell behavior in-
cluding survival, proliferation, migration and differentiation. Twenty-
four different integrin heterodimers are currently recognized in
humans, each comprising a pair of non-covalently associated a- and
b-subunits (Barczyk et al., 2010). In addition to providing a physical
transmembrane link between the extracellular environment and the
cytoskeleton, they are capable of transducing bi-directional signals
across the cell membrane (Hynes, 2002).

In humans, endometrial transcription of integrins a4, av, b1 and b3

is significantly higher during the mid-luteal phase of the menstrual
cycle, compared with the follicular phase, with the av and b3 subunits
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showing the largest increases in expression (Dou et al., 1999). More
specifically, the b3 subunit and osteopontin, a ligand for integrin
avb3, are only expressed at the luminal surface of the endometrium
during the receptive period (Lessey et al., 1992; Apparao et al.,
2001) supporting the concept that this cycle-dependent protein is
involved in implantation in humans (Lessey, 1998).

While endometrial epithelial expression of the integrin heterodi-
mers, a1b1, a4b1 and avb3, correlates with receptivity to the present-
ing embryo in humans (Lessey et al., 1992, 1994a; Lessey, 1998),
functional data pertaining to the role of these integrins in implantation
is currently limited. Homozygous integrin b1 and a4 null mutations are
embryonic lethal (Fassler and Meyer, 1995; Stephens et al., 1995; Yang
et al., 1995), while �80% of av null/null mice die in utero, with the
remainder dying shortly after birth (Bader et al., 1998). Consequently,
there is no data on implantation in female mice that are homozygous
null for these three integrins. Homozygous integrins a1 null mice are
viable but do not exhibit any reduction in fecundity, suggesting that
this integrin does not contribute to implantation in the mouse
model (Gardner et al., 1996). The phenotype of integrin b3 knockout
mice is more complex, with female homozygous null mice producing
�50% smaller litters due to a combination of embryo and placental
defects (Hodivala-Dilke et al., 1999). No direct analysis of implantation
defects has been undertaken in the b3 knockout mice but implantation
has been shown to be inhibited in another mouse model by functional
blockade of integrin avb3 using neutralizing monoclonal antibodies
against integrin b3 and integrin av or the specific avb3 disintegrin echis-
tatin (Illera et al., 2000).

A ‘window of implantation’ has also been proposed to occur in the
FT, during which time the tubal epithelium is susceptible to ectopic im-
plantation (Sulz et al., 1998). If such a window does occur in the FT, it
follows that the integrins a1b1, a4b1 and avb3 are likely to be differ-
entially expressed within the FT during the follicular and mid-luteal
phases of the menstrual cycle. Semi-quantitative RT–PCR data
suggest that the integrin subunits a1, av and b3 are differentially regu-
lated across the oestrous cycle in the bovine oviduct, with expression
levels reaching a minima during the late-luteal phase before, in the case
of b3, peaking in the pre-ovulation phase (Gabler et al., 2003). Human
studies have also produced data in support of this hypothesis, specif-
ically, reporting increased immunohistochemical labeling intensity for
the b3 subunit (Sulz et al., 1998) and more recently the avb3 hetero-
dimer (Makrigiannakis et al., 2009) in human tubal epithelium during
the mid-luteal phase of the cycle. However, both of these studies
were based entirely on immunohistochemistry observations and,
given the potential key role for integrin avb3 in embryo implantation
(Illera et al., 2000), there is a requirement for a quantitative analysis
of integrin receptivity marker expression across the menstrual cycle
in human FT. The current study was undertaken with the aim of
meeting this objective.

Materials and Methods

Tissue collection
Full thickness cross sections of human FT ampulla (follicular phase n ¼ 6,
mid-luteal phase n ¼ 6) and PipelleTM uterine endometrial biopsies (fol-
licular phase n ¼ 2, mid-luteal phase n ¼ 2) were collected from fertile
women (Parity ≥2) with regular menstrual cycles (24–35 days) during

hysterectomy for benign gynecological conditions (median age ¼ 41;
range 27–49 years). Tissues were collected into RNAlater (Applied Bio-
systems, Warrington, UK) and neutral-buffered formalin, as previously
described (Shaw et al., 2011). Menstrual cycle dating was determined by
three criteria, each of which had to correlate in order for inclusion in
the study: (i) date of last menstrual period (as reported by the patient);
(ii) staging by an expert gynecological pathologist of an endometrial
biopsy obtained at the time of FT biopsy and (iii) serum estradiol (follicular
phase .100 pM) and progesterone (follicular phase ,10 nM; mid-luteal
.20 nM). Approval for this study was obtained from the Lothian Research
Ethics Committee (04/S1103/20, 05/S1103/14, 07/S1103/29), and
informed, written consent was obtained from each patient.

Quantitative reverse transcription PCR
RNA was extracted from tissue using TRIzol reagent (Invitrogen, Paisley,
UK), treated with DNase and purified using RNeasy kits (Qiagen,
Crawley, UK). Two hundred nanograms of RNA were reverse-transcribed
into cDNA using random hexamers, according to the recommended
method (Applied Biosystems). TaqMan quantitative real-time reverse tran-
scription PCR (qRT-PCR) was used to quantify integrin transcript levels.
Specific primers were designed using the Universal Probe Library (UPL)
Assay Design Center (www.roche-applied-science.com) and used in con-
junction with UPL probes (Roche Applied Science). Details of primer
sequences and probes used are given in Table I. Reactions were per-
formed, in triplicate, under standard conditions in an ABI Prism 7900 in-
strument (Applied Biosystems). Integrin gene expression was normalized
to ribosomal 18S expression, using the 2-DDCt method, and expressed as
relative to a positive standard (a single cDNA sample from follicular FT,
included on each reaction plate).

Table I qRT-PCR primer and probe sequences.

ITGA1 forward 5′-AATTGGCTCTAGTCACCATTGTT-3′

ITGA1 reverse 5′-CAAATGAAGCTGCTGACTGGT-3′

ITGA1 UPL probe
(FAM)

14

ITGA4 forward 5′-GGAATATCCAGTTTTTACACAAAGG-3′

ITGA4 reverse 5′-AGAGAGCCAGTCCAGTAAGATGA-3′

ITGA4 UPL probe
(FAM)

57

ITGAV forward 5′-GCCGTGGATTTCTTCGTG-3′

ITGAV reverse 5′-GAGGACCTGCCCTCCTTC-3′

ITGAV UPL probe
(FAM)

64

ITGB1 forward 5′-CGATGCCATCATGCAAGT-3′

ITGB1 reverse 5′-ACACCAGCAGCCGTGTAAC-3′

ITGB1 UPL probe
(FAM)

65

ITGB3 forward 5′-GGGCAGTGTCATGTTGGTAG-3′

ITGB3 reverse 5′-CAGCCCCAAAGAGGGATAAT-3′

ITGB3 UPL probe
(FAM)

13

18S forward 5′-CGGCTACCACATCCAAGGAA-3′

18S reverse 5′-GCTGGAATTACCGCGGCT-3′

18S probe (VIC) 5′-TGCTGGCACCAGACTTGCCCTC-3′
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Quantitative dual chemiluminescent
western blot
RNAlater stabilized samples of FT were homogenized in pH 8.0 lysis
buffer (50 mM Tris–HCl; 150 mM NaCl; 1 mM EDTA; 1%
Triton-X100, 1% Na-deoxycholate; EDTA-free complete mini protease
inhibitors [Roche Diagnostics, Welwyn Garden City, UK) and 1 mM of
the serine protease inhibitor, AEBSF (Sigma, Poole, UK)] using a Tissue-
Lyser bead mill (Qiagen). Protein quantification was performed by using
the Bradford Assay (Bradford, 1976), adapted for the Cobas Fara cen-
trifugal analyzer (Roche Diagnostics) and samples adjusted to 2 mg/ml
total protein in lysis buffer, before further 1:1 dilution in 2×
NuPAGE LDS sample buffer (Invitrogen) containing 100 mM dithiothrei-
tol (Sigma). One-dimensional gel electrophoresis was performed in
15-well NuPAGE 4–12% Bis–Tris gels (Invitrogen) using 5–25 mg of
total protein/lane alongside SeeBluew Plus2 prestained molecular
weight standards (Invitrogen). A positive control (pooled protein
extracts from follicular FT biopsies) was also included in every gel to
allow intra-blot comparisons to be made. Gels were equilibrated for
15 min in transfer buffer (50 mM Tris, 40 mM Glycine and 0.05%
SDS), before blotting at 20 V (limited to 80 mA/gel) onto polyvinyli-
dene fluoride membrane (Immobilon P: Millipore, Livingston, UK) in
the presence of transfer buffer + 10% methanol using a Transblot SD
(Bio-Rad Laboratories, Hemel Hempstead, UK).

Blots were blocked for 30 min in TBS-T20 (pH 7.4 Tris-buffered
saline containing 0.5% Tween 20) + 2% Marvel (Premier Foods, St
Albans, UK) and incubated for 2 h with combinations of mouse and
rabbit anti-integrin (Abcam, Cambridge, UK), anti-b actin primary anti-
bodies and/or negative control antibodies (Sigma) diluted appropriately
in TBS-T20 + 2% Marvel (Table II). Blots were then washed in TBS-T20
(6 × 3 min) and incubated for 1 h with the appropriate combination of
horse-radish peroxidase (HRPO) and alkaline phosphatase
(ALKP)-conjugated secondary antibodies (Stratech Scientific, Newmar-
ket, UK) diluted to 20 ng/ml in TBS-T20 + 2% Marvel (Table II). Fol-
lowing washing in TBS-T20 (6 × 3 min), integrin-specific HRPO
labeling was visualized using Chemiluminescent Peroxidase Substrate-1
(Sigma). Blots were then washed (3 × 5 min) in TBS-T20 and rinsed
in 100 mM Tris–HCl + 100 mM NaCl (pH 9.5), before b-actin-specific
ALKP labeling was visualized using CDP-STAR Star (Boehringer-
Mannheim, Germany). Images were acquired using a VersaDocTM

Imaging System (Bio-Rad Laboratories). Integrin-specific HRPO chemilu-
minescent signal and b-actin-specific ALKP chemiluminescent signal

were measured using ImageJ software (Rasband, 1997–2011). After
normalizing against b-actin, values for integrin-specific labeling were
expressed as relative to the positive control. After imaging, blots
were stained with Imperial Protein Stain (Fisher Scientific UK, Lough-
borough, UK) to confirm uniform blotting efficiency.

Immunocytochemistry
Formal-saline fixed paraffin wax embedded (FFPE) sections were mounted
on Snow Coat X-traTM charged slides (Surgipath Europe, Peterborough,
UK), dewaxed in xylene and rehydrated through graded ethanol.
Antigen retrieval was performed by pressure cooking, from cold, for
5 min at pressure in 10 mM Tris, 1 mM EDTA and 0.05% T20 (pH 9.0).
Once the pressure cooker had returned to ambient pressure, slides
were washed in deionized water (DH2O) and endogenous peroxidase
activity blocked by a 30-min incubation in TBS-T20 containing 1% H2O2.
Slides were washed in TBS-T20 and transferred to a Sequenza immunos-
taining centre (Thermo Shandon; Runcorn, UK). Non-specific protein
binding was blocked by incubating sections for 30 min with staining
buffer [TBS-T20 + 10% normal horse serum for integrin labeling or
TBS-T20 + 4% bovine serum albumin (BSA) of osteopontin and fibronec-
tin labeling].

For immunohistochemistry (IHC): samples were incubated overnight at
48C with primary anti-integrin antibodies and controls diluted appropriate-
ly in staining buffer (Table III). Slides were subsequently washed in
TBS-T20 and incubated for 10 min at room temperature with staining
buffer, before being incubated for 30 min with ImmPRESS Universal Anti-
body (anti-mouse Ig/anti-rabbit Ig, peroxidase) Polymer Detection Kit
(Vector Laboratories, Peterborough, UK). Sections were washed in
TBS-T20 and incubated for 10 min with 3,3′-diaminobenzidine +
Chromogen (Dako UK, Ely, UK), counterstained in Mayer’s Haematoxylin
and mounted with No. 1.5 glass coverslips using Pertex (Cellpath PLC,
Hemel Hempstead, UK).

For paired immunofluorescence (IF): endogenous biotin was blocked
using an avidin/biotin blocking kit (Vector Laboratories). After washing
in TBS-T20, samples were incubated for 1 h at room temperature with
primary anti-integrin-b3-specific antibody or control rabbit immunoglobu-
lin G (IgG) diluted appropriately in staining buffer (Table III). Sections were
then washed and incubated for 1 h at room temperature with staining
buffer containing 2 mg/ml of biotinylated goat anti-rabbit IgG (Vector La-
boratories). Sections were washed and incubated with R.T.U. ABC
Reagent (Vector Laboratories), as per the manufacturer’s instructions,

.............................................................................................................................................................................................

Table II Antibodies used in dual chemiluminescent western blots.

Integrin antibody Working conc./
dilution

Loading control
antibody

Loading control working
conc.

Donkey secondary
antibodies

Monoclonal mouse IgG1

anti-integrin a1

0.2 mg/ml Rabbit anti-b actin 0.2 mg/ml Anti-mouse HRPO
Anti-rabbit ALKP

Control Mouse IgG1 0.2 mg/ml Rabbit anti-b actin 0.2 mg/ml Anti-mouse HRPO
Anti-rabbit ALKP

Monoclonal rabbit anti-integrin a4 1 in 10 000 Mouse anti-b actin 1 in 10 000 Anti-mouse ALKP
Anti-rabbit HRPO

Monoclonal rabbit anti-integrin b1 1 in 10 000 Mouse anti-b actin 1 in 10 000 Anti-mouse ALKP
Anti-rabbit HRPO

Polyclonal rabbit anti-integrin b3 0.2 mg/ml Mouse anti-b actin 1 in 10 000 Anti-mouse ALKP
Anti-rabbit HRPO

Control Rabbit IgG 0.2 mg/ml Mouse anti-b actin 1 in 10 000 Anti-mouse ALKP
Anti-rabbit HRPO
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before further washing and incubation for 5 min with Tyramide Signal
Amplification (TSA) plus FITC (PerkinElmer, Seer Green, UK). To elute
existing antibody-peroxidase complexes from the sections, slides were
removed from the Sequenza immunostaining center, microwaved at full
power in pre-warmed 10 mM sodium citrate (pH 6.0) for 6 min and
allowed to cool to room temperature. Slides were then returned to the
Sequenza immunostaining center and blocked with staining buffer followed
by the avidin/biotin blocking kit. After washing, samples were incubated
for 1 h at room temperature with primary anti-osteopontin-specific anti-
body or control mouse IgG2a diluted appropriately in staining buffer
(Table III). Sections were then washed and incubated for 1 h at room tem-
perature with staining buffer containing 2 mg/ml of biotinylated rabbit anti-
mouse IgG (Dako). After washing, sections were incubated with R.T.U.
ABC Reagent, before further washing and incubation for 5 min with TSA
plus Cy3 (PerkinElmer). Finally, sections were washed with TBS and
counter stained for 15 min in 1 mM ToPro-3 (Invitrogen) in TBS, before
mounting with No. 1.5 glass coverslips using Mowiol (pH 8.5) mounting
media (EMD Biosciences, San Diego, CA, USA). Fluorescent images
were acquired with a LSM510 META confocal microscope equipped
with a ×63 Plan-Apochromatw 1.4 NA objective lens (Carl Zeiss,
Welwyn Garden City, UK).

Statistical analysis
All statistical analyses were performed using InStat (GraphPad Software, La
Jolla, CA, USA). Differences between groups were analyzed using a two-
tailed, Mann–Whitney test and differences were considered significant
when P , 0.05.

Results

Quantitative RT–PCR analysis of integrin
endometrial receptivity marker gene
transcription in follicular and
mid-luteal-staged FT biopsies
Messenger RNA transcripts from all five integrin subunit genes studied
(ITGA1, ITGA4, ITGAV, ITGB1 and ITGB3) were detected by
qRT-PCR in human FT biopsies (Fig. 1). There was little evidence
for differences in integrin transcript levels between the follicular and
mid-luteal FT groups. Although median ITGB3 transcript levels were
higher in the mid-luteal group, the spread of the data and statistical
analysis (Mann–Whitney: P ¼ 0.1797) indicate that this observation
occurred by chance and that there is no difference in ITGB3 expres-
sion between the two groups. With the exception of ITGA4, which
appears to be transcribed at lower levels (Fig. 1C), FT (Fig. 1: clear
plots) expression of all of the integrins studied here appears to be
commensurate with that observed in mid-luteal endometrium
(Fig. 1: filled plots).

Quantitative western blot analysis of integrin
endometrial receptivity marker protein
levels in follicular and mid-luteal staged FT
biopsies
Integrin-a1-, a4-, b1- and b3-specific antibodies reacted with discreet
bands in western blots of pooled protein extracts from both follicular
and mid-luteal FT biopsies (Fig. 2). No bands were detected with
integrin-av-specific antibodies at total protein loadings of up to
25 mg/lane. Integrin-a1-specific antibodies reacted strongly with a
band of �190 KDa (expected: 200 KDa), and to a much lesser
extent with a band of �85 KDa, at a total protein loading
of 10 mg/lane. Integrin-a4-specific antibodies reacted with a band of
�85 KDa (expected: 150 KDa) at a total protein loading of 25 mg/
lane. Integrin-b1-specific antibodies reacted strongly with a band
of �90 KDa (expected size: 88 KDa) at a total protein loading of
5 mg/lane. Integrin-b3-specific antibodies reacted with a band
of �75 KDa (expected size: 87 KDa), and to a lesser extent
�45 KDa, at a total protein loading of 25 mg/lane. No bands were
observed when integrin-specific antibodies were replaced with equiva-
lent amounts of control mouse IgG1 or control rabbit IgG (data not
shown).

Data derived from quantitative analysis of dual chemiluminescent
western blots of individual FT protein extracts are presented in
Fig. 3. Integrated density values of integrin a1, a4, b1 and b3 bands
were normalized against that of b-actin bands for each lane and the
result expressed as a function of the positive control (pooled
protein extracts from follicular FT biopsies). There was no evidence
for differences in integrin protein levels between the follicular and mid-
luteal staged samples.

........................................................................................

Table III Integrin antibody working concentrations for
immunocytochemistry.

Primary antibody Supplier IHC conc. IF conc.

Monoclonal mouse
IgG1 anti-integrin a1

(FB12)

Chemicon 0.5 mg/ml —

Monoclonal mouse
IgG1 anti-integrin
avb3 (BV3)

Abcam 2–0.5 mg/ml 2–0.5 mg/ml

Monoclonal mouse
IgG1 anti-integrin
avb3 (23C6)

Chemicon 2–0.5 mg/ml 2–0.5 mg/ml

Monoclonal mouse
IgG1 anti-integrin
avb3 (LM609)

Chemicon 2–0.5 mg/ml 2–0.5 mg/ml

Monoclonal mouse
IgG2a

anti-osteopontin (53)

Abcam 0.2 mg/ml 0.2 mg/ml

Monoclonal rabbit
IgG anti-integrin a4

(EPR1355Y)

Abcam 1 in 3000 —

Polyclonal rabbit IgG
anti-integrin aV

Abcam 0.5 mg/ml —

Monoclonal rabbit
IgG anti-integrin b1

(EP1041Y)

Abcam 1 in 3000 —

Monoclonal rabbit
IgG anti-fibronectin
(F1)

Abcam 1 in 5000 1 in 10 000

Polyclonal rabbit IgG
anti-integrin b3

Abcam 0.5 mg/ml 0.2 mg/ml

Control mouse IgG1 Serotec 2–0.5 mg/ml —

Control mouse IgG2a Abcam 0.2 mg/ml 0.2 mg/ml

Control rabbit IgG Vector 1–0.2 mg/ml 0.5–0.2 mg/ml
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Immunolocalization of integrin endometrial
receptivity markers in follicular and
mid-luteal-staged FT biopsies
Representative images of follicular (n ¼ 6) and mid-luteal (n ¼ 6) FT
tissue sections labeled with integrin-specific antibodies are shown in

Fig. 4. Antigen retrieval at pH 9.0 (10 mM Tris, 1 mM EDTA, 0.05%
T20) allowed detection of all five integrin subunits under investigation
and the integrin avb3 ligands, osteopontin and fibronectin, without sig-
nificant degradation of tissue morphology. Blocking of non-specific
protein binding using BSA produced superior results for fibronectin
and osteopontin, compared with normal serum, which contains

Figure 1 Quantitative RT–PCR analysis of integrin transcripts in FT (open plots) and endometrial (filled plots) biopsies taken during the follicular
and mid-luteal phases of the menstrual cycle. Boxes represent median values+ 1 SD, whiskers denote the full range of the data. Individual panels are
presented for: (A) ITGA1; (B) ITGA4; (C) ITGAV; (D) ITGB1 and (E) ITGB3. No significant (P . 0.05) differences in integrin expression were
observed between follicular and mid-luteal FT biopsies.

Figure 2 Images of dual chemiluminescent western blots for integrins and b-actin in pooled protein extracts from follicular (F) and mid-luteal (ML)
FT biopsies. Separate panels are shown for: (A) mouse (IgG1) anti-integrin a1; (B) rabbit anti-integrin a4; (C) rabbit anti-integrin b1 and (D) rabbit
anti-integrin b3. Images of b-actin specific labeling are provided in the lower panels.
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significant levels of both proteins (Mosesson and Amrani, 1980;
Scatena et al., 2007). None of the monoclonal antibodies directed
against the integrin avb3 heterodimer (BV3; 23C6 or LM609) pro-
duced convincing specific labeling of FFPE sections, even when highly
sensitive TSA labeling was employed. The epitope recognized by
the polyclonal rabbit anti-integrin av (Fig. 4C) was methanol sensitive,
even when quenching of endogenous peroxidase using 0.3% H2O2 in
methanol was performed prior to antigen retrieval.

There was no evidence for changes in integrin labeling intensity, or
distribution, between follicular and mid-luteal staged sections of FT
(Fig. 4A–E). Similarly, specific labeling of the integrin avb3 ligands
osteopontin (Fig. 4F) and fibronectin (Fig. 4G) was not influenced by
the phase of the cycle in the FT. Integrins a4 (Fig. 4B), av (Fig. 4C)
and b1 (Fig. 4D) specific immunohistochemistry produced intense la-
beling throughout the FT epithelium, in a pattern consistent with their
presence at the plasma membrane, whereas integrin-b3-specific label-
ing was largely restricted to the luminal plasma membrane of epithelial
cells (Fig. 4E). All four of these integrins were detected on leukocytes
scattered throughout the FT stromal or, in the case of integrin b3

(Fig. 4E), located near the basement membrane of the epithelium.
There was also evidence for the expression of integrins a4, av and
b1 by endothelial cells and, in the case of the av and b1 subunits,
by smooth muscle cells within the FT stroma and surrounding con-
nective tissue. By contrast, integrin-a1-specific labeling was restricted
to epithelial cells and exhibited an intense punctuate distribution con-
sistent with it being restricted to the golgi body, with no evidence for it
being expressed on the cell surface (Fig. 4A). Osteopontin specific

labeling was widely distributed throughout the FT and surrounding
smooth muscle and connective tissues but was most prominent
within the epithelium compartment of the mucosa, where it appeared
to be expressed at high levels by a subset of epithelial cells (Fig. 4F).
Although also widely distributed, fibronectin specific labeling was not
present with the epithelium of the FT and was largely restricted to
endothelial cells and blood pool in the stroma (Fig. 4G). Non-specific
labeling was not observed when specific antibodies were substituted
with equivalent amounts of appropriate control IgG (Fig. 4C1–C4).

Paired immunofluorescent labeling of
integrin b3 and osteopontin in follicular and
mid-luteal-staged FT and endometrial
biopsies
Further analysis of integrin b3 and osteopontin co-expression was
undertaken using paired immunofluorescence. Representative images
of follicular and mid-luteal FT (n ¼ 6 per group) and endometrium
(n ¼ 2 per group) tissue sections are shown in Fig. 5. There was
limited osteopontin- and integrin-b3-specific labeling in the endometrial
epithelia during the follicular phase of the menstrual cycle, with intense
b3 specific labeling of sporadic cells within the stromal compartment
(Fig. 5A), but both molecules were strongly expressed in the luminal epi-
thelium of mid-luteal-staged endometrium (Fig. 5A*). In contrast, FT
epithelial cells co-expressed integrin b3 and osteopontin during both
the follicular (Fig. 5B) and mid-luteal (Fig. 5B*) phases of the cycle,
with no evidence for any cycle-dependent changes in expression level

Figure 3 Quantitative analysis of integrin protein levels in follicular and mid-luteal FT protein extracts. Boxes represent median values+1 SD, whis-
kers denote the full range of the data. Individual panels are presented for: (A) integrin a1; (B) integrin a4; (C) integrin b1 and (D) integrin b3. No
significant (P . 0.05) differences in integrin expression were observed between follicular and mid-luteal phases of the menstrual cycle.
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or spatial distribution. Despite being co-expressed in the epithelia of FT
and mid-luteal endometria, there was very limited evidence for
co-localization (1.4NA objective: �200 nm lateral//�400 nm axial
resolution for Cy3) of integrin b3 and osteopontin in either tissue. Integ-
rin b3 also exhibited a different intracellular distribution in the FT and

endometrial epithelia, with the vast majority of specific labeling occur-
ring at or near the luminal surface of FT epithelial cells (Fig. 5B and
B*). No evidence for non-specific labeling or crosstalk was observed
when specific antibodies were substituted with equivalent amounts of
control IgG (Fig. 5C1 and C2).

Figure 4 Distribution of integrin subunits and putative integrin aVb3 ligands within FT biopsies from the follicular and mid-luteal (asterisk) phases of
the menstrual cycle. Panels show representative images of tissue sections labeled with: (A) mouse (IgG1) anti-integrin a1; (B) rabbit anti-integrin a4;
(C) rabbit anti-integrin aV; (D) rabbit anti-integrin b1; (E) rabbit anti-integrin b3; (F) mouse (IgG2a) anti-osteopontin and (G) rabbit anti-fibronectin.
Staining fidelity was confirmed by substituting primary antibodies with equivalent amounts of: (C1) control mouse IgG1 (integrin staining run); (C2)
control rabbit IgG (integrin staining run); (C3) control mouse IgG2a (osteopontin staining run); control rabbit IgG (fibronectin staining run). Scale bars
represent 100 mm.

Integrin expression in Fallopian tube 117



Discussion
To date, published data on integrin receptivity marker expression in
human FT has been limited to semi-quantitative immunohistochemical
studies (Sulz et al., 1998; Makrigiannakis et al., 2009). Here, we
present quantitative data on human FT transcription (Fig. 1) and trans-
lation (Fig. 3) of the integrin subunits a1, a4, aV, b1 and b3 during the
follicular and mid-luteal phases of the menstrual cycle, together with
comprehensive supporting immunocytochemistry data (Figs 4 and
5). In contrast to previous studies (Sulz et al., 1998; Makrigiannakis
et al., 2009), our data indicate that all five integrin receptivity
markers (a1, a4, aV, b1 and b3) are constitutively transcribed and
translated in the FT epithelium, with no evidence for changes in
their expression or distribution during the putative window of implant-
ation in the mid-luteal phase of the cycle.

Our data are at variance with two previous immunohistochemical
studies that reported increased integrin b3 subunit (Sulz et al., 1998)
and avb3 heterodimer (Makrigiannakis et al., 2009)-specific antibody
labeling in the epithelium of the FT during the mid-luteal phase of

the menstrual cycle, with little or no labeling of the same area
during the follicular phase. While it could be argued that this discrep-
ancy arises from differences in the specificity of the antibodies used,
the rabbit polyclonal antibody used in the current study produced
results entirely consistent with published data for the temporal/
spatial distribution of integrin b3 (Lessey et al., 1992, 1994a) and
avb3 (Tei et al., 2003) in the endometrium (Fig. 5A and A*). Further-
more, the staining pattern we obtained with rabbit polyclonal anti-
integrin b3 on FFPE sections of mid-luteal-staged endometrium
(Fig. 5A*) was identical to that previously described for a monoclonal
mouse integrin avb3 heterodimer-specific antibody (clone LM609) in
frozen sections of mid-luteal endometrium (Tei et al., 2003). In the
current study, both qRT-PCR (Fig. 1) and western blot (Figs 2 and
3) analysis were undertaken on tissue extracts derived from whole
cross-sections of FT and it could be argued that subtle changes in epi-
thelial expression of the integrin subunits could be overlooked against
background expression in surrounding tissues. Indeed, the integrin
subunits b1 and aV are ‘promiscuous’, forming heterodimmers with
multiple partners, and are both expressed by a wide variety of cells,

Figure 5 Paired immunofluorescent labeling of integrin b3 and osteopontin within endometrial (A/A*) and FT (B/B*) biopsies from the follicular
(A and B) and mid-luteal (A* and B*) phases of the menstrual cycle. (A/A*) and (B/B*) show representative images of tissue sections labeled with
rabbit anti-integrin b3 (green), mouse anti-osteopontin (red) and TopPro-3 nuclear counterstain (blue). Staining fidelity was confirmed on sections of
mid-luteal FT, substituting mouse anti-osteopontin (C1) or rabbit anti-integrin b3 (C2) with equivalent amounts of control antibodies. Excitation and
exposure settings were standardized from each tissue. L indicates the luminal side of the epithelium. Scale bars represent 10 mm.
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including smooth muscle and stromal cells (Hynes, 2002; Barczyk
et al., 2010). However, their partners (a1, a4, and b3) are much
more restricted in their distribution, which is predominantly epithelial
in the FT and we are confident that any significant changes in epithelial
expression of their functional heterodimmers (a1b1, a4b1 and avb3)
would be detected by the measuring a1, a4, and b3 in whole FT cross-
sections. It should be noted that Dou et al. (1999) were able to detect
significantly higher transcription of the integrin subunits a4, av, b1 and
b3 during the mid-luteal phase of the menstrual cycle, compared with
the follicular phase, using conventional RT–PCR to interrogate cDNA
from unfractionated endometrial biopsies.

The absence of cycle-dependent changes in expression of integrin
receptivity markers and osteopontin in human FT, reported in the
current study, contrasts with the situation in endometrium (Lessey
et al., 1992, 1994a; Lessey, 1998; Dou et al., 1999; Apparao et al.,
2001). We would argue that this indicates that expression of these re-
ceptivity markers, in particular integrin avb3 and osteopontin, is likely
to be regulated through different mechanisms in the endometrium
and the FT. In addition, the intracellular distribution of the a1 and b3

subunits also differ markedly between the epithelia of the FT (Figs 4
and 5) and the endometrium (Lessey et al., 1992), suggesting that
these integrins may also fulfill functionally distinct roles in the two
tissues. This is, perhaps, unsurprising given the likely evolutionary dis-
advantage of a FT that is receptive to ectopic implantation at any
point during the menstrual cycle, let alone one that increases its recep-
tivity to compete with the endometrium during the window of
implantation.

The current study is not the first to report differential regulation of
gene expression in the FT and endometrium. We have previously
shown that, unlike endometrium, FT constitutively expresses the
estrogen receptor isoform ERa throughout the menstrual cycle,
with no evidence for a reduction in expression during the mid-luteal
phase, when the tissue is exposed to peak levels of circulating proges-
terone (Horne et al., 2009). These differences in gene regulation are
consistent with the distinct embryonic origins of the FT and uterus,
and the persistence of differential Hox gene expression in the two
organs after birth (Taylor et al., 1997). This spatial Hox axis, more
typical of embryonic tissue, is thought play a role in preserving the de-
velopmental plasticity of the female reproductive system throughout
the menstrual cycle and during pregnancy, allowing tissue remodeling
to be differentially regulated in the FT and uterus by steroid hormones
(Taylor et al., 1997; Masse et al., 2009).

Defects in integrin b3 expression have been implicated in the path-
ology of endometriosis, luteal phase defects and polycystic ovarian
syndrome (Lessey et al., 1992, 1994b), all of which are associated
with infertility or pregnancy loss. Although we do not rule out the in-
volvement of integrin receptivity markers in the establishment of
ectopic pregnancy, our data do not support the hypothesis that the
temporal/spatial expression profile of integrin receptivity markers
(a1b1, a4b1 and avb3) or the integrin avb3 ligand, osteopontin,
reported in endometrium is mirrored in FT. Nor do they support
the existence of a window of implantation in the FT. It would, there-
fore, appear that integrin expression is regulated through different
mechanisms in the FT and endometrium, opening up the future pos-
sibility of being able to selectively modulate integrin receptivity
marker expression in the FT without disturbing normal intrauterine
implantation.
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