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Solving stochastic ship fleet routing problems
with inventory management using branch and
price

Ken McKinnon Yu Yu
School of Mathematics, University of Edinburgh

8th April 2011

Abstract

This paper describes a stochastic ship routing problem imitentory
management. The problem involves finding a set of least cages for
a fleet of ships transporting a single commodity when the dehiar the
commodity is uncertain. Storage at supply and consumptiots [is limited
and inventory levels are monitored in the model. Consumarathels are at
a constant rate within each time period in the determinjgtablem, and in
the stochastic problem, the demand rate for a period is nowkruntil the
beginning of that period. The demand situation in each tieréod can be
described by a scenario tree with corresponding probegsilit

A decomposition formulation is given and it is solved usirBranch and
Price framework. A master problem (set partitioning wittiraxnventory
constraints) is built, and the subproblems, one for each, slnie solved
by stochastic dynamic programming and yeild the columngtermaster
problem. Each column corresponds to one possible tree dnacfor
one ship giving its schedule loading/unloading quantifesall demand
scenarios. Computational results are given showing thatiune sized
problems can be solved successfully.

1 Introduction

The marine shipping industry has experienced an unpretedi@om over
the past decade. Not only because of the rapid growth of thérements of
the transfer more and more energy and commercial commsditien one

location to another, but also because the characteridttbe @cean shipping



industry, with its low transportation costs and huge logdaapacity, are
suitable for cheaply transporting huge amounts of products

The classical routing and scheduling problem for vehicled ships is
important part of the general transportation problem, aagireceived a great
deal of attention in academic research. A large number dfiplessolution
approaches have been presented in the literature, ingpleither exact
optimization methods or heuristic algorithms. A compreties review is
provided in Christiansen et al. 2004. This focuses on litgeaabout ship
routing and scheduling published between year of 1990 ai@8.20rhe
survey is presented in several different parts: strategyrphg problem,
tactical and operational planning problems, naval proklamd other related
problems. A survey of different solution methods in therétere is also
presented in the review. A mixed integer programming (MIR)del is
described in Ronen 2002 for the problem of transportingedifit bulk
products from a set of origins to a set of destinations by & fiéeahips.
A ship has separate compartments for different productshigsvoyage
goes from a single loading port to a single discharging pArtost-based
heuristic algorithm is also presented to obtain acceptabletion quickly.
Sherali et al. 1999 have presented a MIP model for the KuwetitoReum
Corporation (KPC) problem. Because of the integrality ¢oods and
large number of demand contract scenarios, the problemotdresolved
to optimality by the MIP model. An alternative aggregateddelas then
formulated and solved by a specialized rolling horizon fetigr method to
make the problem solvable. In the ocean shipping industyer opinion
is an important factor. Crary et al. 2002 introduce a modgdgrating the
expert opinion and MIP model for the problem of sizing the UStdoyer
fleet. MIP models for SRP are also built in Bendall and Steftl20ehrez
et al. 1995 and Shih 1997. Heuristics are developed in Ggeaaret al.
2006 in order to obtain an acceptable solution within reabltime when
solving the MIP model.

The Dantzig-Wolfe decomposition approach has proved tubeessful
for the vehicle routing problem with time windows. Desrochet al.
1992 were the first to propose a set partitioning model for \bhicle
routing problem with time windows solved by column genemafiand this
appears to be an efficient way of finding the optimal solutioAs for
the ship routing problem, it is also a good solution approadthere is
much literature on solving the problem by Dantzig-Wolfe aieposition.
Early papers Appelgren 1969 and Appelgren 1971 describeieatytramp
ship scheduling problem, which was the first work to use a Egnt
Wolfe decomposition approach for ship routing and scheduli The
master problem is the linear relaxation of a set partitignproblem and
subproblems are shortest path problems. But the algoriti@septed cannot
guarantee optimal integer solutions. In Christiansen apdgréen 1998a,



Christiansen and Nygreen 1998b and Christiansen 1999, eheand is
regarded as a constant and Branch and Price is used to selyedhlem.

The problem is decomposed into a ship route subproblem fohn ship

and a port inventory subproblem for each port. The approaebemted in
this paper is closest to that used in their paper. Compardieio papers,
the present paper deals with different inventory situatiand solves the
stochastic problem rather than deterministic problem.

In realistic shipping operations, especially for ocearpginig, much
of the planning data is uncertain. Deterministic models doip routing
and scheduling are sometimes inappropriate, and there i®ed o
develop stochastic model. The stochastic vehicle routiogplpm (SVRP)
without inventory constraints and with simple recourseams is discussed
extensively in the literature. Christiansen and Lysga&@d72use a branch-
and-price algorithm for vehicle routing problem with stasktic demands.
In their paper, the expected number of failures and the spoeding
penalty cost are considered in the objective function andva stage
stochastic program with fixed recourse and capacity canssras built.
Dror and Trudeau 1986 use a straight-forward modificatiorthef Clark
and Wright savings algorithm for the SVRP based on a disonssi route
failure. In Hjorring and Holt 1999 and Gendreau et al. 199%,irdeger
L-shaped method is used to solve SVRP to optimality. Bedsirh992
proposes a priori sequence among all customers of mininpda&d total
length, and a variety of theoretical approaches are andlgzewell. In
addition, several solution frameworks for the stochastisigle routing with
stochastic demands are discussed in Dror et al. 1989.

There are few references in the literature to stochastip sbiuting
problems with inventory. Christiansen and Fagerholt 20@&ents robust
ship scheduling with multiple time windows. A set partitiog approach
with the columns found a priori is proposed to minimize thamtes that
ships stay idle in ports during the non-working days. A Marktecision
process model of the stochastic inventory routing problgnmtroduced in
Kleywegt et al. 2004, and approximation methods are useddaficeptable
solutions.

This paper considers the problem of optimizing the distrdou of a
single commodity by a fleet of ships when there is limited ager at
the supply and consumption ports and the consumer demanttéstain.
Consumer demand is described by a scenario tree and demasslised to
be constant within each period. A solution constists of@tfeschedules for
each ship, where a schedule for a ship specifies the loadishgialpading
quantities at each port visited and the start time of eacln syeration
(which we refer to as aervice). These ship schedules must be such that the
storage limits at ports are satisfied at all times. The prob&formulated as
a multistage stochastic programming problem and is solyeldrénch and



price — a branch and bound based method that uses Dantzig-\IlV)
decompostion to solve each node. The master problem is agéigming
problem with extra inventory constraints. Each column ie tmaster
problem corresponds to a tree of schedules for a ship. Aitteacolumns are
generated by a stochastic dynamic programming using a ladikabeling
method.

The structure of the rest of the paper is as follows. Sectigrirdduces
the Dantzig-Wolfe decomposition approach and describesstiucture of
the master and sub-problems. This section also descrileetethniques
used to eliminate cycles. Section 3 gives the Branch and @algorithm.
Section 4 presents computational results and Section § gieeconclusion.

2 Decomposition  Approach for the
Stochastic Ship Routing Problem

2.1 Assumptions

The ocean transportation problem is too complex to consgery factor
in the real world when modeling the problem. To simplify threldem, the
following assumptions are made before introducing theildetanodel.

e At each consumer port, the rate of demand is constant witpiriad,
but can change between periods.

e Ateach port, loading and unloading rates are constant.

e At most one ship can be loading or unloading at any given tifes
assumption avoids the overlap of services at a port.

e For each ship the travel time and cost between any two patixad.

e Aservice at a port must start and finish within a period. Thasyever,
is not a limitation as the service can continue without a bieahe
following period.

2.2 Solution Framework

A branch-and-price algorithm is used in this paper. Thisstxis of a
master problem which is solved by branch and bound (B&B)hveiich
node in the B&B tree being solved by Dantzig-Wolfe (DW) degasition.
Each column in the master problem corresponds to a tree adsbs
for a ship. There are an infinite number of these columns, hatDW
approach generates only a finite number of them. In eachiagaraf DW a
subproblem is solved for each ship to generate an attracteeof schedules



for that ship. In this paper the subproblems are solved lyhststic dynamic
programming.

At any stage in the solution of a master problem at a B&B nodniae)
subset of the columns will have been generated. This probteded a
restricted master problem, is solved and the shadow prici® @onstraints
are then used to find the most negative reduced cost from arhengn-
generated columns. This can be done without explicitly gty any
columns by solving a stochastic dynamic programming probdeparately
for each ship. The solution gives the tree of schedules ®isttip. If this
added as a column to the master problem, it would have thdeshaégative
reduced cost among all the possible columns for that shifs giocedure
continues until no column with negative reduced cost candree@ted, at
which stage the master problem for that B&B node has beerdolv

2.3 Master problem

The detail formulation of a master problem is introducedehek port can

be visited several times within the time window of a scen&ée node, so
an index for visit number is needed. In the model, many objact index
by the triple (Port, Visit, Scenario node) which is referrasl a port visit.
For any ship, there are a set of trees of schedules for it. Tabklgm is

to choose one tree of schedules for each ship. We introducddtails of
master problem as below.

Indices

[ — port
Kk — scenario tree node
a(k) — predecessor node of nollén scenario tree

m —mtth visit at porti in nodek

v — ship

S — tree of schedule for one ship
(i,m, k)— a port visit

Sets

N — set of ports

V — set of ships

K — set of scenario tree nodes

KT — set of scenario tree nodes in final period
P — set of port visits

R, — set of tree of schedules for ship



Parameters

Asiimk — 1 if shipv makes port visi{i,m k) in tree of schedules, 0 otherwise
Cs —expected cost if shiptakes the tree of schedulss
Qsiimk — quantity unloaded by shipin port visit (i,m,k) (-ve corresponds to
loading) if ship makes that port visit in schedule tezand 0 otherwise
Taimk — the start service time for shipin (i,m, k) if the ship makes
that port visit in schedule treg and 0 otherwise

Bx  —end of the time period which includes the ndde

W —unloading rate from ship to pori{-ve corresponds to loading)

M —the maximum number of visits to any port in a scenario tredeno
Dik —demand rate in portin nodek (-ve at a supply port)

S  —initial stock level in pori

S — upper bound for storage in part

S — lower bound for storage in poit

The values of parametelsyimk, Qsimk and Tgimk are found by solving
subproblems. These three parameters represent the rdotmation and
they are zeros or non-zeros at the same time. If port {iigit, k) is made by
shipv in schedule tres, parameteRgink IS 1. And parameterQsink and
Tsimk represent the quantity loaded and the start service timéhisrport
visit respectively. BuBgi« could be an integer value greater than 1 if there
are cycles involved in the solution.

Variables

Xsw — 1if shipvtakes schedule tree and O otherwise

Vimk — 1 if some ship makes port vigit,m k), and 0 otherwise

Qmk — amount of commodity unloaded from a ship during port \(sitn, k)
(-ve corresponds to loading)

tS.  —the start of service time in port visit,m,k)

tt, —the end of service time in port visit, m k)

he . —the stock level at timé>,

hE, —the stock level at timg-,



Formulation of Master Problem

min CavX (2.1)
VGZ/S;V o

2 AsiimXsy = Yimk V(i,mK) € P (2.2)
VeV SERy

2 QsvimkXsy = Uimk V(i,m, k) ebP (2.3)
veV seRy

2 TSVierXSV+ (1_yimk)Bk = ti?nk V(i, m, k) eb (2.4)
veV seRy

sz\,:l YweV (2.5)
SERy

X >0 YWeV,seR, (2.6)
{X« : s€ R/} yield a valid tree of schedules for shipWv (2.7)
Yimk € {0,1} V (i,mk) € P (2.8)
th = tiy -+ Qim/WE V(i,mk) € P (2.9)
thn_1k <tk V(i,mk) eP, m>1 (2.10)
Yimk = Yime1k V(i,mk) €P (2.11)
he = Mo — (5 —t5,)Dik + Gimk V(i,mk) € P (2.12)
hf — (Bk—t5, )Dik >0 Vie N, ke KT (2.13)
hPk=S—toDik VieN, m=1 k=1 (2.14)

Mk = M- 1k — (o — thm-10Dik V(i,mk) ePm>1 (2.15)
hik = M .ao — (Bago — tiva ) Diialky

— (tiy— Bag)Dik VieN,m=1k>1 (2.16)
S<hd,, hE, <S V(i,mk) eP (2.17)

In (2.1) we minimize the total expected costs. ConstraifiS)(and (2.6)
result in a convex combination of schedule trees for eagshio be valid
this convex combination must be the same as a single schedele This
can only happen if all schedule trees for shigorresponding to, > 0
follow the same tree of routes and the cost functions areatimver the
convex hull. Constraints (2.2) calculates number of o@nges of a port
visit and ensures that each port visit occurs at most once.vatiabley;

is 0 if there are fewer tham ship visits at port in scenario nod& and is 1
otherwise. Constraint (2.3) calculates the loading or adilog quantity and
constraint (2.4) calculates the start of service time fahgaort visit. If port
visit (i,m,k) occurs, then the first term in (2.4) gives the start time fait th
service and the second term is zero. If port \V{sitn, k) does not occur, then
the first term will be zero and the second term willBg i.e. the end of the
period for nodek. Constraint (2.9) calculates the end of service time and
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constraint (2.10) guarantees that there is no overlap lestvivwo services
i.e. a later port visit can only be served after the servicgrelious visit
has been finished. Constraint (2.11) ensures that if a peisited m+ 1
times in a scenario node, it must be visitedimes in that scenario node.
Constraints (2.12)-(2.17) are the inventory constraifiteey ensure that the
storage level is between the upper and lower bound of thagtotank at
the start and end of each service. Since all flow rates ardamnwithin a
scenario node, the inventory level will change linearlyven the start and
end service times. So the constraints ensure that the mweistwithin the
bounds all the time within the whole planning period.

2.4 Reduced Cost

After a restricted master problem is solved, dual variabdsbe known.
These dual variables are denoteddfy,, di%k, dl, anddS for constraints
(2.2)—(2.5) respectively. The reduced c@g} can then be calculated as
following:

Co =Cs— Y (Asimkiny+ Qeimkdine + Tovimkhin) — A7 (2.18)
i,mk

(i,mk)— (T k') €Es (i,mKIENs

(2.19)

whereP is the cumulative probability from start to no#teén the scenario
tree,Es the a set of edges included in tree of schedalas; is a set of port
visits included in tree of schedulssandCij., is the traveling cost along the
edgei — i’ for shipv.

Equation (refoo) expresses the reduced cost as the summtd terer the
edges and nodes in the tree of scedules.

2.5 Ship Routing Subproblems

The parameterQsimk andTgimk as well as sefEs andNg in (2.19) represent
the route information generated by subproblems and is rethgn advance.
We wish to generate a column with the minimum reduced costeseplace
these parameters with variablegmn andts , and also a variable route,
which is specified by the sets eddgesind node$ in the schedule tree. For
a shipv, the objective of the subproblem can be formulated as faligw



= rginminmin[ PCiiv

Noa oS (i,m,k)—%m,k/)ee

- ; (e + A ik + At S)] — A5 (2.20)
(i,mk)eN

In formulation 2.20, we try to find a physical visiting sequenand the
corresponding values Ok andtg’,imk for each port visit in the sequence so
as to minimize the reduced cost presented in formula 20§9n 2.19 does
not need to be considered in the subproblems. It can be stéxdrérom the
objectives after solving the subproblems.

A ship subproblem then can be formulated as a shortest t@eon
and solved by stochastic dynamic programming. The solaidhe shortest
tree problems is a tree of schedules with the least reducst] @od yields
a column that can be added into the master problem as a collihenstate
in the DP is(i,m,k,g,t), wherei is port, mis them-th visit, k is the node
of scenario treeg is the amount of commodity on board the skipvhen
the ship arrives the port visii,m k), andt is the start service time for the
port visit (i,m k). Both start service time and quantity on board the ship are
continuous quantities. In practice, we use discrete guesfor bothg andt
so as to allow a discrete version of DP to be used. A reguldrignised for
the discrete start service tinte If a start service time is between two grid
points, it will be delayed to the next grid point. Howeverjngsdiscrete
values forg andt does not mean that our model can only generate the
solution with these discrete values. In fact, the masteblpro may choose
several columns with the same physical tree of routes bferdifit time
and loading quantities and use the average of these colusrthe aolution,
which may have the start service times and loading quastiliigerent from
discrete values.

2.5.1 Dynamic Programming Networ k

In this section, we describe the DP network for the ship soitpms. For
each port visit in the network, there is a start service nadkam end service
node related to it. And we allocate the costs in the objedtite different

edges in the network. The DP network for a ship subproblemelaed to

the scenario tree which describes the pattern of consunteamds. We
divide the network into several parts, each part, called ateimscenario
part, represents a scenario node in the corresponding tmedpso that the
DP network has the same structure as the scenario tree. §ae Hias an
example.

In a DP network, a ship starts from the dummy start node,svesiet of
port visits in different demand scenario parts of the nekywand finishes the

9
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Figure 1: Structure of DP network

trip when it arrives at the dummy final node. Within a demarehseio part,

if the ship is on a start service node, it makes decisions tahow much

to load or unload at the current port visit. And when the skipn an end
service node, it has choices of three different actionsariit gail to another
port visit in the same demand scenario part and do anotheiceeo the

port visit, it can leave the current port visit immediatelydasail to the port
visits in the demand scenario parts of the next period, caiitdelay at the
current port visit until the future information is avail&lWe will introduce

the nodes and arcs in the DP network which are associatedivesie ship
actions later in this section.

Figure 2 is a simple example of a DP network with two time pasio
There are three demand scenario parts in the network. Tht reide
corresponds to the initial status of the ship. Its statugigdd by its position
(in some port or at a position at sea) and the amount of cargheship.
The different types of nodes in the network are listed in disdd below:
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Figure 2: DP network with
scenario part

(A1,1)

(o

=

Period 1

(B,1,3)

Period 2

maximum of one visit to each port acle demand

Node Type Description
(® | decision nodg start service node: decision made on the node is to choose
how much to load or unload during the port visit
© | decision node end service node: decision made is to choose next port visit
or decision to delay until more information is available
EH~) | sum-up node| sum-up node: expected value of sailing at current time from
porti in current period to porf in next period
(o] sum-up node| sum-up node: expected value of delaying sailing from port
to the end of the current period
& | decision node split node: decision at current time of which port visit of a
given port to visit first in the next period
<® | decision nodd split node: decision at end of current period of which port

to visit in the next period and which is the first port visit
for that port

As shown in the table, nod® and® are both decision nodes in the
DP network. Each port visifi, k) has a start service no@® and an end
service nodé® . For each boundary between two periods there istdné
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node for every pair of portsand j. This is associated with a journey from
porti to portj in a later period starting before the period boundary whiege t
next period demand information is revealed. E&dh’ node is linked to a
set of@decision nodes, one for each demand scenario node in toeviiod
period. Eackis associated with one future demand scenario part and one
port and selects the first port visit for that port. For examal ship can go
from end service node of port vigiA\, 1, 1) to sum-up node?* ® and sail to
the start service node related to physical @im period 2 through the split
nodes. The horizontal line inside the node means that the window of
this node is the whole period including the node. Another-symmode on
the boundary between two perioddss. This is associated with a journey
from porti to any port in a later period after the demand information for
next period is known. Again ead® node is linked to a set €® nodes,
one for each demand scenario part. The decisions made @hesdes
can be different from each other according to the known dehsétnations.
The dot inside the node indicates that the arrival time te fioide is fixed on
the period boundary. In the DP network bathand () nodes are decision
nodes. We use different symbols here to tell whether a detisimade to
visit a node within the current period or a node in future periThe details
about how these nodes relate to different ship actions irpthblem are
given in the later.

Within demand scenario part of the DP network, a ship arrates start
service nodéS), starts loading or unloading, finishes the service at ©de
and sails to other nodes. In Figure 2, each node relategadtiff@liscrete
values for the quantities on board ship when it arrives anhtiee and a grid
of start service time points so that the cost function on esxde has three
dimensions. An example of the cost function is given in FégBir

Since there are a group of discrete quantities and time painteach
node, a service is decided by the time points and quantitieboth start
and end service node. See Figure 4 for example. In the exampléave
a point in the cost function of a start service né8eand it relates to the
time t; and quantityg; on board a ship. Then three different points in the
cost function of an end service nd@give three different service situations.
For instance, poinfts,g3) means a service lastirtg—t; with a loading or
unloading quantitygz — gi.

Within a scenario part of the network, there are arcs from semice
node®to start service nod® . These arcs are the traveling arcs, and there
are traveling times and traveling costs related on these &ach end service
node®) (related to physical poi) is linked with several sum-up nodes !
and one sum-up nod®'. The port visits of the same physical port share the
same sum-up nodes. For example, in the network both endccearedes of
port visit (A, 1,k) and(A, 2,k) are linked with sum-up nodel &, _E_A_A and
[@. There is no transition time on the arcs from n@éo node= ! so that

12
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Figure 5: Detailed DP network with different end service esavithin a part

the time grids on both nodes are the same. While sum-up@bikeon the
boundary of a period and there is only one time point in the fiosction.
Hence the arcs from nod® to nodef®] may have nonzero transition times
on them. There are also a set of arcs linking the end servide®avith the
final dummy node in the network. These arcs are needed wheimgdhe
DP along the network.

The DP network shown in Figure 2 looks simple, but becausk pade
contains all the possible combination of discret@ndg, we may have to
consider a large number of situations tond g when updating the cost
function along an arc in the network. An alternative way tddthe DP
network is to use different nodes for different discrete mjitees on board
ship @) instead of using a single node associated with a group ofetis
guantities on the node. Figure 5 shows an example DP netwpotlsing
different nodes for different quantitigg within a demand scenario part of
DP network. A start service node links to several differerd service nodes
with different quantities, and each link between the stanise node to one
of the end service nodes relates to a loading or unloadingceenn this type
of DP network, the end service nodes related to the samegqathysirt and
the same quantity on board the ship will share the same sunodgs. For
instance, we can see from Figure 5 that end service no@, &f1,g;) and
(B,2,1,01) are linked with the same sum-up nodeE B, B " and[eFf.
This DP network is used when we solve the subproblems inipeacand
later we will build DP recurrence formulation based on thisdkof network.

According to the objective function of the ship routing stdigem, the
edge costs in the DP network are given in the following table:

14



Edges Edge Costs Edge Time
O—® —doylof — 0% —dlutiu—dh 10 —g%/W

imk

O —0® PCiirv travel time
®—=0 RCiirv travel time

In the tablegS is the amount of commodity on board the ship when it arrives
at start service nodg, m,k), while gF is the amount of commodity on board
the ship at end service nodem, k). So the difference between thegF —
g®| is the loading or unloading quantity in port vigitm, k). W is the loading
or unloading rate for the ship which is a constai is the cumulative
probability of reaching nodk in the scenario treeC;;, is the traveling cost
from porti to porti’ by shipv. Other edges which are in the network but
not included in the above table have zero costs and are uskdiltbthe
stochastic structure of the network.

This is a stochastic DP problem with time windows, becausé eade
in the network has a time window for start of service. Inljiathe time
window of a node is the full time period but it can be reducedHhz/Branch
and Bound method when solving the problem.

2.5.2 Dynamic Programming Formulation

The direction of solving stochastic dynamic programmindr@sn dummy
final node to the dummy start node. The solution can then lokddafrom
the start dummy node. In the networks of our ship subprohleéhese are
several different types of nodes: start service né8e®nd service nodeé®
, sum-up nodesd ! and[®!, and split nodes>. These nodes are indexed in
different ways, so in order to avoid having to write diffetéP recurrence
relation for each possible transition we shall introducdangle index for
each node in the network. If this is denoted lbgnd then the recursive
formula fi,(t) is the least expected cost from nodat timet to the final
node in the network. In our problem, there is a time windowtfor start
service time for each node (i.ec [A.V, I§|\,]). The value on the final dummy
node fL(t) is set to zero. However, if we want to give a reward for a ship
finishing early, then an increasing function can be usedfdt). The detail
DP formulation is given below.

For decision node$s), ® and<) the recurrence formulas for shipare:

e For start service nod®:

fiv(t) = I,Tlrll,{fl’v(t+-rll’)+éll'v}a teAvBy (221)

e For split noded:

fiy(t) = min min {fin(1) +Cin}, t € [Ay, Biv](2.22)

11— max{,&,,v7t+f||, }STSEUV
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e For end service nod®:

fiy(t) = min{ min _ min AR +Cin},
I':I—>I’max{AVV,t+'I'”/}§t§B|/\,

|'r;T|]Lr|]'{f|/V(t+-ﬁ|/) +Ci}} te[Ayv,By
(2.23)

A, andB,, are the lower and upper bounds of the time window at rlode
Gy is the cost of edgé — | for shipv, which is shown in the table in the
previous sectionT,, is the transition time from @ nodel to a® nodel’,
and for other cases is the minimum time for the transitionformula 2.23,
if I’ is a(® node we use the first item, while lif is a® node, we use the
second item. o _

Whenl is a sum-up noded ™! or[®], the cost function is:

fiy(t) = firy(t), te[Ay,By (2.24)
1=
We want to find the cost function at start dummy ndge(t), wherelg
is the dummy start node, according to above DP recurrenceulations.

2.5.3 Algorithm for solving subproblems

In literature, the algorithms for the shortest path probieith time windows
usually assign pairs of labels to each time in each node. Bade in
the network is associated a label, which consists of a lajethie cost of
the path to the actual node and a label for the visit time antee. The
algorithms update these labels for each node through theorieaccording
to the dominance rules iteratively until there is no impmoest can be
made for any node. This is called a Labeling Algorithm in rhteire.
Literature Desrochers and Soumis 1988a, Desrochers anohiSdi988b
and Desrosiers et al. 1995 give the details about theseitlig:

As a stochastic model is built here, we want to find the shbtteg
through the network from the dummy start node to the final négdeh time
within a node has a label which is the lowest expected costkricom that
node to the final dummy node. By deleting the final node anddhesinto
it we can get a tree. This is the shortest “tree” problem witretwindows.
The shortest tree problem with time windows, can be solvedtbghastic
dynamic programming, and generalizes the shortest patiigarowith time
windows. Cost on each node is the minimum expected cost fnerourrent
node to the final node as a function of the time of reaching tineent node.
An example of a cost function is shown in Figure 6. The costfioms in
our problem are increasing functions. In our DP networkrdhe a known
start node and a known final node, so in the deterministic aaskave the
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Figure 6: Cost function

choice of calculating costs from the initial node or costgfithe final node.
In the stochastic case however we need to calculate the texpeasts to the
final node. We therefore start the iteration by setting tHeevaf the final

node to 0 and all other nodes to infinity, and update the costion on each
node in the network from the nodes on its outgoing arcs.

When solving the DP problem, we need to update each node in the
network using the DP formulation given in last section. Besathe graph
contains directed cycles, we may not be able to finish the tipgdy
going through the network only once. So we have to update dke ©osts
iteratively and prepare to update the cost for one node aktigres. In an
iteration of updating, we go through each node in the netwamkl for each
node we consider all the outgoing arcs from the node. If thaebeen any
updating in the end node of an outgoing arc in last iteratremwill update
the cost of the start node of the arc using the cost functichefnd node.
For the sum-up nodes, if one of the corresponding split naslegpdated
in the previous iteration, the sum-up node will be updatedhi: current
iteration. Therefore, we use a flag for each node to indicdtetier or not
the node is updated (for any time) in the last DP iteration.

We do the updating through the DP network for each node inrdrdm
smaller index to bigger index. The number of iterations mespliduring the
updating is highly depended on the order in which the nodélseohetwork
are updated. Before updating cost functions through nétwee need to
first find an order for nodes in the network and we do this agfasl In our
network, the minimum number of steps from each node to thé dimamy
node is first calculated and an order of nodes is decided bgkalg the
numbers: the node with a smaller minimum number of stepsaditial will
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get a smaller node index, which means it will be considerezhigarly order
during the updating.

Once we have updated cost function for all the nodes and there
been no changes, then the optimal costs have been found arttbase the
least cost from the cost function of the start dummy nodeeémigtwork and
track the shortest tree through the network.

3 Branch and Bound

The optimal solution of the stochastic ship routing problenmst satisfy the
discrete restrictions relating to the relation of singleites for each ship.
Branch and Bound algorithm is used here to search for feaslidcrete
solutions. At each node of Branch and Bound tree a problerh thie
discrete requirements relaxed is solved using column génar method.
If the solution of the problem does not satisfy the discregastraints or
includes a cycle, we branch so as to eliminate one of thesasitilities.
The columns generated from subproblems are kept in the mastblem
for other Branch and Bound nodes, only the infeasible colisyieleted by
setting the upper bound of the column to zero. There are af latags to
decide branching strategies. We do branching on the fraaiticariables in
the following order.

If there are columns with positive weight in the solutionttbarrespond
to a path with a cycle, then we first branch on a time window sdoas
eliminate a cycle. Assume that port vigitm, k) is involved in a cycle. Let

{t%,....tX} be discrete start service times associated with the poitt vis

(i,mKk). Lettim = 1/K %Ktﬁ]/k denote the average of these start service
y=1.

times. We do branching by splitting the time winddeb] for the start

service time of port visiti,m k). Since the width of the port visit time

window is also reduced in child nodes, there is less changetihg other

cycles later in the solution.

If there are no cycles in the solution but there are fractigomat visit
variables, then a branch is made so as to either force a ittteioccur
or not to occur. For a poifitand nodek, the set of port visit variableg«
satisfiesyitk > Yiok > VYisk > ... > Yim—1k = Yimk and to be feasible all values
must be 0 or 1. We first calculate for each combinatiofi &) the difference
between consecutive pairs of variables and choose the maxiifference:

Yik=__max 1y =i
ik 1§m§M—1{yl’m+l’k Yimk}

We then choose the minimum value §§k, and choose the maximum value
of yimk Which is less than 1 and branch on that variable. If the chgggn>
0.5, we branch first o = 1 and the other branch y&x = 0. If the value
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of chosenyink < 0.5, we branch first oryjnx = 0 and the other branch is
Yimk = 1.

When in a branch, wherg, ;, is set to 0, no port arrivaléi, m k) can
occur form>m. So we delete all the port arrivél, m, k) (wherem> m) as
well as all the edges linked with these port arrival from tleéwork of each
ship. Ify,;, is setto 1 in a branch, no update happens for the structure of
the ship networks. However, an artificial negative cost degito each edge
from start service node of port visit, m, k) to end service node df,m k),
which makes port visiti,m, k) more attractive and more likely be included
in the solution of the corresponding subproblem.

If there are no cycles or non-integgin, then we calculate the flow
Ximkjnlv, WHEre Ximjniv = Y scR:(i,mk)—(j,nl)eEs Xsv-  This quantity defines
whether or not shiw sails from port visit(i,m, k) to port visit (j,n,l). For
each(j,n,l), we find the maximum fractional value f@fjny. Then from
these maximum values we choose the minimum value Oyerl). The
formulation for this process is shown as the follows:

min max{Ximkjniv }
j,nlimkyv

If the value of the chosen variable is less thah, Qve branch first on
Ximkjnlv = 0 andXimkjniv = 1 in the other branch. In the branch whegigjniv
is set equal to 0, the shipdoes not sail fron{i,m,k) to (j,n,l). Hence all
corresponding edges are deleted from the network of ghip the branch
wherexinkjnv Set to 1, we delete all the arcs for skipoming out of(i, m, k)
except those going intgj,n,1). For all other ships, the arcs frofh m, k) to
(j,n,1) are deleted from the networks.

Depth first branch-and-bound algorithm is not the fasteateqy if we
wish to prove optimality. However, because of the probleze 2f the
stochastic ship routing problem, we may fail to find the istegolution
before reach the memory or solving time limits. Hence whewisg the
problem, we use Depth First branch-and-bound algorithne tser as to
find a feasible integer solution earlier. However, Best tHmsanch-and-
bound algorithm is known as the fastest searching stratépggrefore, we
can combine these two branch-and-bound strategies togatieg the first
Depth First Search to find an early integer solution and thveitck to the
Best First Search so that we can finish the searching eailieis mixed
strategy was tried on some examples and was effective, leswies results
below are for the depth first search case.

4 Examplesand Results

To test the models and solution methods developed in thigrpapset
of test problems has been built. The implementation is anitnh C and
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CPLEX10.0 is used to solve the sequence of LPs in each BrarttBaund
node of the master problem. The ship subproblems are indepéwf each
other and are solved in parallel using OpenMP. The struatinetworks of
subproblems are generated a priori and input as data.

Table 1 gives the characteristics of each test problem.

EX Ports Max Arrival Scenario Nodes in tree Planning Periods anBhes Ships
al| 3 2 3 2 2 2
b1| 5 3 3 2 2 2
b2| 5 3 3 2 2 2
b3| 5 3 3 2 2 2
c1|5 3 7 3 2 2
2|5 3 7 3 2 2
3|5 3 7 3 2 2
d1| 6 4 7 3 2 3
2| 6 4 7 3 2 3
3| 6 4 7 3 2 3
flls5 3 13 3 3 2
2|5 3 13 3 3 2
gl| 6 3 13 3 3 3
2|6 3 13 3 3 3
93| 6 3 13 3 3 3
hi|8 4 40 4 3 3
h2| 8 4 40 4 3 3

Table 1. Example Information

In table 1,al is a very small problem. This example was built to
demonstrate the details of the solution, including thet\@sguences, start
service time, quantity on board each ship, the storagedewsid so on.
All of these details are given as an example later in thisisect The
examples named with the same first letter are problems withstime
physical ports layout and the same scenario tree strudiuteljfferent initial
inventory levels and demand rate situations at each pog.‘Nax Arrival’
column gives the maximum number of possible arrivals fohgamt in each
scenario tree node, which is the paramatein the formulation introduced
before. ‘Scenario Nodes’, ‘Planning Periods’ and ‘Brarglmlumns give
the structure of the scenario tree. For example, in exargplethere are
13 scenario tree nodes, 3 time periods and 3 branches edcdd jrethe
scenario tree, which indicates a scenario tree as showmguré-ir.

In the stochastic ship routing problem, we use the comhinatof (port,
arrival, scenario node) as the state of the problem. For @ach visit
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Figure 7: Scenario tree of Ex. g1

(i,mK), the start service time of the port visit should be within i
window. In all the examples here, we set the initial time vawdor each
port visit (i,m,K) to be the full time period of the scenario tree nddeln
the dynamic programming problem for ship subproblems etlzee several
nodes related to a port visit, for instance start serviceenedd service node,
two types of sum-up nodes and splitting nodes, as discussgekition 2.5.1.
There are also a set of links between two nodes in the DP nletwde allow
ships to travel between supply port visit and consumer geit, \and travels
between two close consumer ports within the same scenagmtrde. There
are arcs linking the sum-up nodes and the splitting nodesetisaw/ linking
the splitting nodes to the start service nodes. This infoionas given in
Table 2. The table also shows the numbefiofn, k) combinations and the
number of constraints in the master problem.

The computational results are shown in Table 3.

Table 3 gives the number of branch-and-bound nodes usedddhin
optimal discrete solution, the total number of columns gateel from
the subproblems, the total solving time, the elapsed timesddving the
subproblems and the total number of column generationtite® in the
master problem.

Examples al to c3 are relatively small and can be solvedmétiminute.
However, when the problem size is increased, the solvingdifar the later
examples increase sharply. Another factor which may effexsolving time
is the initial storage levels and demand situations. Fdaimse, exampld 1
and f2 have the same problem structure, but different initiafage levels
and demand situations, af@ is solved much faster thefl. This is because
the initial storage levels and demand situations are mtlatehe number of
visits to each port in each scenario tree node. If there icgerit initial
storage at a port, fewer visits may be required, which regldice length of
the visiting sequences for ships and makes the problemreaselve.

As previously discussed, because of the size of the DP nk$ywtine
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EX | nodes edges (i,m k) combinations constraints
al | 56 82 18 152
bl | 137 706 45 372
b2 | 137 706 45 372
b3 | 137 706 45 372
cl | 347 1786 105 862
c2 | 347 1786 105 862
c3 | 347 1786 105 862
dl| 416 2335 126 1033
d2 | 416 2335 126 1033
d3 | 416 2335 126 1033
fl | 632 3421 195 1607
f2 | 632 3421 195 1607
gl | 758 3421 234 1928
g2 | 758 4477 234 1928
g3 | 758 4477 234 1928
hl | 3170 23481 960 7898
h2 | 3170 23481 960 7898

Table 2: DP and Master Problem Dimensions

major solving time in each example is used to solve the sHaprallems,
and Table 3 indicates that around 75% — 93% of the total timmees solving
the subproblems. Here we solve subproblems in a parallel seags to
reduce the total solving for the subproblems.

Some detailed solutions are given based on two of the abamaEes.
In examplecl, there are 5 ports, and pors B andC are customer ports
and portdD andE are supply ports. The left hand side of Figure 8 shows the
scenario tree of the example, and the demand trend changashirscenario
tree node. The tree of routes on the right hand side of Figwskosvs the
ship routes in the solution afl. In the figure, ships choose different routes
according to the different demand situations in each perfear instance,
ship 1 visits the different ports in the upper and lower cage®riod 2, since
in the upper case the demand for parndB goes up while the demand for
port C goes down, and in the lower case the demand situations drth@is
opposite. In period 3, ship 1 does nothing in the lower casd, this is
because all of the demands are satisfied in the case so thaighe need
to travel any further.

Figure 9 shows the optimal solution for example b1. The palsoutes,
inventory levels and quantities on board ships are showre changes in
the storage of each consumer port and on ships as a functibmefcan
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EX | B&B nodes Columns timetotal time sub Master itérs
al 6 56 0.8 0.6 24

bl 78 1251 13 11 497
b2 177 3079 31 25 1407
b3 219 4204 47 41 1973
cl 81 2435 20 18 879
c2 87 3948 26 21 1633
c3 237 4757 57 48 1978
di 564 6206 120 103 2649
d2 63 1353 15 14 284
d3 750 6945 138 105 2954
f1 405 9034 439 379 3799
f2 138 3623 126 118 1181
gl 342 7241 403 352 2805
g2 624 11557 705 611 4731
g3 132 4109 181 161 1298
hl 3598 30753 3690 3112 43850
h2 2987 31983 3371 2958 40791

Table 3: Computational Results without Tolerance

be clearly seen. In period 1, ship 1 sails the rdote+ A— D. There is a
unloading service made by the ship at parso that there is an increase in
the storage level at poA. There are also two visits made by ship 2 to port
C, so the storage level of po@ goes up twice during the period. There is
no visit to portB for the whole period, and the stock level of p&tgoes
down throughout the period because of the constant deméadAaimilar
situation can be seen in period 2 from the same figure.

5 Conclusion

In this paper, we propose a solution approach to solve sstictehip routing
problem with inventory management problem. In the problelemand
is the only uncertainty. A Branch and Price algorithm is présed in the
paper. A master problem is formulated as a set partitionindehincluding
inventory constraints, while a subproblem for each shiplgexd by dynamic
programming to find the least reduced cost columns for theenpsoblem.
The optimal integer solution is searched along the BranchBound tree
and column generation method is used to solve the relaxetekdively in
each Branch and Bound node.

23



demand A CA .
demand A B 4 demand BY period 1 period 2 period 3
demand CY E-C-E-C
C>/ sor / B 4D—>B—'/
\ ) E-C-E——
demand A C E~-C
// Q demand By C-E-C —
demand kno

emand AB A demand A C}

d
Period 1 demand Cy demand BY D—A
Q/ Ship 2 D—A-B—D—A < b-B
D"A"D"A"<
D—A

<D_'A4' D—A
Period 2 demand A C4 D—B

demand BY

Period 3 0 Time

Figure 8: Solution cl1

To solve the ship routing subproblems, a backward set ladpaligorithm
is used to solve the stochastic dynamic programming probléme method
we use is analogous to the methods that have been used inténmihéstic
case, but have had to be extended to deal with the scenarioHing in the
stochastic case. The minimum expected costs from the stdet to the final
dummy node is calculated. Because of the complicated DPonietthere
are many possible cycles (which are not feasible in a saluti®-cycles
are eliminated when solving the subproblems and other syelth length
greater than 2 are eliminated during the Branch and Boundrighgn by
splitting the time windows. Because the ship subproblerasratependent
of each other, OpenMP is used to solve these subproblemgafigbaon a
multi core computer.

From the computational experience, our decomposition otk able
to solve medium sized examples. A set of test examples withreint
geographical port layouts, number of ships, scenario tneifitial storage
situations were built and were solved by the decompositi@thod. Our
computational experience shows that around 75% — 93% of ldpsed
time to solve the problem is used to solve the ship subprableven when
examples are solved in parallel. The rest of the elapsedviaseused to do
Branch and Bound administration and solve the LPs. We cammotver
solve large problems. Because of the need to model on entreso tree,
the stochastic problems become large, even for a smallgoaihsetwork.

For the future work, an alternative model, which allows divey cases
during sailing for ships, can be explored based on the mogehgn the
paper. Generating useful columns in a heuristic way a piganother
possible further work. The generated columns can be addedha master
problem as initial columns so that we can solve the probleth wiwarm
start, which can help us solve the problem quickly.

24



ship1 e A ¢ 1
Demand at A, B C s s
O Demand at} Ship 2 O—+—0
Inventory - : :
2800 Max
2500 | -
2200 | -
Period 1 Demand at A o
O ! 1600 |- -
Demand atf 1300 [
. 1000
Period 2 200 |-
400 | -
100 Min
ship1pl LoA P ¢ 1 1 guantty on
: : [~ Full capa
ship2gf 0% cE cfl ofF ship 1 ‘
Inventory - - - - - - - :
Wait
2800 Max :
2500 - - — -
: Full Capa
2200 Ship 2 ul pi
1900 [ it =
1600
130013 2 3 4 5 6 7 )
1000 |- X time
200 Period 2
400 N
10 ] ] ] ] ] ] : Min
quantity on ‘ ‘ ‘ ‘ ‘ ‘ Ship 1 D—5—>OC
board I : : : o 3 :
Ship 1 Sfail 3 3 3 3 Wail3 3 Full Capa Ship ZOE QC
D A\ /b Inventory
Sail : : : : 2800 Max
: : : : : : 2500
N TR, 2200
Ship 2 Full Capa 1000
1600 [
: : : : 1300
1 2 3 4 5 6 7 8 1000
: time 700
Period 1 400 |-
100 Mln
quantity on
board I S S S L.
Ship 1 Full Capa
‘Wait :
ship2| | sat \ B 7FL|II Capa
: Wait
2 3 4 5 6 7 8 .
time

Figure 9: Solution Example bl

25

Period 2



References

Appelgren, L. (1969). A column generation algorithm for gpsécheduling
problem. Transportation Science, 3:53—68.

Appelgren, L. (1971). Integer programming methods for aekscheduling
problem. Transportation Science, 5:64—78.

Bendall, H. and Stent, A. (2001). A scheduling model for ahhépeed
containership service: A hub and spoke short-sea apmitatiournal
Maritime Economics, 3(3):262-277.

Bertsimas, D. (1992). A vehicle routing problem with stosth@demand.
Operations Research, 40(3):574-585.

Christiansen, C. and Lysgaard, J. (2007). A branch-andbalgorithm
for the capacitated vehicle routing problem with stocltastemands.
Operations Research Letters, 35:773—-781.

Christiansen, M. (1999). Decomposition of a combined itwgnand time
constrained ship routing probleriransportation Science, 33(1):3-16.

Christiansen, M. and Fagerholt, K. (2002). Robust ship delmy with
multiple time windows.Naval Research Logistics, 49:611-625.

Christiansen, M., Fagerholt, K., and Ronen, D. (2004). Sbiging and
scheduling: Status and perspectivésansportation Science, 38(1):1-18.

Christiansen, M. and Nygreen, B. (1998a). A method for sgjvship
routing problems with inventory constraints.Annals of Operations
Research, 81:357-378.

Christiansen, M. and Nygreen, B. (1998b). Modelling pathvéidor a
combined ship routing and inventory management probleknnals of
Operations Research, 82:391-412.

Crary, M., Nozick, L., and Whitaker, L. (2002). Sizing thesudestroyer
fleet. European Journal of Operational Research, 136:680—695.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). ® ne
optimization algorithm for the vehicle routing problem tvittime
windows. Operations Research, 40:342-354.

Desrochers, M. and Soumis, F. (1988a). A generalized peznidabeling
algorithm for the shortest path problem with time windowiNFOR,
26(3):191-211.

26



Desrochers, M. and Soumis, F. (1988b). A reoptimizatioro®igm for
the shortest path problem with time windowsEuropean Journal of
Operational Research, 35:242—-254.

Desrosiers, J., Dumas, Y., Solomon, M., and Soumis, F. (1995
Time constrained routing and scheduling-dandbooks in Operations
Research and Management Science 8, Network Routing, North-Holland,
Amsterdam, pages 35-139.

Dror, M., Laporte, G., and Trudeau, P. (1989). Vehicle nogtiwith
stochastic demands: Properties and solution framewdnensportation
Science, 23(3).

Dror, M. and Trudeau, P. (1986). Stochastic vehicle routiiity modified
saving algorithm. European Journal of Operational Research, 23:228—
235.

Gendreau, M., Laporte, G., and Seguin, R. (1995). An exagirihm
for the vehicle routing problem with stochastic demands emstomers.
Transportation Science, 29(2):143-156.

Gunnarsson, H., Ronngvist, M., and Carlsson, D. (2006). kined
terminal location and ship routing problendournal of the Operational
Research Society, 57:928-938.

Hjorring, C. and Holt, J. (1999). New optimality cuts for agle-vehicle
stochastic routing problenfAnnals of Operations Research, 86:569-584.

Kleywegt, A., Nori, V., and Savelsbergh, M. (2004). Dynamic
programming approximations for a stochastic inventorytirguproblem.
Transportation Science, 38:42—70.

Mehrez, A., Hung, M., and Ahn, B. (1995). An industial ocezango
shipping problemDecision Science, 26(3):395-423.

Ronen, D. (2002). Marine inventory routing: Shipments plag. Journal
of Operational Research Society, 53:108-114.

Sherali, H., Al-Yahoob, S., and Hassan, M. (1999). Fleet agament
models and algorithms for an oil-tanker routing and scheduproblem.
IIE Transactions, 31:395-406.

Shih, L.-H. (1997). Planning of fuel coal imports using a adxinteger
programming method. Internat. Journal of Production Economics,
51:243-249.

27



