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Do heat stress and deficits in DNA repair pathways have
a negative impact on male fertility?
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In Europe up to one in four couples experience difficulty conceiving and in half of these cases the problem has been attributed to

sub or infertility in the male partner. The development of assisted reproductive technologies (ART) such as in vitro fertilization

and intra-cytoplasmic spermatozoa injection has allowed some such couples to achieve a pregnancy. Concerns have been raised

over the increasing use of ART not least because of the discovery of elevated levels of DNA damage in sperm from subfertile men.

The impact of damaged DNA originating in the male germ line is poorly understood, but is thought to contribute to early preg-

nancy loss (recurrent miscarriage), placental problems and have a long-term impact on the health of the offspring. DNA repair is

essential for meiotic recombination and correction of DNA damage in germ cells and proteins involved in all the major repair

pathways are expressed in the testis. In this review, we will consider evidence that the production of sperm containing

damaged DNA can be the result of suboptimal DNA repair and/or a mild environmental insult, such as heat stress, and how

studies in mice may give us insight into the origins and consequences of DNA damage in human sperm.
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Introduction

Spermatogenesis is a complex, multi-step process involving the pro-

liferation and differentiation of spermatogonia into mature sperm,

which cannot, as yet, be modelled in vitro (Cooke and Saunders,

2002). Germ cell maturation is usually considered to fall into three

phases: mitotic (replicative), meiotic and post-meiotic (spermio-

genesis). During this process which takes �35 days in mice and

�72 days in man, the DNA of the germ cells is vulnerable to the intro-

duction of a range of errors and germ cells containing damaged DNA

are routinely eliminated by apoptosis.

The potential for insults to the integrity of sperm DNA to have long-

term consequences is most graphically illustrated by the data showing

transgenerational effects of radiation exposure. Exposure of mice to

X-rays has shown that the maximum increases of DNA damage are

seen in differentiating spermatogonia (Haines et al., 2002). One of

the first studies demonstrating transgenerational effects of ionizing

radiation showed that injection of males with plutonium salts gave

rise to offspring with increased levels of dominant lethal mutations

(Luning and Eiche, 1976). Further, more recent studies have demon-

strated elevated frequencies of chromosomal aberrations in the

offspring of irradiated male mice and rats. For example, radiation-

induced damage to the genome of male mice was manifested in the

F1 and F2 generations where regeneration of liver tissue was impaired

(Slovinska et al., 2004). Irradiation of parents has also been shown

to result in the generation of offspring with reproductive problems.

For example, spermatozoa from non-irradiated F1 offspring of

gamma-irradiated male mice, exhibit a significantly reduced fertiliza-

tion rate (Burruel et al., 1997). Gamma ray treated sperm has also been

shown to result in fetal malformations (Muller et al., 1999).

Treatment of male cancer patients with alkylating drugs such as

cyclophosphamide is associated with increased incidence of oligo-

and azoospermia and male infertility (Charak et al., 1990; Kenney

et al., 2001). Treatment of rats with cyclophosphamide resulted in an

elevated level of abnormalities in their offspring (Hales et al., 1992).

Cyclophosphamide has also been shown to cause DNA damage in

sperm (detected using the sperm chromatin structure assay) and to

alter the composition of sperm head basic proteins (Codrington et al.,

2007). Pre-conception paternal cyclophosphamide exposure has also

been shown to induce aberrant epigenetic programming in early

embryos sired by these males (Barton et al., 2005). In addition, it has

been shown to alter the expression of important DNA repair genes in

preimplantation rat embryos (Harrouk et al., 2000).

A number of recent reviews have dealt with the evaluation of sperm

DNA damage, the impact of DNA damage on offspring and the
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evaluation of tools for DNA damage detection (Agarwal and Allama-

neni, 2004, 2005; Sharma et al., 2004; Erenpreiss et al., 2006;

Evenson and Wixon, 2006; Muratori et al., 2006; Zini and Libman,

2006). In the subsequent sections of this review, we will focus on evi-

dence that deficits in DNA repair pathways and/or a mild environ-

mental stress (heat) can both have a negative impact on the integrity

of DNA in sperm and discuss how this can have an impact on both

fertility and development of the embryo.

DNA repair and spermatogenesis

DNA repair is required for meiotic recombination and correction of

DNA damage in developing germ cells (Baarends et al., 2001).

During spermatogenesis germ cells also produce high levels of reac-

tive oxygen species (Fisher and Aitken, 1997) which can induce a

variety of DNA lesions. One of the most abundant lesions, 8-oxoG

(Lindahl, 1993), is strongly mutagenic and also blocks transcription.

Fortunately a complex anti-oxidant defence system exists in the

testis (Bauche et al., 1994) which complements the DNA repair

systems. In humans, more than 130 genes have been identified that

are involved in protecting genome integrity (Wood et al., 2001).

These include proteins involved in mismatch repair, which repairs

small mismatches or loops; nucleotide excision repair, which is prin-

cipally associated with repair of UV-induced DNA lesions, but is also

active against some bulky and oxidative DNA lesions; base excision

repair, which is involved in replacement of aberrant (including oxi-

dized) bases in DNA; single-strand break repair and double-strand

break repair. Proteins involved in all of these processes are expressed

within the testis [reviewed in Jaroudi and SenGupta (2007)]. For

example, histone variant H2AX (2AX) is involved in the response

to double-strand breaks recruiting DNA repair factors to DNA

damage sites where it is rapidly phosphorylated, resulting in formation

of g-H2AX foci (Rogakou et al., 1999). In addition to anti-oxidant and

repair pathways the testis also expresses proteins that are involved in

both the intrinsic and extrinsic apoptotic pathways. The cell cycle

(mechanism of cell replication and proliferation) is directly linked

to apoptosis via a number of cell cycle checkpoints at the G1/S, S

and G2/M phases (MacLachlan et al., 1995). These checkpoints are

a series of control systems that enable continued proliferation only

if the conditions are favourable: DNA damage and chromosomal mis-

alignment can activate these checkpoints (Weinert and Hartwell,

1989). The cell cycle is then paused for DNA repair but if the

damage cannot be repaired then apoptosis of the cell is initiated

(Waldman et al., 1996). However, the response to damage is cell type-

specific and the amount of damage required for initiation of apoptosis

varies between cell types.

During meiotic prophase parts of the DNA from the paternal and

maternal homologous chromosomes are recombined. The recombina-

tion events result in the exchange of genetic information between

non-sister chromatids resulting in crossovers that are essential for

the correct segregation of the chromosomes and play an important

role in creating genetic diversity among individuals within a popu-

lation by creating new and potentially beneficial combinations of

paternal and maternal alleles (Baarends et al., 2001). The recombina-

tion process is initiated by the formation of double-strand breaks early

in prophase I, (Sun et al., 1989) and this is mediated by the topoisome-

rase Spo11 (Keeney et al., 1997; Celerin et al., 2000). The importance

of forming double-strand breaks to allow the process of recombination

is illustrated by the observation that deletion of Spo11, results in infer-

tility in both sexes. In males, loss of Spo11 results in failure of germ

cells to progress beyond the zygotene stage of meiotic prophase and is

associated with increased rates of germ cell apoptosis (Baudat et al.,

2000; Romanienko and Camerini-Otero, 2000).

During spermiogenesis post-meiotic germ cells are extensively

remodelled during which histones are replaced, first by transition

proteins and subsequently by protamines to form the characteristic

condensed protamine–DNA toroid structure (McPherson and Longo,

1993). Although normal round spermatids contain no DNA strand

breaks during elongation transient DNA breaks are introduced. This

coinsides with histone hyperacetylation, and is thought to be essential

for removal of DNA supercoils before binding of transition proteins

(Laberge and Boissonneault, 2004). Studies in knockout mice have

suggested that transition protein 1 may play a role completing the

repair of DNA breaks (Kierszenbaum, 2001). Although most breaks

occurring during spermatid remodelling are repaired by ligation

(Kovtun and McMurray, 2001; Boissonneault, 2002), sperm appear

to contain higher levels of DNA strand breaks than most somatic

cells (Haines et al., 1998; van der Schans et al., 2000) and there is

no information on the impact of DNA damage arising before the sper-

matid phase on subsequent DNA condensation. The spermatids that

are formed after meiotic division II are transcriptionally and transla-

tionally silenced during the condensation of the chromatin. Thus

these post-meiotic spermatids have a minimal capacity for DNA

repair (Sega, 1979; Sotomayor and Sega, 2000) and therefore their

DNA could be damaged in an accumulative manner, as the sperm

cannot respond by inducing either apoptosis or DNA repair, as they

are transcriptionally silent.

Following remodelling of the round spermatids to spermatozoa they

are released from the testis into the epididymis. Sperm can also incur

DNA damage in the epididymis. For example, leukocytes found in

male genital tract infections have the potential to produce reactive

oxygen species (ROS) (Wolff, 1995), and in significant numbers can

overwhelm the anti-oxidant defence system in place in the epididymis

and could cause DNA damage as a result of oxidative stress (Aitken

et al., 1995). Infections in the female genital tract may also have

adverse effects on sperm chromatin condensation. For example,

Chlamydia has been shown to cause fragmentation in human sperm

DNA (Satta et al., 2006). In addition colonization of the upper

female reproductive tract with Ureaplasma urealyticum has been

associated with adverse pregnancy outcomes (Andrews et al., 1995).

It has been demonstrated that this infection causes premature

de-condensation of sperm chromatin and DNA damage to human

sperm (Reichart et al., 2000).

Deficits in DNA repair pathways can influence
germ cell survival and production of sperm

A number of mice deleted in genes encoding proteins involved in

DNA repair have been generated and provide invaluable information

about the impact of DNA repair on spermatogenesis (and other

processes).

ERCC1 is essential for nucleotide excision repair and is also

involved in homologous recombination, double-strand break repair

and the repair of interstrand crosslinks (Schiestl and Prakash, 1990;

Davies et al., 1995; Hsia et al., 2003). Highest expression occurs in

post-meiotic round spermatids (Hsia et al., 2003). In Ercc1 null

mice, consistent with the stochastic nature of DNA damage, germ

cell loss was highly variable and, even in the absence of ERCC1,

very few germ cells in Day 22 males had the appearance of pachytene

spermatocytes (Hsia et al., 2003). Ercc1 nulls die before weaning with

liver failure, but are rescued by a liver-specific Ercc1 transgene. Strik-

ingly, the low level of transgene-derived Ercc1 expression (,10% of

normal) in the testes of transgene-positive Ercc1 null mice

(TG-Ercc12/2) was sufficient to markedly increase the numbers of

germ cells and allowed some to complete meiosis and mature into

sperm. Staining of meiotic spreads for synaptonemal complex

Paul et al.
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protein 3 (SCP-3) and g-H2AX showed that, contrary to the situation

in controls, in TG-Ercc12/2 testes many double-strand breaks per-

sisted into the pachytene stage (Paul et al., 2007). Animals were infer-

tile with low sperm counts. Increased levels of apoptosis and higher

levels of DNA-damaged sperm were detected in both knockout and

heterozygote mice (Hsia et al., 2003; Paul et al., 2007). Furthermore,

there was a 3-fold increase in the level of the oxidized base

7,8-dihydro-8-oxoguanine (8-oxoG) in the testis (Hsia et al., 2003)

suggesting a role for ERCC1 in the repair of 8-oxoG. Xpa knockout

mice have a nucleotide excision repair pathway defect and become

very sensitive to ultraviolet B (Boonstra et al., 2001), Xpa null

males appear to have normal spermatogenesis (de Vries et al., 1995;

de Vries and van Steeg, 1996) but are subfertile compared to wild-type

controls (Tsai et al., 2005), with smaller average surviving litters.

Germ cell loss (Sertoli cell only phenotype) is also observed in

another such nucleotide excision repair mutant, the mHR23B2/2

mice (Ng et al., 2002); these mice are subfertile with reduced litter

size resulting from a high rate of intrauterine or neonatal death (Ng

et al., 2002; Tsai et al., 2005). Mutations in RPA (also involved in

the nucleotide excision repair pathway) result in defects in DNA

double-strand break repair and homozygous deletion in mice results

in embryonic lethality before implantation and impaired cell prolifer-

ation (Wang et al., 2005).

The more severe phenotypes seen in the mHR23B2/2 and the RPA

knockouts compared to that in Xpa2/2 mice, however, are likely to

reflect the additional roles of these proteins beyond nucleotide exci-

sion repair. Deficiencies in proteins involved in base excision repair

do not appear to have a major impact on male fertility though this

may be because many base excision repair mutations are embryonic

lethal. For example, Ogg1 null mice are viable and fertile but have

elevated levels of 8-oxoG and an increased mutation rate (Klungland

et al., 1999; Minowa et al., 2000) though double polyADP ribose poly-

merase (PARP1–PARP2) mutant embryos die prior to completion of

gastrulation (Menissier de Murcia et al., 2003).

In mice, the mismatch repair pathway involves five proteins

(MSH2–MSH6) which function as heterodimers to initiate repair

activity; MSH2–MSH6 and MSH2–MSH3 are involved in repairing

replicative mismatches whereas MSH4–MSH5 is a meiosis specific

complex essential for processing recombination intermediates

[reviewed in Kunkel and Erie (2005)]. Mice with deletion of the mis-

match repair genes Msh4 or Msh5 exhibit reduced testis weights and

infertility because the germ cells fail to complete meiosis (Edelmann

et al., 1999; Kneitz et al., 2000). In mouse testes MSH2 is highly

expressed in spermatogonia and leptotene/zygotene spermatocytes

(Richardson et al., 2000) and Msh2 knockout mice manifest an

enhanced predisposition to cancer (de Wind et al., 1995). Although

no gross abnormalities in spermatogenesis have been reported we

have recently demonstrated a reduction in germ cell complement

and the occurrence of Sertoli cell only (SCO) tubules in these mice

which we have attributed to an essential role for MSH2 during the

first wave of spermatogenesis (Paul et al., 2007). Mutations in the mis-

match repair protein MLH1 result in hereditary forms of colorectal

cancer (Papadopoulos et al., 1994). In the human testis, expression

of MLH1 has been detected predominantly in pre-meiotic germ cells

(Velasco et al., 2004) and on spreads of germ cells from mice has

been localized to foci at sites of crossing over (Baker et al., 1996).

Deletion of Mlh1 results in both male and female infertility (Baker

et al., 1996; Edelmann et al., 1996) and although Mlh12/2 sperma-

tocytes are able to complete the pachytene stage of meiosis, at diplo-

tene the central element of the synaptonemal complex breaks down,

the chromosomes are no longer held together at their chiasmata, an

apoptotic response is triggered and as a result no mature sperm are

formed (Eaker et al., 2002). Taken together it would appear that for

the most part, infertility in DNA repair mutants is caused by a

failure of meiotic progression though only if the pathway is involved

in recombination, for example, in Msh4 and Mlh1 mutants which is

in contrast to others such as Ercc1 where no specific stage is affected

but the Ercc12/2 mutants are still infertile.

Sperm from hereditary non-polyposis colon cancer patients, hetero-

zygous for an Msh2 mutation, have an increased frequency of aneu-

ploidy, indicating an important role for MSH2 in male fertility

(Martin et al., 2000). Although it is true that some patients with rare

inherited DNA repair deficiency disorders are fertile, we are not

aware of studies in man investigating the consequences of repair

deficiency in the male germ line on resulting embryos. Although the

frequency of individuals in the human population homozygous for

any one of these will be low, the cumulative frequency of heterozy-

gotes will be much higher. Although it does not necessarily follow

that heterozygotes will have reduced repair capacity, increased sensi-

tivity to sperm DNA damage in Ercc1 heterozygotes has been detected

(Hsia et al., 2003).

Evidence that heat stress can influence male fertility

Normal testicular function is temperature dependant and in most

mammals the testes are kept between 2 and 88C below core body

temperature by virtue of being held outside the body cavity in the

scrotum (Harrison and Weiner, 1948; Ivell, 2007). In man, raised tes-

ticular temperature may occur as a result of occupational exposure,

lifestyle or a clinical disorder (Mieusset et al., 1987). For example,

occupational exposure can occur in men who work in high temperature

environments such as bakers and welders [reviewed in Thonneau et al.

(1998)] and also occupations that involve long periods in a sedentary

position such as professional drivers. Recent studies have also

reported that posture and clothing can cause increased scrotal tempera-

ture (Mieusset et al., 2007). Clinical disorders including cryptorchid-

ism, where one or both testes fail to descend into the scrotum and

remain in the abdominal cavity, can also result in the exposure of

the testes to higher than normal temperatures.

Men with scrotal temperatures above the normal range are reported

to exhibit increased rates of sub or infertility and their ejaculates

contain an increased incidence of abnormal and immature spermato-

zoa (Mieusset et al., 1987). In mice, heat stress has been reported to

result in germ cell loss, poor quality sperm with altered DNA integrity

and chromatin packaging as well as early embryo loss (Jannes et al.,

1998; Rockett et al., 2001; Zhu and Setchell, 2004; Banks et al.,

2005) and spermatocytes and spermatids are believed to be the germ

cells most sensitive to heat stress (Setchell, 1998). A number of

animal models designed to study the impact of heat stress on the

testis have been developed. These include transient exposure of the

testes to elevated temperatures (typically greater than 408C) or

placing the testes and epididymides within the body cavity (surgical

inducing cryptorchidism) resulting in long-term exposure of the

testes to core body temperature (378C). Both methods have been

reported to cause a variety of disturbances in testicular function,

including a decrease in testis weight, increased apoptosis, germ cell

loss and altered fertilization capability of sperm (McLaren et al.,

1994; Setchell et al., 1996, 1998; Lue et al., 1999). For example, loca-

lized scrotal heating of mice at 40 and 428C for 60 min is reported to

cause a decrease in testicular weight and an increase in DNA damage

in sperm at 408C at 3, 7, 11 and 14 days after heat stress as determined

by the sperm chromatin structure assay (SCSA). Those heated to 428C
have no sperm at these time points for use in the SCSA (Sailer et al.,

1997). In another study, heat stress (428C for 30 min) has been shown

to cause an increase in DNA damage in sperm as analysed by the

COMET assay with maximum damage observed at 4 h after heat

Heat stress, DNA repair and male fertility
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stress suggesting that this could have been mediated by alterations in

epididymal function. Rockett et al. (2001) observed not only an

increase in apoptosis of spermatocytes but also increased expression

of the stress-inducible proteins Hsp70-1 and Hsp70-3 in spermato-

cytes 4 h after heating for 20 min at 438C. Further investigations

(our unpublished results) on the impact of heat stress on the sperma-

tocytes revealed that heat stress resulted in an increased incidence

of DNA stand breaks in pachytene spermatocytes as measured by

gH2AX immunostaining.

A link between heat stress and DNA repair

Rockett et al. (2001) also used DNA microarrays to investigate

changes in global gene expression following heat stress at 438C and

reported that expression of a number of DNA repair genes such

Ogg1 (involved in base excision repair), Xpg (involved in nucleotide

excision repair) and Rad54 (involved in double-strand break repair)

were all down-regulated (Rockett et al., 2001). Other studies have

shown decreased expression of polyADP Ribose polymerase

(PARP) in the rat testis in response to heat stress (Tramontano

et al., 2000); PARP proteins are involved in detection of strand

breaks and signalling in both the base excision repair and nucleotide

excision repair pathways (Schreiber et al., 2002; Flohr et al., 2003).

In addition, decreased expression of oxidative stress-induced anti-

oxidants has also been reported (Rockett et al., 2001), this may

leave the germ cells more susceptible to oxidative damage during

hyperthermia. Heat stress induced by cryptorchidism appears to

result in decreased expression of DNA polymerase b and DNA

ligase III both of which are involved in the final stages of DNA

repair, for example, in both base and nucleotide excision repair

(Tramontano et al., 2000).

Impact of sperm DNA integrity on pregnancy
outcome

Many DNA repair and damage response genes are expressed in early

mammalian embryos [reviewed in Jaroudi and SenGupta (2007)], but

low levels of some indicate that the embryo’s ability to repair DNA

damage may be strictly limited (Zheng et al., 2005). Notably, elevated

levels of nucleotide excision repair, mismatch repair and homologous

recombination gene transcripts were detected in preimplantation rat

embryos developing from DNA-damaged sperm (Harrouk et al.,

2000).

Evidence from animal studies

Reduced litter sizes have been reported to result when males are sub-

jected to a variety of heat stress regimes. For example, experiments

where the entire body was exposed to 368C for 24 h, a reduction in

the number embryos sired by heated males was recorded. IVF using

sperm from males heated 7d (an epididymal or late spermatid effect

of heating) earlier showed reduced numbers of embryos developing

from the four-cell stage onwards and those from mice heated 21d (a

spermatocyte effect) earlier resulted in a reduction from the two-cell

stage onwards (Zhu and Setchell, 2004). A further study looking at

the effects of increased whole body temperature by exposing male

mice twice to 368C for 12 h on each occasion demonstrated reduced

sperm number, pregnancy rate and litter size with maximum effects

seen 10 or 14d after heat stress (Yaeram et al., 2006). In the studies

by Rockett et al. (2001) where control females were mated with

males subjected to a transient, acute (20 min), scrotal heat stress

23–28 days previously exhibited reduced litter sizes consistent with

an effect on spermatocytes. There are other reports of hyperthermia

affecting fertility in mice causing both reduced pregnancy rate and

embryo weight as well as reduced fertilization rate in vitro, using

sperm from heated males (Jannes et al., 1998). There is evidence

that fertilization with sperm exposed to DNA damaging agents can

alter the expression of repair genes in the preimplantation embryo

as early as the one-cell stage (Harrouk et al., 2000). Previous

studies have also shown that paternal DNA damage can be translated

into chromosome aberrations at the first-cleavage metaphase stage in

the zygote (Matsuda et al., 1989). In mice mutation frequency is

reported to increase during spermiogenesis in post-replicative cell

types in older mice providing a link to the concerns expressed about

increased paternal age (see below) (Walter et al., 1998). Bovine

studies have shown that DNA damage induced by X- or gamma-rays

does not prevent fertilization or effect early embryonic development

but did cause apoptosis in the four- to eight-cell stage thus preventing

further development of the embryos (Fatehi et al., 2006). These

studies also showed that the same doses of irradiation did not impair

sperm function (as measured by motility assays). This demonstrates

that changes in spermatozoa following irradiation may not be detect-

able using the classical sperm parameters (viability, motility and acro-

some integrity) but may only be revealed using assays specific for

DNA damage.

Evidence from patients

Human semen parameters such as motility, morphology and sperm

count are routinely used in fertility analysis. These, however, do not

assess for any DNA damage contained within the nucleus of sperm

and therefore additional sperm DNA fragmentation detection tech-

niques are required. There have been a number of assays developed

to evaluate the integrity of DNA and/or chromatin in sperm

(Table I) (Evenson and Wixon, 2006). However, their ability to

adequately assess male fertility potential remains under scrutiny

(Evenson et al., 2002; Agarwal and Said, 2003; Perreault et al.,

2003). The COMET assay involves single cell electrophoresis and

evaluates DNA migration in Comet tails using specific software.

TUNEL (TdT-mediated-dUTP nick end labelling) detects strand

Table I. Common assays used to detect DNA damage, the principle of the
assay and the type of damage the assay detects

Assay Principle Type of damage detected

Sperm chromatin
structure assay
(SCSA)

Susceptibility of sperm
chromatin to acid
denaturation. Population
assay

Abnormal chromatin
packaging which is most
likely a result of DNA
damage

COMET Migration of DNA out of
sperm head. Single cell
assay

Miscondensation of
chromatin which is most
likely a result of
underlying DNA damage
including breaks

TUNEL Labels strand breaks in
DNA by labelling the
free 3’-OH terminus with
modified nucleotides in
an enzymatic reaction

DNA fragmentation

Sperm chromatin
dispersion (SCD)

Following acid
denaturation sperm with
fragmented DNA do not
produce characteristic of
dispersed DNA loops
seen in native sperm

DNA fragmentation

Enzyme-linked
immunosorbent
assay (ELISA)

Uses an antibody specific
to single stranded DNA.
Population assay

Uses the degree of
unwound DNA as a
measure of extent of
DNA damage
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breaks by labelling free 3’-OH groups using an enzymatic reaction

with TdT, however, useful thresholds have not been established for

either of these assays and thus they cannot be used in clinical practice.

The sperm chromatin dispersion (SCD) test is described as an inexpen-

sive tool for analysis of DNA fragmentation and is based on the

principle that sperm with fragmented DNA fail to produce the charac-

teristic halo when subjected to acid denaturation and removal of sperm

nuclear proteins (Fernandez et al., 2003). The sperm chromatin struc-

ture assay (SCSA) measures the susceptibility of sperm DNA to acid

denaturation and uses the dye acridine orange which fluoresces green

when bound to native, double stranded DNA and red when bound to

fragmented, single stranded DNA (Evenson et al., 1999) and can

analyse many thousands of sperm at one time. Though sperm DNA

damage detected by SCSA results has been demonstrated to be directly

related to fertilization, blastocyst development and pregnancy

outcome in IVF and ICSI in some studies (Virro et al., 2004;

Evenson and Wixon, 2006), others have disputed this and shown no

correlation between SCSA results and pregnancy outcome (Payne

et al., 2005). Therefore, this clearly warrants more studies to establish

whether or not this tool should be routinely used in fertility clinics.

Evidence that damaged DNA originating in sperm can result in

blocks in embryo maturation, consequent miscarriage or even fetal

malformation has been documented. Patients with either idiopathic

or male factor infertility have been shown to have higher levels of

DNA damage as measured by the SCSA and higher level of oxidative

stress in their sperm in comparison to fertile sperm donors (Saleh

et al., 2003). In addition, this group also showed a higher level of

sperm with DNA damage and oxidative stress in men who failed to

initiate a pregnancy and others have shown that oxidative DNA

damage reduces male fecundity (Loft et al., 2003). Other studies

have revealed that sperm with damaged DNA are capable of fertiliza-

tion (Twigg et al., 1998; Ahmadi and Ng, 1999) and can produce

viable early-stage preimplantation embryos, however, fail to result

in a successful term pregnancy (Ahmadi and Ng, 1999). There is

concern that parental lifestyle choices such as smoking or delayed par-

enthood will also contribute to decreased DNA integrity in sperm and

have consequences for their children’s health (Crow, 1995, 1997;

Hemminki and Kyyronen, 1999; Hemminki et al., 1999; Zenzes

et al., 1999; Zenzes, 2000). A number of studies have shown that

DNA damage in sperm, for example, that found in smoking fathers,

can be passed to the offspring following ICSI/IVF treatment

(Zenzes, et al., 1999; Zenzes, 2000). In addition, this has been reported

to lead to an increase in incidence of childhood cancers (Ji et al., 1997;

Sorahan et al., 1997). A variety of genetic diseases have been shown

to increase with paternal age (Crow, 1995, 1997) and retrospective

studies have demonstrated an association between increasing paternal

age and the incidence of breast cancer and cancers of the nervous

system, however no correlation was shown with other cancers

(Hemminki and Kyyronen, 1999; Hemminki et al., 1999). A recent

study of patients from an IVF clinic demonstrated significant

decreases in blastocyst formation and live birth rate where the

fathers were more than 50 years old, however this did not appear to

affect pregnancy rate and implantation rate (Frattarelli et al., 2007).

Early pregnancy loss has also been demonstrated where fathers

exhibit increased DNA fragmentation in their sperm and that this

affects the post-implantation development of the embryo (Borini

et al., 2006). It has been suggested that the paternal genome is import-

ant for the development of extraembryonic tissues. For example, one

of the first studies on genomic imprinting showed that embryos with

two female pronuclei could implant but then underwent resorption

and exhibited poor extraembryonic membrane and trophoblast for-

mation (Surani et al., 1984). In addition to this, studies on mice

have shown that mutation frequency increases during spermiogenesis

in post-replicative cell types in older mice (Walter et al., 1998). A

recent study has shown that serum testosterone concentration is

reduced in infant boys conceived by ICSI and (Mau Kai et al.,

2007) compared to normal plasma testosterone concentrations in

boys conceived by IVF. There are also a number of studies document-

ing the fertility outcomes of cancer survivors as the radiation and che-

motherapeutic agents used to treat cancer can cause alterations in

DNA and have been shown in animal models to be mutagenic

(Epstein 1990; Hales et al., 1992; Codrington et al., 2007). Although

many therapies have been shown to cause abnormalities in sperm, data

concerning the offspring from cancer survivors does not show an

increased risk for genetic disease or alterations in pregnancy

outcome (Byrne et al., 1998; Green et al., 2003; Winther et al.,

2004). Although this is reassuring to cancer survivors, modern tech-

niques such as ICSI where natural sperm selection is bypassed will

require further surveillance of the resulting offspring.

Conclusions

In addition to the mechanisms reviewed above there is also evidence

that oxidative stress, such as that in men that smoke, infection and

exposure to xenobiotics can all have an impact on the integrity of

sperm DNA [reviewed by Aitken and De Iuliis (2007)]. In conclusion,

although the testis contains an active DNA repair machinery, backed

up by elimination of germ cells with damaged DNA via apoptosis

(Fig. 1), lesions on sperm DNA are readily detectable in sperm. Evi-

dence from studies in animal models as well as human data suggest

that DNA lesions introduced via the sperm can have life-long

impact on offspring. These studies therefore have implications for

the growing use of ART to solve problems of male subfertility.

Funding

CP was funded by an MRC-funded studentship to the University of

Edinburgh. Additional support was from MRC Unit core funding to

PTKS (U.1276.00.002.00003.01) and programme grant C376/A1570

from Cancer Research UK to DWM.

References

Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA
damage in male infertility. Hum Reprod Update 2003;9:331–345.

Figure 1: Possible mechanisms involved in male subfertility: scrotal heat
stress and other stressors such as cigarette smoke, infection and exposure to
xenobiotics may give rise to lesions in sperm DNA which can result in male
subfertility if they escape DNA repair and apoptotic death of affected germ
cells
ROS, reactive oxygen species; HSF1, heatshock transcription factor 1; Hsps,
heat shock proteins; Stip1, stress-induced phosphoprotein 1

Heat stress, DNA repair and male fertility

5

 by guest on N
ovem

ber 13, 2013
http://m

olehr.oxfordjournals.org/
D

ow
nloaded from

 

http://molehr.oxfordjournals.org/
http://molehr.oxfordjournals.org/


Agarwal A, Allamaneni SS. The effect of sperm DNA damage on assisted
reproduction outcomes. A review. Minerva Ginecol 2004;56:235–245.

Agarwal A, Allamaneni SS. Sperm DNA damage assessment: a test whose time
has come. Fertil Steril 2005;84:850–853.

Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. J Exp
Zool 1999;284:696–704.

Aitken RJ, Buckingham DW, Brindle J, Gomez E, Baker HW, Irvine DS.
Analysis of sperm movement in relation to the oxidative stress created by
leukocytes in washed sperm preparations and seminal plasma. Hum
Reprod 1995;10:2061–2071.

Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male
germ cells. Reprod Biomed Online 2007;14:727–733.

Andrews WW, Goldenberg RL, Hauth JC. Preterm labor: emerging role of
genital tract infections. Infect Agents Dis 1995;4:196–211.

Baarends WM, van der Laan R, Grootegoed JA. DNA repair mechanisms and
gametogenesis. Reproduction 2001;121:31–39.

Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM,
Monell C, Arnheim N, Bradley A et al. Involvement of mouse Mlh1 in DNA
mismatch repair and meiotic crossing over. Nat Genet 1996;13:336–342.

Banks S, King SA, Irvine DS, Saunders PT. Impact of a mild scrotal heat stress
on DNA integrity in murine spermatozoa. Reproduction 2005;129:505–514.

Barton TS, Robaire B, Hales BF. Epigenetic programming in the preimplantation
rat embryo is disrupted by chronic paternal cyclophosphamide exposure. Proc
Natl Acad Sci USA 2005;102:7865–7870.

Bauche F, Fouchard M, Jegou B. Antioxidant system in rat testicular cells.
FEBS Lett 1994;349:392–396.

Baudat F, Manova K, Yuen JP, Jasin M, Keeney S. Chromosome synapsis
defects and sexually dimorphic meiotic progression in mice lacking
Spo11. Mol Cell 2000;6:989–998.

Boissonneault G. Chromatin remodeling during spermiogenesis: a possible role
for the transition proteins in DNA strand break repair. FEBS Lett
2002;514:111–114.

Boonstra A, van Oudenaren A, Baert M, van Steeg H, Leenen PJ, van der Horst
GT, Hoeijmakers JH, Savelkoul HF, Garssen J. Differential
ultraviolet-B-induced immunomodulation in XPA, XPC, and CSB DNA
repair-deficient mice. J Invest Dermatol 2001;117:141–146.

Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C, Coticchio G.
Sperm DNA fragmentation: paternal effect on early post-implantation
embryo development in ART. Hum Reprod 2006;21:2876–2881.

Burruel VR, Raabe OG, Wiley LM. In vitro fertilization rate of mouse oocytes
with spermatozoa from the F1 offspring of males irradiated with 1.0 Gy
137Cs gamma-rays. Mutat Res 1997;381:59–66.

Byrne J, Rasmussen SA, Steinhorn SC, Connelly RR, Myers MH, Lynch CF,
Flannery J, Austin DF, Holmes FF, Holmes GE et al. Genetic disease in
offspring of long-term survivors of childhood and adolescent cancer. Am J
Hum Genet 1998;62:45–52.

Celerin M, Merino ST, Stone JE, Menzie AM, Zolan ME. Multiple roles of
Spo11 in meiotic chromosome behavior. EMBO J 2000;19:2739–2750.

Charak BS, Gupta R, Mandrekar P, Sheth NA, Banavali SD, Saikia TK,
Gopal R, Dinshaw KA, Advani SH. Testicular dysfunction after
cyclophosphamide-vincristine-procarbazine-prednisolone chemotherapy for
advanced Hodgkin’s disease. A long-term follow-up study. Cancer
1990;65:1903–1906.

Codrington AM, Hales BF, Robaire B. Chronic cyclophosphamide exposure
alters the profile of rat sperm nuclear matrix proteins. Biol Reprod
2007;77:303–311.

Cooke HJ, Saunders PT. Mouse models of male infertility. Nat Rev Genet
2002;3:790–801.

Crow J. Spontaneous mutation as a risk factor. Exp Clin Immunogenet
1995;12:121–128.

Crow JF. The high spontaneous mutation rate: is it a health risk?. Proc Nat
Acad Sci USA 1997;94:8380–8386.

Davies AA, Friedberg EC, Tomkinson AE, Wood RD, West SC. Role of the
Rad1 and Rad10 proteins in nucleotide excision repair and recombination.
J Biol Chem 1995;270:24638–24641.

de Vries A, van Oostrom CT, Hofhuis FM, Dortant PM, Berg RJ, de Gruijl FR,
Wester PW, van Kreijl CF, Capel PJ, van Steeg H et al. Increased
susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA
excision repair gene XPA. Nature 1995;377:169–173.

de Vries A, van Steeg H. Xpa knockout mice. Semin Cancer Biol 1996;7:
229–240.

de Wind N, Dekker M, Berns A, Radman M, te Riele H. Inactivation of the
mouse Msh2 gene results in mismatch repair deficiency, methylation

tolerance, hyperrecombination, and predisposition to cancer. Cell
1995;82:321–330.

Eaker S, Cobb J, Pyle A, Handel MA. Meiotic prophase abnormalities and
metaphase cell death in MLH-1-deficient mouse spermatocytes: insights
into regulation of spermatogenic process. Dev Biol 2002;249:85–95.

Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, bennett S, Umar A,
Kunkel T, Cattoretti G, Chaganti R et al. Meiotic pachytene arrest in
MLH1-deficient mice. Cell 1996;85:1125–1134.

Edelmann W, Cohen PE, Kneitz B, Winand N, Lia M, Heyer J, Kolodner R,
Pollard JW, Kucherlapati R. Mammalian MutS homologue 5 is required
for chromosome pairing in meiosis. Nat Genet 1999;21:123–127.

Epstein RJ. Drug-induced DNA damage and tumor chemosensitivity. J Clin
Oncol 1990;8:2062–2084.

Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm
chromatin structure and male fertility: biological and clinical aspects.
Asian J Androl 2006;8:11–29.

Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, de Angelis
P, Claussen OP. Utility of the sperm chromatin structure assay as a
diagnostic and prognostic tool in the human fertility clinic. Hum Reprod
1999;14:1039–1049.

Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical
use for detecting sperm DNA fragmentation in male infertility and
comparisons with other techniques. J Androl 2002;23:25–43.

Evenson DP, Wixon R. Clinical aspects of sperm DNA fragmentation detection
and male infertility. Theriogenology 2006;65:979–991.

Fatehi AN, Bevers MM, Schoevers E, Roelen BA, Colenbrander B, Gadella
BM. DNA damage in bovine sperm does not block fertilization and early
embryonic development but induces apoptosis after the first cleavages.
J Androl 2006;27:176–188.

Fernandez JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The
sperm chromatin dispersion test: a simple method for the determination of
sperm DNA fragmentation. J Androl 2003;24:59–66.

Fisher HM, Aitken RJ. Comparative analysis of the ability of precursor germ
cells and epididymal spermatozoa to generate reactive oxygen metabolites.
J Exp Zoolog 1997;277:390–400.

Flohr C, Burkle A, Radicella JP, Epe B. Poly(ADP-ribosyl)ation accelerates
DNA repair in a pathway dependent on Cockayne syndrome B protein.
Nucleic Acids Res 2003;31:5332–5337.

Frattarelli JL, Miller KA, Miller BT, Elkind-Hirsch K, Scott RT, Jr. Male age
negatively impacts embryo development and reproductive outcome in donor
oocyte assisted reproductive technology cycles. Fertil Steril 2007, Aug 30:
[Epub ahead of print].

Green DM, Whitton JA, Stovall M, Mertens AC, Donaldson SS, Ruymann FB,
Pendergrass TW, Robison LL. Pregnancy outcome of partners of male
survivors of childhood cancer: a report from the Childhood Cancer
Survivor Study. J Clin Oncol 2003;21:716–721.

Haines G, Marples B, Daniel P, Morris I. DNA damage in human and mouse
spermatozoa after in vitro-irradiation assessed by the comet assay. Adv
Exp Med Biol 1998;444:79–91.

Haines GA, Hendry JH, Daniel CP, Morris ID. Germ cell and dose-dependent
DNA damage measured by the comet assay in murine spermatozoa after
testicular X-irradiation. Biol Reprod 2002;67:854–861.

Hales BF, Crosman K, Robaire B. Increased postimplantation loss and
malformations among the F2 progeny of male rats chronically treated with
cyclophosphamide. Teratology 1992;45:671–678.

Harrison R, Weiner J. Abdomino-testicular temperature gradients. J Physiol
1948;18:256–262.

Harrouk W, Codrington A, Vinson R, Robaire B, Hales BF. Paternal exposure
to cyclophosphamide induces DNA damage and alters the expression
of DNA repair genes in the rat preimplantation embryo. Mutat Res
2000;461:229–241.

Hemminki K, Kyyronen P. Parental age and risk of sporadic and familial cancer
in offspring: implications for germ cell mutagenesis. Epidemiology
1999;10:747–751.

Hemminki K, Kyyronen P, Vaittinen P. Parental age as a risk factor of
childhood leukemia and brain cancer in offspring. Epidemiology
1999;10:271–275.

Hsia KT, Millar MR, King S, Selfridge J, Redhead NJ, Melton DW, Saunders
PT. DNA repair gene Ercc1 is essential for normal spermatogenesis and
oogenesis and for functional integrity of germ cell DNA in the mouse.
Development 2003;130:369–378.

Ivell R. Lifestyle impact and the biology of the human scrotum. Reprod Biol
Endocrinol 2007;5:15.

Paul et al.

6

 by guest on N
ovem

ber 13, 2013
http://m

olehr.oxfordjournals.org/
D

ow
nloaded from

 

http://molehr.oxfordjournals.org/
http://molehr.oxfordjournals.org/


Jannes P, Spiessens C, Van der Auwera I, D’Hooghe T, Verhoeven G,
Vanderschueren D. Male subfertility induced by acute scrotal heating
affects embryo quality in normal female mice. Hum Reprod 1998;13:
372–375.

Jaroudi S, SenGupta S. DNA repair in mammalian embryos. Mutat Res
2007;635:53–77.

Ji BT, Shu XO, Linet MS, Zheng W, Wacholder S, Gao YT, Ying DM, Jin F.
Paternal cigarette smoking and the risk of childhood cancer among offspring
of nonsmoking mothers. J Natl Cancer Inst 1997;89:238–244.

Keeney S, Giroux CN, Kleckner N. Meiosis-specific DNA double-strand
breaks are catalyzed by Spo11, a member of a widely conserved protein
family. Cell 1997;88:375–384.

Kenney LB, Laufer MR, Grant FD, Grier H, Diller L. High risk of infertility
and long term gonadal damage in males treated with high dose
cyclophosphamide for sarcoma during childhood. Cancer 2001;91:613–621.

Kierszenbaum AL. Transition nuclear proteins during spermiogenesis:
unrepaired DNA breaks not allowed. Mol Reprod Dev 2001;58:357–358.

Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E,
Lindahl T, Barnes DE. Accumulation of premutagenic DNA lesions in mice
defective in removal of oxidative base damage. Proc Natl Acad Sci USA
1999;96:13300–13305.

Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H, Kolodner RD,
Kucherlapati R, Pollard JW, Edelmann W. MutS homolog 4 localization
to meiotic chromosomes is required for chomosome pairing during
meiosis in male and female mice. Genes Dev 2000;14:1085–1097.

Kovtun IV, McMurray CT. Trinucleotide expansion in haploid germ cells by
gap repair. Nat Genet 2001;27:407–411.

Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem 2005;74:681–
710.

Laberge RM, Boissonneault G. On the nature and origin of DNA strand breaks
in elongating spermatids. Biol Reprod 2005;73:289–296.

Lindahl T. Instability and decay of the primary structure of DNA. Nature
1993;362:709–715.

Loft S, Kold-Jensen T, Hjollund NH, Giwercman A, Gyllemborg J, Ernst E,
Olsen J, Scheike T, Poulsen HE, Bonde JP. Oxidative DNA damage in
human sperm influences time to pregnancy. Hum Reprod 2003;18:1265–
1272.

Lue YH, Hikim AP, Swerdloff RS, Im P, Taing KS, Bui T, Leung A, Wang C.
Single exposure to heat induces stage-specific germ cell apoptosis in rats:
role of intratesticular testosterone on stage specificity. Endocrinology
1999;140:1709–1717.

Luning KG, Eiche A. X-ray-induced recessive lethal mutations in the mouse.
Mutat Res 1976;34:163–174.

MacLachlan TK, Sang N, Giordano A. Cyclins, cyclin-dependent kinases and
cdk inhibitors: implications in cell cycle control and cancer. Crit Rev
Eukaryot Gene Expr 1995;5:127–156.

Martin RH, Green J, Ko E, Barclay L, Rademaker AW. Analysis of aneuploidy
frequencies in sperm from patients with hereditary nonpolyposis colon
cancer and an hMSH2 mutation. Am J Hum Genet 2000;66:1149–1152.

Matsuda Y, Tobari I, Maemori M, Seki N. Mechanism of chromosome
aberration induction in the mouse egg fertilized with sperm recovered
from postmeiotic germ cells treated with methyl methanesulfonate. Mutat
Res 1989;214:165–180.

Mau Kai C, Main KM, Andersen AN, Loft A, Skakkebaek NE, Juul A. Reduced
serum testosterone levels in infant boys conceived by intracytoplasmic
sperm injection. J Clin Endocrinol Metab 2007;92:2598–2603.

McLaren TT, Foster PM, Sharpe RM. Identification of stage-specific changes in
protein secretion by isolated seminiferous tubules from rats following
exposure to short-term local testicular heating. J Reprod Fertil
1994;102:293–300.

McPherson S, Longo FJ. Chromatin structure-function alterations during
mammalian spermatogenesis: DNA nicking and repair in elongating
spermatids. Eur J Histochem 1993;37:109–128.

Menissier de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F,
Schreiber V, Ame JC, Dierich A, LeMeur M et al. Functional interaction
between PARP-1 and PARP-2 in chromosome stability and embryonic
development in mouse. EMBO J 2003;22:2255–2263.

Mieusset R, Bengoudifa B, Bujan L. Effect of posture and clothing on scrotal
temperature in fertile men. J Androl 2007;28:170–175.

Mieusset R, Bujan L, Mondinat C, Mansat A, Pontonnier F, Grandjean H.
Association of scrotal hyperthermia with impaired spermatogenesis in
infertile men. Fertil Steril 1987;48:1006–1011.

Minowa O, Arai T, Hirano M, Monden Y, Nakai S, Fukuda M, Itoh M, Takano
H, Hippou Y, Aburatani H et al. Mmh/Ogg1 gene inactivation results in

accumulation of 8-hydroxyguanine in mice. Proc Natl Acad Sci USA
2000;97:4156–4161.

Muller WU, Streffer C, Wojcik A, Niedereichholz F. Radiation-induced
malformations after exposure of murine germ cells in various stages of
spermatogenesis. Mutat Res 1999;425:99–106.

Muratori M, Marchiani S, Maggi M, Forti G, Baldi E. Origin and biological
significance of DNA fragmentation in human spermatozoa. Front Biosci
2006;11:1491–1499.

Ng JM, Vrieling H, Sugasawa K, Ooms MP, Grootegoed JA, Vreeburg JT,
Visser P, Beems RB, Gorgels TG, Hanaoka F et al. Developmental defects
and male sterility in mice lacking the ubiquitin-like DNA repair gene
mHR23B. Mol Cell Biol 2002;22:1233–1245.

Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA,
Haseltine WA, Fleischmann RD, Fraser CM, Adams MD et al. Mutation
of a mutL homolog in hereditary colon cancer. Science 1994;263:1625–
1629.

Paul C, Povey JE, Lawrence NJ, Selfridge J, Melton DW, Saunders PT.
Deletion of genes implicated in protecting the integrity of male germ cells
has differential effects on the incidence of DNA breaks and germ cell loss.
PLoS ONE 2007;2:e989.

Payne JF, Raburn DJ, Couchman GM, Price TM, Jamison MG, Walmer DK.
Redefining the relationship between sperm deoxyribonucleic acid
fragmentation as measured by the sperm chromatin structure assay and
outcomes of assisted reproductive techniques. Fertil Steril 2005;84:356–
364.

Perreault SD, Aitken RJ, Baker HW, Evenson DP, Huszar G, Irvine DS, Morris
ID, Morris RA, Robbins WA, Sakkas D et al. Integrating new tests of sperm
genetic integrity into semen analysis: breakout group discussion. Adv Exp
Med Biol 2003;518:253–268.

Reichart M, Kahane I, Bartoov B. In vivo and in vitro impairment of human and
ram sperm nuclear chromatin integrity by sexually transmitted Ureaplasma
urealyticum infection. Biol Reprod 2000;63:1041–1048.

Richardson LL, Pedigo C, Handel MA. Expression of deoxyribonucleic acid
repair enzymes during spermatogenesis in mice. Biol Reprod
2000;62:789–796.

Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ. Effects of
hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility
in adult male mice. Biol Reprod 2001;65:229–239.

Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains
involved in DNA double-strand breaks in vivo. J Cell Biol 1999;146:905–
916.

Romanienko PJ, Camerini-Otero RD. The mouse Spo11 gene is required for
meiotic chromosome synapsis. Mol Cell 2000;6:975–987.

Sailer BL, Sarkar LJ, Bjordahl JA, Jost LK, Evenson DP. Effects of heat stress
on mouse testicular cells and sperm chromatin structure. J Androl
1997;18:294–301.

Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, Nelson
DR, Thomas AJ. Negative effects of increased sperm DNA damage in
relation to seminal oxidative stress in men with idiopathic and male factor
infertility. Fertil Steril 2003;79(Suppl. 3):1597–1605.

Satta A, Stivala A, Garozzo A, Morello A, Perdichizzi A, Vicari E, Salmeri M,
Calogero AE. Experimental Chlamydia trachomatis infection causes
apoptosis in human sperm. Hum Reprod 2006;21:134–137.

Schiestl RH, Prakash S. RAD10, an excision repair gene of Saccharomyces
cerevisiae, is involved in the RAD1 pathway of mitotic recombination.
Mol Cell Biol 1990;10:2485–2491.

Schreiber V, Ame JC, Dolle P, Schultz I, Rinaldi B, Fraulob V, Menissier-de
Murcia J, de Murcia G. Poly(ADP-ribose) polymerase-2 (PARP-2) is
required for efficient base excision DNA repair in association with
PARP-1 and XRCC1. J Biol Chem 2002;277:23028–23036.

Sega GA. Unscheduled DNA synthesis (DNA repair) in the germ cells of
male mice–its role in the study of mammalian mutagenesis. Genetics
1979;92:s49–s58.

Setchell BP. The Parkes Lecture. Heat and the testis. J Reprod Fertil
1998;114:179–194.

Setchell BP, Ekpe G, Zupp JL, Surani MA. Transient retardation in embryo
growth in normal female mice made pregnant by males whose testes had
been heated. Hum Reprod 1998;13:342–347.

Setchell BP, Tao L, Zupp JL. The penetration of chromium-EDTA from blood
plasma into various compartments of rat testes as an indicator of function of
the blood-testis barrier after exposure of the testes to heat. J Reprod Fertil
1996;106:125–133.

Sharma RK, Said T, Agarwal A. Sperm DNA damage and its clinical relevance
in assessing reproductive outcome. Asian J Androl 2004;6:139–148.

Heat stress, DNA repair and male fertility

7

 by guest on N
ovem

ber 13, 2013
http://m

olehr.oxfordjournals.org/
D

ow
nloaded from

 

http://molehr.oxfordjournals.org/
http://molehr.oxfordjournals.org/


Slovinska L, Elbertova A, Misurova E. Transmission of genome damage from
irradiated male rats to their progeny. Mutat Res 2004;559:29–37.

Sorahan T, Prior P, Lancashire RJ, Faux SP, Hulten MA, Peck IM, Stewart AM.
Childhood cancer and parental use of tobacco: deaths from 1971 to 1976.
Br J Cancer 1997;76:1525–1531.

Sotomayor RE, Sega GA. Unscheduled DNA synthesis assay in mammalian
spermatogenic cells: an update. Environ Mol Mutagen 2000;36:255–265.

Sun H, Treco D, Schultes NP, Szostak JW. Double-strand breaks at an initiation
site for meiotic gene conversion. Nature 1989;338:87–90.

Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs
suggests imprinting of the genome during gametogenesis. Nature
1984;308:548–550.

Thonneau P, Bujan L, Multigner L, Mieusset R. Occupational heat exposure
and male fertility: a review. Hum Reprod 1998;13:2122–2125.

Tramontano F, Malanga M, Farina B, Jones R, Quesada P. Heat stress reduces
poly(ADPR)polymerase expression in rat testis. Mol Hum Reprod
2000;6:575–581.

Tsai PS, Nielen M, van der Horst GT, Colenbrander B, Heesterbeek JA, van
Vlissingen JM. The effect of DNA repair defects on reproductive
performance in nucleotide excision repair (NER) mouse models: an
epidemiological approach. Transgenic Res 2005;14:845–857.

Twigg JP, Irvine DS, Aitken RJ. Oxidative damage to DNA in human
spermatozoa does not preclude pronucleus formation at intracytoplasmic
sperm injection. Hum Reprod 1998;13:1864–1871.

van der Schans GP, Haring R, van Dijk-Knijnenburg HC, Bruijnzeel PL, den
Daas NH. An immunochemical assay to detect DNA damage in bovine
sperm. J Androl 2000;21:250–257.

Velasco A, Riquelme E, Schultz M, Wistuba II, Villarroel L, Pizarro J,
Berlin A, Ittmann M, Koh MS, Leach FS. Mismatch repair gene
expression and genetic instability in testicular germ cell tumor. Cancer
Biol Ther 2004;3:977–982.

Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay
(SCSA) parameters are related to fertilization, blastocyst development, and
ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm
injection cycles. Fertil Steril 2004;81:1289–1295.

Waldman T, Lengauer C, Kinzler KW, Vogelstein B. Uncoupling of S phase
and mitosis induced by anticancer agents in cells lacking p21. Nature
1996;381:713–716.

Walter CA, Intano GW, McCarrey JR, McMahan CA, Walter RB. Mutation
frequency declines during spermatogenesis in young mice but increases in
old mice. Proc Natl Acad Sci USA 1998;95:10015–10019.

Wang Y, Putnam CD, Kane MF, Zhang W, Edelmann L, Russell R, Carrion
DV, Chin L, Kucherlapati R, Kolodner RD et al. Mutation in Rpa1 results
in defective DNA double-strand break repair, chromosomal instability and
cancer in mice. Nat Genet 2005;37:750–755.

Weinert T, Hartwell L. Control of G2 delay by the rad9 gene of Saccharomyces
cerevisiae. J Cell Sci Suppl 1989;12:145–148.

Winther JF, Boice JD, Jr, Mulvihill JJ, Stovall M, Frederiksen K, Tawn EJ,
Olsen JH. Chromosomal abnormalities among offspring of
childhood-cancer survivors in Denmark: a population-based study. Am J
Hum Genet 2004;74:1282–1285.

Wolff H. The biologic significance of white blood cells in semen. Fertil Steril
1995;63:1143–1157.

Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes.
Science 2001;291:1284–1289.

Yaeram J, Setchell BP, Maddocks S. Effect of heat stress on the fertility of male
mice in vivo and in vitro. Reprod Fertil Dev 2006;18:647–653.

Zenzes MT. Smoking and reproduction: gene damage to human gametes and
embryos. Hum Reprod Update 2000;6:122–131.

Zenzes MT, Puy LA, Bielecki R, Reed TE. Detection of benzo[a]pyrene
diol epoxide-DNA adducts in embryos from smoking couples:
evidence for transmission by spermatozoa. Mol Hum Reprod 1999;5:
125–131.

Zheng P, Schramm RD, Latham KE. Developmental regulation and in vitro
culture effects on expression of DNA repair and cell cycle checkpoint
control genes in rhesus monkey oocytes and embryos. Biol Reprod
2005;72:1359–1369.

Zhu BK, Setchell BP. Effects of paternal heat stress on the in vivo development
of preimplantation embryos in the mouse. Reprod Nutr Dev 2004;44:
617–629.

Zini A, Libman J. Sperm DNA damage: importance in the era of assisted
reproduction. Curr Opin Urol 2006;16:428–434.

Submitted on October 9, 2007; resubmitted on November 28, 2007; accepted on
December 4, 2007

Paul et al.

8

 by guest on N
ovem

ber 13, 2013
http://m

olehr.oxfordjournals.org/
D

ow
nloaded from

 

http://molehr.oxfordjournals.org/
http://molehr.oxfordjournals.org/

