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Abstract 

The Rio San Juan Complex in the Dominican Republic hosts a suite of enigmatic 

corundum-bearing garnet peridotite rocks. Two hypotheses for their origin exist, an ultrahigh-

pressure (UHP) hypothesis, in which corundum, spinel and garnet crystallised simultaneously 

at UHP magmatic conditions (>3.2 GPa and >1500°C), and a low pressure (LP) hypothesis, in 

which the rocks are metamorphosed equivalents of low-pressure plagioclase-bearing 

cumulates. Distinction between the two is hampered by extensive metamorphic 

recrystallisation of the rocks under UHP conditions. In a recent paper, Gazel et al. [Gazel, E., 

Abbott, R.N., Draper, G., 2011, Garnet-bearing ultramafic rocks from the Dominican 

Republic: Fossil mantle plume fragments in an ultra high pressure oceanic complex? Lithos 

125, 393-404] reported trace element data for minerals from a garnet clinopyroxenite rock and 

used garnet-clinopyroxene partitioning coefficients to demonstrate an ultrahigh formation 

temperature of the rock, thus supporting the UHP hypothesis. However, the interpretations 

contained many unwarranted assumptions and were not consistent even with their own new 

data. This Comment addresses the shortcomings of the paper and demonstrates that (1) the 

authors’ temperature estimates are invalid, (2) their garnet compositional data are best 

explained by its formation by metamorphic recrystallisation after plagioclase. Therefore, an 

UHP igneous origin of the rocks is highly unlikely. 
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1. Introduction 

A recent paper by Gazel et al. (2011) reported trace-element data for minerals in 

corundum-bearing garnet-clinopyroxenite from the northern Dominican Republic and 

discussed its petrogenesis and tectonic implications. In previous publications by the same 

group, an ultrahigh-pressure (UHP) magmatic origin was proposed for the rocks based on the 

co-existence of spinel, garnet and corundum  (Abbott et al., 2005; Abbott et al., 2007). The 

paper by Gazel et al. (2011) aimed to support their earlier interpretation.  

An alternative interpretation of the origin of the rocks was published by Hattori et al. 

(2010a), who proposed that the rock is a metamorphosed ultramafic cumulate that originally 

crystallized at relatively low pressure (LP). A discussion on the topic (Abbott and Draper, 

2010; Hattori et al., 2010b) did not resolve the issue. The Gazel et al. (2011) paper also aimed 

to further discredit a possible LP origin of the rock. 

The main premise of the paper by Gazel et al. (2011) was that garnet-clinopyroxenite 

contains igneous garnet (Type-1 garnet) as well as garnet isochemically recrystallised from 

igneous Al-rich clinopyroxene (Type-1’ garnet). The trace element distribution between the 

two types of garnet was used to demonstrate a high temperature of solidification, thus their 

formation in a mantle plume environment. However, the main hypothesis and interpretations 

contained unwarranted assumptions and were not consistent even with their own new data. 

This Comment points out the shortcomings of the paper and demonstrates that (1) the authors’ 

temperature estimates are invalid, (2) their garnet compositional data are best explained by its 

formation by metamorphic recrystallisation after plagioclase. Therefore, an UHP igneous 

origin of the rocks is highly unlikely.  

Note that the term ‘UHP origin’ used by Gazel et al. (2011) and in previous papers from 

the same group (Abbott et al., 2005; Abbott et al., 2007) can be confusing, as the rocks were 

metamorphosed under UHP eclogitic conditions, which is not disputed. As the authors claim 

magmatic conditions of >1500°C, the term ultrahigh-temperature (UHT) origin will be used 

in the Comment. 

2. Modification of REE patterns through fluid interaction 

Gazel et al. (2011) presented REE abundances of garnet with unusual LREE enrichments. 

They suggested that the original garnet compositions were re-equilibrated with fluids during 
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metasomatism, but that the relative abundance (REE partitioning) of the two types of igneous 

garnet was preserved. The small differences in REE concentrations and patterns were used to 

infer high temperature solidification of the rock. However, if the scenario were true, REE 

abundances will reflect the temperature of re-equilibration with fluids, not the original 

magmatic conditions. Moreover, LREE contents in both garnet types vary by an order of 

magnitude (shown in Fig. 5 of Gazel et al., 2011; see also Fig. 1), indicating that equilibrium 

has not been achieved. The use of average partitioning patterns will thus provide meaningless 

equilibration temperatures. 

In addition, the analytical data itself is suspect. It is a challenge to obtain accurate LREE 

contents of garnet because of their low concentrations compared to other phases. Even small 

amounts of contamination will result in erroneously high LREE while leaving most other 

elements unaffected1. The garnets in the study by Gazel et al. (2011) are highly fractured and 

all the laser ablation pits appear to have intersected cracks (see their Fig. 3b). The material in 

the cracks appears to have contributed LREE to the results because there are strong positive 

correlations between LREE and other mobile trace element contents, such as Sr and Ba. 

Garnets with the lowest Sr contents are closest to typical garnet patterns as they show no La-

Ce enrichments. Hence, the large range of LREE in garnet observed by Gazel et al. (2011) can 

at least in part be attributed to contamination instead of disequilibrium. Either way, the use of 

these patterns to infer crystallisation temperatures is incorrect. 

3. Use of inappropriate partitioning coefficients 

Gazel et al. (2011) calculated Cpx-garnet equilibrium temperatures using experimentally 

determined REE partitioning values by Tuff and Gibson (2007). In doing so they ignored the 

well-documented dependence of partitioning values on the compositions of minerals (e.g., 

Gaetani and Grove, 1995; Hill et al., 2000). Tuff and Gibson (2007) used augitic Cpx and 

pyrope low-Ca garnet; both are very different from Tschermakitic Cpx and almandine-

grossular in the garnet-clinopyroxenite (Table 1 in Gazel et al., 2011). The use of omphacitic 

Cpx (Klemme et al., 2002), which has a much steeper REE partitioning slope than augitic Cpx 

at similar P and T (Fig. 1), would have been more appropriate.  

Furthermore, the partitioning data from Tuff and Gibson (2007) was incorrectly quoted by 

                                                 
1 Note that it is not expected to see a decrease in other elements as the volume of the cracks needs to be only 

very small to increase LREE in garnet and the dilution effect for other elements for such a small volume is 

negligible. 
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Gazel et al. (2011) as the REE partitioning pattern in their Fig. 5 differs significantly from the 

pattern calculated from the Tuff and Gibson (2007) data (Fig. 1). Therefore, the estimated 

temperatures by Gazel et al. (2011) based on Cpx/Grt REE partitioning data are incorrect due 

to erroneously cited data alone. It appears that Cpx/Grt partitioning data for HREE measured 

by Gazel (Dcpx/grt=0.8) are incompatible with any published partitioning data (Dcpx/grt ≤0.1), 

which indicates that Type-1’ garnet has re-equilibrated with Type-1 garnet or was in fact not 

formed from a Cpx precursor. 

4. Transformation of Al-rich Cpx into garnet was not isochemical 

The use of REE partitioning patterns to infer crystallisation temperatures by Gazel et al. 

(2011) critically depends on the assumption that Type-1’ garnet formed from Al-rich igneous 

Cpx through purely isochemical transformation. If even a small amount of low-Al Cpx is 

formed during the transformation, REE patterns of newly formed garnet would have been 

modified due to the large contrast in their affinities for LREE. Low-Al Cpx will be a product 

of the transformation if the Tschermak component of Al-rich Cpx is less than 50%, which is 

the case for all Cpx compositions in UHT experiments by Tuff and Gibson (2007) and 

Milholland and Presnall (1998). 

The assumption of isochemical transformation can be tested using elements that prefer Cpx 

over garnet. Igneous Cpx contains high Na and Sr relative to co-existing garnet (e.g., Klemme 

et al., 2002; Tuff and Gibson, 2007), but Type-1 and Type-1’ garnets contain nearly identical 

concentrations of these elements. Thus, transformation from Cpx to garnet was not 

isochemical or Type-1’ garnet was in fact not formed from Cpx. Temperatures calculated 

using garnet-Cpx distribution coefficients between the two types of garnet are therefore 

meaningless.  

5. Invalid application of garnet-spinel thermometry 

Gazel et al. (2011) used previously reported spinel-garnet Fe-Mg exchange thermometry 

results (Abbott et al., 2007) as additional evidence for very high temperatures, although they 

do not apply the thermometer to the rock from their own study. The garnet-spinel 

thermometer combined published Mg-Fe exchange calibrations between garnet and olivine 

and between spinel and olivine (Abbott et al., 2007). Although the concept has merit, there 

are several problems with its calibration and application.  

Firstly, Abbott et al. (2007) ignored the temperature dependence of KD
ol-sp, despite the fact 

it has been calibrated as a geothermometer (Roeder et al., 1979; O'Neill and Wall, 1987; 
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Ballhaus et al., 1991). Its temperature dependence is only slightly less than that of KD
ol-gt 

(Fig. 2) and therefore the temperature dependence of KD
gt-sp is considerably less than 

calculated by Abbott et al. (2007). Using temperature-dependent KD
ol-sp from Ballhaus et al. 

(1991) will considerably reduce the temperatures calculated by Abbott et al. (2007). For 

instance, the estimate of 1503°C from sample DR00-3 decreases to 1313°C, whereas the 

estimate of 1141°C from sample DR10-3b decreases to only 712°C (Fig. 2).  

Secondly, Abbott et al. (2007) ignored the dependence of KD
ol-sp

 on the ferrite component, 

(Mg,Fe)Fe2O4. The KD value for ferrite component is 7±1, much higher than 0.97 for MgAl 

spinel (Jamieson and Roeder, 1984). Despite the low ferrite component in their spinels, this 

amount is not trivial because the thermometer is highly sensitive to small changes in KD. For 

instance, when taking ferric iron into account, spinel from DR03-10b (Grt and Spl cores, 

Table 1; Abbott et al., 2007) has KD
ol-sp value of 1.11 instead of 1.0 used by Abbott et al. 

(2007), which results in Tgt-sp of 1029°C instead of 1141°C. 

Apart from these calibration issues, the authors assumed that the spinel composition did 

not change during cooling of the rocks, even though the closure temperature for Mg-Fe 

equilibrium in spinels is considered to be rather low (Roeder et al., 1979; Barnes, 2000; De 

Hoog et al., 2004).  If during cooling spinel continues to re-equilibrate at lower temperature 

than the closure temperature of garnet, the difference in Mg# between spinel and garnet would 

decrease, which would lead to apparent high Tgt-sp. This process is aided by the small grain 

size of spinel relative to garnet. The effect evident in the rock presented in Gazel et al. (2011), 

as Tgt-sp for Type-1 garnet, the original igneous garnet according to the authors, gives 2072°C 

(calculated using data from their Table 1 and the formulation by Abbott et al., 2007). This 

unrealistically high temperature cast doubts on the hot temperatures obtained from other 

samples. 

As an alternative, the formation temperature of garnet, where it co-exists with olivine, may 

be obtained from its Ni content (Ryan et al., 1996). The Ni contents of garnets from garnet 

peridotite from the same location (7-48 ppm; Table 3 in Gazel et al., 2011) yield temperatures 

lower than 750°C, with one exception of 1020°C, which suggests that garnet re-equilibrated 

or formed at relatively low temperature. Hence, high temperatures based on garnet-spinel 

thermometry are untenable. 

6. Garnet compositions do not support an igneous origin 

The only remaining evidence for a UHT origin of the Dominican garnet peridotites is 

based on phase relationships of co-crystallisation of garnet, corundum and spinel (Abbott et 
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al., 2005; Abbott et al., 2007; Gazel et al., 2011). The key assumption that these minerals 

have an igneous origin is difficult to validate, as textural evidence is largely obliterated by 

subsequent metamorphic recrystallisation. However, geochemical data may be used to 

determine the origin of minerals. 

Gazel et al. (2011) used the sinusoidal REE patterns of garnets to infer their mantle origin. 

Sinusoidal REE patterns in garnet are typical of harzburgitic garnets from kimberlites and 

result from extremely high degrees of melt depletion followed by LREE-rich metasomatism 

(Stachel and Harris, 2008). REE patterns of garnets presented by Gazel et al. (2011) are not 

strictly ‘sinusoidal’ as they do not show an increase from Ho to Lu, and only resemble such a 

pattern because of elevated La-Ce contents, which were due to late-stage re-equilibration with 

fluids (Gazel et al., 2011) or contamination from cracks (Section 2). Moreover, with high CaO 

(11-15 wt.%), low Cr2O3 (<0.1 wt.%) and low Mg# (<0.4) the garnets are clearly eclogitic, 

not peridotitic (Schulze, 2003). Eclogitic garnets have a different petrogenetic history and 

typically do not show sinusoidal patterns (Gonzaga et al., 2010). If they do, it must be related 

to a secondary process, which has no bearing on a possible mantle origin. Therefore, the 

attempt by Gazel et al. (2011) to demonstrate a mantle origin based on REE patterns is 

misleading. 

The eclogitic composition of garnet also casts considerable doubts on its igneous origin, as 

it does not resemble garnet from mantle-derived igneous rocks. Low TiO2 contents (<0.03 

wt.%; Gazel et al., 20112) are particularly striking, as mantle-derived igneous garnets contain 

high TiO2 >0.4 wt.% (Schulze, 2003). The compositions are, however, rather similar to garnet 

porphyroblasts from metamorphosed olivine-rich gabbros (De Hoog et al., 2011). 

The only minerals of undoubtedly igneous origin are the Cpx megacrysts (Abbott et al., 

2005; Hattori et al., 2010a). The Cpx megacrysts’ major and trace element compositions 

(Cr2O3 0.2-0.5 wt.%, TiO2 0.1-0.8 wt.%, Mg# ca. 88%; Gazel et al., 2011) are similar to 

those crystallized in mafic magmas (e.g., Elthon et al., 1992; Suhr et al., 2008; Drouin et al., 

2009). Gazel et al. (2011) dismiss clinopyroxene compositions as altered because of the 

presence of amphibole inclusions. However, even if some fluid modification has taken place, 

                                                 
2 Note that TiO2 contents by SEM-EDS in Table 1 from Gazel et al. (2011) are probably incorrect based on 

comparison between SEM-EDS and EPMA data published by Abbott et al. (2006) for similar rocks, as well as 

TiO2 results from LA-ICP-MS (<0.02 wt.% for all Type-1’ garnets). Cr2O3 contents are listed as below detection 

limit, but values of 0.15-0.51 wt.% for Cpx are reported by LA-ICP-MS (Table 2 in Gazel et al., 2011). 



7 

considering their similarity to magmatic Cpx it is unlikely that Cr2O3, TiO2 and Mg# were 

significantly modified. 

Because of its very low Cr2O3, TiO2 and Mg#, garnet cannot have been in equilibrium 

with Cpx with such composition, which further argues against its igneous origin. Type-1’ 

garnet, considered by Gazel et al. (2011) to be the isochemical equivalent of primary igneous 

Cpx, also has low Cr2O3, Na2O and TiO2 (all <0.05 wt.%), and very low Mg# (0.2), which is 

dissimilar to those of any reported igneous Cpx, including high-PT experiments on natural 

compositions (e.g., Tuff and Gibson, 2007). Its trace element geochemistry is remarkable 

similar to Type-1 garnet. Hence, the notion of an igneous Cpx precursor for Type-1’ garnet by 

Gazel et al. (2011) seems inconsistent with the compositional data presented in their paper. 

A metamorphic origin of garnet is supported by positive Eu anomalies in Type-1 and 

Type-1’ garnets (Fig. 5B in Gazel et al., 2011). They occur in all these garnets, including 

those with low Sr and LREE contents, and therefore Eu anomalies are a primary feature and 

not the result of contamination from cracks (Section 2) or fluid interaction (Gazel et al., 

2011). They can be explained by growth of garnet during the breakdown of a mineral with a 

positive Eu anomaly, such as plagioclase (Mazzucchelli et al., 1992). Similar REE patterns 

were reported from garnet porphyroblasts in metamorphosed olivine-rich gabbros (De Hoog 

et al., 2011). The occurrence of different garnet types in the rock is best explained by growth 

in different microdomains in the rock (e.g., Rebay and Powell, 2002), their composition 

reflecting various precursor minerals (olivine, plagioclase, clinopyroxene, hornblende), and 

by subsequent retrograde modification (e.g., Janák et al., 2006).  

A metamorphic origin for garnet in Dominican peridotites was previously proposed by 

Hattori et al. (2010a); the new data presented by Gazel et al. (2011) thus appears to support 

that interpretation. Gazel et al. (2011) argued that a LP origin of the rocks (Hattori et al., 

2010a) was unlikely as the rocks showed only small positive or no Eu anomalies. A similar 

argument was used by Abbott and Draper (2010), who argued that Eu anomalies were 

probably introduced by late-stage fluids. However, olivine gabbros need not have positive Eu 

anomalies, as the size of that anomaly depends on the ratio of plagioclase to Cpx, the latter 

being much richer in REE (e.g., Godard et al., 2009). Hattori et al. (2010a) estimated that the 

protolith, if formed at LP, would have contained about equal proportions of plagioclase and 

Cpx. Hence, bulk rock Eu anomalies are expected to be small or non-existent in these rocks 

and thus the lack thereof provides no evidence as to a UHT or LP origin.  
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7. Other corundum-spinel-garnet ultramafic rock occurrences 

Gazel et al. (2011) repeated the claim by Abbott et al. (2005) that the Dominican garnet 

peridotites were the first reported occurrence of co-existing corundum-spinel-garnet, but the 

assemblage is well-known from alkremite and corgaspinite xenoliths in kimberlites (Nixon et 

al., 1978; Padovani and Tracy, 1981; Mazzone and Haggerty, 1989). Garnets in these rocks 

have distinctively different compositions than those from the Dominican garnet peridotites. 

Corundum and spinel inclusions in garnet were reported by Vrabec (2007) and De Hoog et 

al. (2011) in UHP garnet peridotites from Pohorje, Eastern Alps (Fig. 3). The Pohorje garnet 

peridotites contain pseudomorphs after former plagioclase and are the metamorphosed 

equivalents of olivine-rich gabbroic cumulates (De Hoog et al., 2011). Garnet formed after 

(altered) plagioclase and spinel upon subduction to UHP conditions (4 GPa, 900°C). 

Therefore, the assemblage corundum-spinel-garnet is no proof of an UHT origin of rocks 

unless the magmatic origin of these minerals can be demonstrated. 

8. Conclusions 

- Temperature estimates based on garnet-‘cpx’ REE partitioning are invalid because of a 

variety of reasons: disequilibrium between garnet grains, contaminated values of LREE, 

erroneously quoted mineral partitioning data, ignoring the effects of mineral compositions 

on partition values, and the unreasonable assumption of isochemical transformation of Al-

rich Cpx to garnet. 

- Unrealistically high temperatures obtained from the garnet-spinel geothermometry are 

considerably overestimated due to flaws in the thermometer calibration and by low-

temperature re-equilibration of spinel below the closure temperature of garnet. This is 

supported by Ni-in-garnet thermometry for garnet in nearby garnet peridotites, which 

formed or re-equilibrated at temperatures <1020°C. 

- Garnet compositions (very low Cr2O3, TiO2 and Mg#, peculiar REE patterns) are best 

explained by its formation by metamorphic, not magmatic, processes. Positive Eu 

anomalies of garnets suggest a Eu-rich precursor, most likely plagioclase. Hence, the 

geochemical data presented by Gazel et al. (2011) support the metamorphic origin of 

garnet proposed by Hattori et al. (2010a). 

- In light of the new geochemical data presented by Gazel et al. (2011), a UHT mantle 

origin of the ultramafic rocks is highly unlikely.  
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FIGURE CAPTIONS 

Figure 1 Clinopyroxene/garnet REE distribution coefficients for Dominican garnet 

peridotites using Type-1’ garnet as a proxy for Al-rich Cpx (after Gazel et al., 

2011). Experimental data from eclogite (yellow squares; Klemme et al., 2002) 

shows a pattern rather different from experimental Fe-rich picrite at similar P and 

T (yellow diamonds; Tuff and Gibson, 2007) indicating a large mineral 

compositional effect ignored by Gazel et al. (2011). Gazel et al. (2011) presented 

average partitioning data (thick dotted line), but the range of distribution 

coefficients calculated from all analyses in their dataset spans an extremely wide 

range (purple field) especially for LREE, which makes comparison of their data 

with experimental data rather ambiguous. Also note that data for 1475°C and 3 

GPa from Tuff and Gibson (2007; red diamonds) is quite different than presented 

by Gazel et al. (2011) in their Figure 5 (narrow red field). 

Figure 2 Diagram of ln KD
Fe/Mg versus 1000/T (K) for garnet-spinel (red line) calculated 

from spinel-olivine (green line; Ballhaus et al., 1991) and garnet-olivine (purple 

line; O'Neill and Wood, 1979). The garnet-spinel thermometer by Abbott et al. 

(2007) is the same as garnet-olivine because of their assumption KD
Fe/Mg sp-ol = 1. 

Garnet-spinel temperatures calculated with temperature-dependent KD
Fe/Mg sp-ol 

(large dots) are considerably lower than those using the Abbott et al. (2007) 

calibration (small dots).  

Figure 3 Spinel and corundum in garnet from meta-olivine gabbros metamorphosed under 

UHP conditions from Pohorje, Slovenia, Eastern Alps (Janák et al., 2006; Vrabec, 

2007; De Hoog et al., 2011). A. Photograph of rock section showing the main 

mineral assemblage of olivine (Ol), clinopyroxene (Cpx), garnet (Grt), chromian 

spinel (Chr) and Ca-rich amphibole (Cam). B. Backscatter electron image of spinel 

(Spl) and corundum (Crn) inclusions in garnet (Grt). 
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       Fig. 2 De Hoog (comment Gazel et al. 2011) 
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