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Solving stochastic ship fleet routing problems
with inventory management using branch and

price

Ken McKinnon Yu Yu

School of Mathematics, University of Edinburgh

8th April 2011

Abstract

This paper describes a stochastic ship routing problem withinventory
management. The problem involves finding a set of least cost routes for
a fleet of ships transporting a single commodity when the demand for the
commodity is uncertain. Storage at supply and consumption ports is limited
and inventory levels are monitored in the model. Consumer demands are at
a constant rate within each time period in the deterministicproblem, and in
the stochastic problem, the demand rate for a period is not known until the
beginning of that period. The demand situation in each time period can be
described by a scenario tree with corresponding probabilities.

A decomposition formulation is given and it is solved using aBranch and
Price framework. A master problem (set partitioning with extra inventory
constraints) is built, and the subproblems, one for each ship, are solved
by stochastic dynamic programming and yeild the columns forthe master
problem. Each column corresponds to one possible tree of actions for
one ship giving its schedule loading/unloading quantitiesfor all demand
scenarios. Computational results are given showing that medium sized
problems can be solved successfully.

1 Introduction

The marine shipping industry has experienced an unprecedented boom over
the past decade. Not only because of the rapid growth of the requirements of
the transfer more and more energy and commercial commodities from one
location to another, but also because the characteristics of the ocean shipping



industry, with its low transportation costs and huge loading capacity, are
suitable for cheaply transporting huge amounts of products.

The classical routing and scheduling problem for vehicles and ships is
important part of the general transportation problem, and has received a great
deal of attention in academic research. A large number of possible solution
approaches have been presented in the literature, involving either exact
optimization methods or heuristic algorithms. A comprehensive review is
provided in Christiansen et al. 2004. This focuses on literature about ship
routing and scheduling published between year of 1990 and 2003. The
survey is presented in several different parts: strategy planning problem,
tactical and operational planning problems, naval problems and other related
problems. A survey of different solution methods in the literature is also
presented in the review. A mixed integer programming (MIP) model is
described in Ronen 2002 for the problem of transporting different bulk
products from a set of origins to a set of destinations by a fleet of ships.
A ship has separate compartments for different products. A ship’s voyage
goes from a single loading port to a single discharging port.A cost-based
heuristic algorithm is also presented to obtain acceptablesolution quickly.
Sherali et al. 1999 have presented a MIP model for the Kuwait Petroleum
Corporation (KPC) problem. Because of the integrality conditions and
large number of demand contract scenarios, the problem cannot be solved
to optimality by the MIP model. An alternative aggregated model is then
formulated and solved by a specialized rolling horizon heuristic method to
make the problem solvable. In the ocean shipping industry, expert opinion
is an important factor. Crary et al. 2002 introduce a model integrating the
expert opinion and MIP model for the problem of sizing the US destroyer
fleet. MIP models for SRP are also built in Bendall and Stent 2001, Mehrez
et al. 1995 and Shih 1997. Heuristics are developed in Gunnarsson et al.
2006 in order to obtain an acceptable solution within reasonable time when
solving the MIP model.

The Dantzig-Wolfe decomposition approach has proved to be successful
for the vehicle routing problem with time windows. Desrochers et al.
1992 were the first to propose a set partitioning model for thevehicle
routing problem with time windows solved by column generation, and this
appears to be an efficient way of finding the optimal solution.As for
the ship routing problem, it is also a good solution approach. There is
much literature on solving the problem by Dantzig-Wolfe decomposition.
Early papers Appelgren 1969 and Appelgren 1971 describe a typical tramp
ship scheduling problem, which was the first work to use a Dantzig-
Wolfe decomposition approach for ship routing and scheduling. The
master problem is the linear relaxation of a set partitioning problem and
subproblems are shortest path problems. But the algorithm presented cannot
guarantee optimal integer solutions. In Christiansen and Nygreen 1998a,
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Christiansen and Nygreen 1998b and Christiansen 1999, the demand is
regarded as a constant and Branch and Price is used to solve the problem.
The problem is decomposed into a ship route subproblem for each ship
and a port inventory subproblem for each port. The approach presented in
this paper is closest to that used in their paper. Compared totheir papers,
the present paper deals with different inventory situation, and solves the
stochastic problem rather than deterministic problem.

In realistic shipping operations, especially for ocean shipping, much
of the planning data is uncertain. Deterministic models forship routing
and scheduling are sometimes inappropriate, and there is a need to
develop stochastic model. The stochastic vehicle routing problem (SVRP)
without inventory constraints and with simple recourse actions is discussed
extensively in the literature. Christiansen and Lysgaard 2007 use a branch-
and-price algorithm for vehicle routing problem with stochastic demands.
In their paper, the expected number of failures and the corresponding
penalty cost are considered in the objective function and a two stage
stochastic program with fixed recourse and capacity constraints is built.
Dror and Trudeau 1986 use a straight-forward modification ofthe Clark
and Wright savings algorithm for the SVRP based on a discussion of route
failure. In Hjorring and Holt 1999 and Gendreau et al. 1995, an integer
L-shaped method is used to solve SVRP to optimality. Bertsimas 1992
proposes a priori sequence among all customers of minimal expected total
length, and a variety of theoretical approaches are analyzed as well. In
addition, several solution frameworks for the stochastic vehicle routing with
stochastic demands are discussed in Dror et al. 1989.

There are few references in the literature to stochastic ship routing
problems with inventory. Christiansen and Fagerholt 2002 presents robust
ship scheduling with multiple time windows. A set partitioning approach
with the columns found a priori is proposed to minimize the chances that
ships stay idle in ports during the non-working days. A Markov decision
process model of the stochastic inventory routing problem is introduced in
Kleywegt et al. 2004, and approximation methods are used to find acceptable
solutions.

This paper considers the problem of optimizing the distribution of a
single commodity by a fleet of ships when there is limited storage at
the supply and consumption ports and the consumer demand is uncertain.
Consumer demand is described by a scenario tree and demand isassumed to
be constant within each period. A solution constists of a tree of schedules for
each ship, where a schedule for a ship specifies the loading and unloading
quantities at each port visited and the start time of each such operation
(which we refer to as aservice). These ship schedules must be such that the
storage limits at ports are satisfied at all times. The problem is formulated as
a multistage stochastic programming problem and is solved by branch and
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price – a branch and bound based method that uses Dantzig-Wolfe (DW)
decompostion to solve each node. The master problem is a set partitioning
problem with extra inventory constraints. Each column in the master
problem corresponds to a tree of schedules for a ship. Attractive columns are
generated by a stochastic dynamic programming using a backward labeling
method.

The structure of the rest of the paper is as follows. Section 2introduces
the Dantzig-Wolfe decomposition approach and describes the structure of
the master and sub-problems. This section also describes the techniques
used to eliminate cycles. Section 3 gives the Branch and Bound algorithm.
Section 4 presents computational results and Section 5 gives the conclusion.

2 Decomposition Approach for the
Stochastic Ship Routing Problem

2.1 Assumptions

The ocean transportation problem is too complex to considerevery factor
in the real world when modeling the problem. To simplify the problem, the
following assumptions are made before introducing the detailed model.

• At each consumer port, the rate of demand is constant within aperiod,
but can change between periods.

• At each port, loading and unloading rates are constant.

• At most one ship can be loading or unloading at any given time.This
assumption avoids the overlap of services at a port.

• For each ship the travel time and cost between any two ports are fixed.

• A service at a port must start and finish within a period. This,however,
is not a limitation as the service can continue without a break in the
following period.

2.2 Solution Framework

A branch-and-price algorithm is used in this paper. This consists of a
master problem which is solved by branch and bound (B&B), with each
node in the B&B tree being solved by Dantzig-Wolfe (DW) decomposition.
Each column in the master problem corresponds to a tree of schedules
for a ship. There are an infinite number of these columns, but the DW
approach generates only a finite number of them. In each iteration of DW a
subproblem is solved for each ship to generate an attractivetree of schedules
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for that ship. In this paper the subproblems are solved by stochastic dynamic
programming.

At any stage in the solution of a master problem at a B&B node, a(finite)
subset of the columns will have been generated. This problem, called a
restricted master problem, is solved and the shadow prices of the constraints
are then used to find the most negative reduced cost from amongthe un-
generated columns. This can be done without explicitly generating any
columns by solving a stochastic dynamic programming problem separately
for each ship. The solution gives the tree of schedules for the ship. If this
added as a column to the master problem, it would have the smallest negative
reduced cost among all the possible columns for that ship. This procedure
continues until no column with negative reduced cost can be generated, at
which stage the master problem for that B&B node has been solved.

2.3 Master problem

The detail formulation of a master problem is introduced here. A port can
be visited several times within the time window of a scenariotree node, so
an index for visit number is needed. In the model, many objects are index
by the triple (Port, Visit, Scenario node) which is referredas a port visit.
For any ship, there are a set of trees of schedules for it. The problem is
to choose one tree of schedules for each ship. We introduce the details of
master problem as below.

Indices

i – port
k – scenario tree node
a(k) – predecessor node of nodek in scenario tree
m – m-th visit at porti in nodek
v – ship
s – tree of schedule for one ship
(i,m,k)– a port visit

Sets

N – set of ports
V – set of ships
K – set of scenario tree nodes
KT – set of scenario tree nodes in final period
P – set of port visits
Rv – set of tree of schedules for shipv
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Parameters

Asvimk – 1 if shipv makes port visit(i,m,k) in tree of scheduless, 0 otherwise
Csv – expected cost if shipv takes the tree of scheduless
Qsvimk – quantity unloaded by shipv in port visit (i,m,k) (-ve corresponds to

loading) if ship makes that port visit in schedule trees, and 0 otherwise
Tsvimk – the start service time for shipv in (i,m,k) if the ship makes

that port visit in schedule trees, and 0 otherwise
Bk – end of the time period which includes the nodek
Wi – unloading rate from ship to porti (-ve corresponds to loading)
M – the maximum number of visits to any port in a scenario tree node
Dik – demand rate in porti in nodek (-ve at a supply port)
Si – initial stock level in porti
S̄i – upper bound for storage in porti
Si – lower bound for storage in porti

The values of parametersAsvimk, Qsvimk andTsvimk are found by solving
subproblems. These three parameters represent the route information and
they are zeros or non-zeros at the same time. If port visit(i,m,k) is made by
ship v in schedule trees, parameterAsvimk is 1. And parametersQsvimk and
Tsvimk represent the quantity loaded and the start service time forthis port
visit respectively. ButAsvimk could be an integer value greater than 1 if there
are cycles involved in the solution.
Variables

xsv – 1 if shipv takes schedule trees, and 0 otherwise
yimk – 1 if some ship makes port visit(i,m,k), and 0 otherwise
qimk – amount of commodity unloaded from a ship during port visit(i,m,k)

(-ve corresponds to loading)
tS
imk – the start of service time in port visit(i,m,k)

tE
imk – the end of service time in port visit(i,m,k)

hS
imk – the stock level at timetS

imk
hE

imk – the stock level at timetE
imk
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Formulation of Master Problem

min ∑
v∈V

∑
s∈Rv

Csvxsv (2.1)

∑
v∈V

∑
s∈Rv

Asvimkxsv = yimk ∀(i,m,k) ∈ P (2.2)

∑
v∈V

∑
s∈Rv

Qsvimkxsv = qimk ∀(i,m,k) ∈ P (2.3)

∑
v∈V

∑
s∈Rv

Tsvimkxsv +(1− yimk)Bk = tS
imk ∀(i,m,k) ∈ P (2.4)

∑
s∈Rv

xsv = 1 ∀v ∈V (2.5)

xsv ≥ 0 ∀v ∈V,s ∈ Rv (2.6)

{xsv : s ∈ Rv} yield a valid tree of schedules for shipv, ∀v (2.7)

yimk ∈ {0,1} ∀ (i,m,k) ∈ P (2.8)

tE
imk = tS

imk + qimk/Wi ∀(i,m,k) ∈ P (2.9)

tE
i,m−1,k ≤ tS

imk ∀(i,m,k) ∈ P, m > 1 (2.10)

yimk ≥ yi,m+1,k ∀(i,m,k) ∈ P (2.11)

hE
imk = hS

imk − (tE
imk − tS

imk)Dik + qimk ∀(i,m,k) ∈ P (2.12)

hE
iMk − (Bk − tE

iMk)Dik ≥ 0 ∀i ∈ N, k ∈ KT (2.13)

hS
imk = Si − tS

imkDik ∀i ∈ N, m = 1, k = 1 (2.14)

hS
imk = hE

i,m−1,k − (tS
imk − tE

i,m−1,k)Dik ∀(i,m,k) ∈ P m > 1 (2.15)

hS
imk = hE

i,M,a(k) − (Ba(k)− tE
i,M,a(k))Di,a(k)

− (tS
imk −Ba(k))Dik ∀i ∈ N,m = 1,k > 1 (2.16)

Si ≤ hS
imk, hE

imk ≤ S̄i ∀(i,m,k) ∈ P (2.17)

In (2.1) we minimize the total expected costs. Constraints (2.5) and (2.6)
result in a convex combination of schedule trees for each ship v. To be valid
this convex combination must be the same as a single scheduletree. This
can only happen if all schedule trees for shipv corresponding toxsv > 0
follow the same tree of routes and the cost functions are linear over the
convex hull. Constraints (2.2) calculates number of occurrences of a port
visit and ensures that each port visit occurs at most once. The variableyimk

is 0 if there are fewer thanm ship visits at porti in scenario nodek and is 1
otherwise. Constraint (2.3) calculates the loading or unloading quantity and
constraint (2.4) calculates the start of service time for each port visit. If port
visit (i,m,k) occurs, then the first term in (2.4) gives the start time for that
service and the second term is zero. If port visit(i,m,k) does not occur, then
the first term will be zero and the second term will beBk, i.e. the end of the
period for nodek. Constraint (2.9) calculates the end of service time and
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constraint (2.10) guarantees that there is no overlap between two services
i.e. a later port visit can only be served after the service ofprevious visit
has been finished. Constraint (2.11) ensures that if a port isvisited m + 1
times in a scenario node, it must be visitedm times in that scenario node.
Constraints (2.12)-(2.17) are the inventory constraints.They ensure that the
storage level is between the upper and lower bound of the storage tank at
the start and end of each service. Since all flow rates are constant within a
scenario node, the inventory level will change linearly between the start and
end service times. So the constraints ensure that the inventory is within the
bounds all the time within the whole planning period.

2.4 Reduced Cost

After a restricted master problem is solved, dual variableswill be known.
These dual variables are denoted bydA

imk, dQ
imk, dT

imk anddS
v for constraints

(2.2)–(2.5) respectively. The reduced costĈsv can then be calculated as
following:

Ĉsv = Csv − ∑
i,m,k

(AsvimkdA
imk + QsvimkdQ

imk + TsvimkdT
imk)−dS

v (2.18)

= ∑
(i,m,k)−(i′,m′,k′)∈Es

PkCii′v − ∑
(i,m,k)∈Ns

(dA
imk −dQ

imkQsvimk + dT
imkTsvimk)−dS

v

(2.19)

wherePk is the cumulative probability from start to nodek in the scenario
tree,Es the a set of edges included in tree of scheduless, Ns is a set of port
visits included in tree of scheduless andCii′v is the traveling cost along the
edgei → i′ for shipv.

Equation (refoo) expresses the reduced cost as the sum of terms over the
edges and nodes in the tree of scedules.

2.5 Ship Routing Subproblems

The parametersQsvimk andTsvimk as well as setEs andNs in (2.19) represent
the route information generated by subproblems and is not given in advance.
We wish to generate a column with the minimum reduced cost so we replace
these parameters with variablesqvimk and tS

vimk and also a variable route,
which is specified by the sets edgesE and nodesN in the schedule tree. For
a shipv, the objective of the subproblem can be formulated as following:
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C̄v = min
E,N

min
q

min
tS

[ ∑
(i,m,k)→(i′ ,m′,k′)∈E

PkCii′v

− ∑
(i,m,k)∈N

(dA
imk + dQ

imkqvimk + dT
imktS

vimk)]−dS
v (2.20)

In formulation 2.20, we try to find a physical visiting sequence and the
corresponding values ofqsvimk andtS

svimk for each port visit in the sequence so
as to minimize the reduced cost presented in formula 2.19.dS

v in 2.19 does
not need to be considered in the subproblems. It can be subtracted from the
objectives after solving the subproblems.

A ship subproblem then can be formulated as a shortest tree problem
and solved by stochastic dynamic programming. The solutionof the shortest
tree problems is a tree of schedules with the least reduced cost, and yields
a column that can be added into the master problem as a column.The state
in the DP is(i,m,k,g, t), wherei is port, m is them-th visit, k is the node
of scenario tree,g is the amount of commodity on board the shipv when
the ship arrives the port visit(i,m,k), andt is the start service time for the
port visit (i,m,k). Both start service time and quantity on board the ship are
continuous quantities. In practice, we use discrete quantities for bothg andt
so as to allow a discrete version of DP to be used. A regular grid is used for
the discrete start service timet. If a start service time is between two grid
points, it will be delayed to the next grid point. However, using discrete
values forg and t does not mean that our model can only generate the
solution with these discrete values. In fact, the master problem may choose
several columns with the same physical tree of routes but different time
and loading quantities and use the average of these columns as the solution,
which may have the start service times and loading quantities different from
discrete values.

2.5.1 Dynamic Programming Network

In this section, we describe the DP network for the ship subproblems. For
each port visit in the network, there is a start service node and an end service
node related to it. And we allocate the costs in the objectiveinto different
edges in the network. The DP network for a ship subproblem is related to
the scenario tree which describes the pattern of consumer demands. We
divide the network into several parts, each part, called demand scenario
part, represents a scenario node in the corresponding time period so that the
DP network has the same structure as the scenario tree. See Figure 1 as an
example.

In a DP network, a ship starts from the dummy start node, visits a set of
port visits in different demand scenario parts of the network, and finishes the
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Figure 1: Structure of DP network

trip when it arrives at the dummy final node. Within a demand scenario part,
if the ship is on a start service node, it makes decisions about how much
to load or unload at the current port visit. And when the ship is on an end
service node, it has choices of three different actions: it can sail to another
port visit in the same demand scenario part and do another service to the
port visit, it can leave the current port visit immediately and sail to the port
visits in the demand scenario parts of the next period, or it can delay at the
current port visit until the future information is available. We will introduce
the nodes and arcs in the DP network which are associated withthese ship
actions later in this section.

Figure 2 is a simple example of a DP network with two time periods.
There are three demand scenario parts in the network. The start node
corresponds to the initial status of the ship. Its status is defined by its position
(in some port or at a position at sea) and the amount of cargo onthe ship.
The different types of nodes in the network are listed in the table below:
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Figure 2: DP network with maximum of one visit to each port in each demand
scenario part

Node Type Description
is decision node start service node: decision made on the node is to choose

how much to load or unload during the port visit
ie decision node end service node: decision made is to choose next port visit

or decision to delay until more information is available
i− j sum-up node sum-up node: expected value of sailing at current time from

port i in current period to portj in next period
• i sum-up node sum-up node: expected value of delaying sailing from porti

to the end of the current period

⋄ decision node split node: decision at current time of which port visit of a
given port to visit first in the next period

⋄• decision node split node: decision at end of current period of which port
to visit in the next period and which is the first port visit
for that port

As shown in the table, nodeis and ie are both decision nodes in the
DP network. Each port visit(i,m,k) has a start service nodeis and an end
service nodeie . For each boundary between two periods there is onei− j
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node for every pair of portsi and j. This is associated with a journey from
port i to port j in a later period starting before the period boundary where the
next period demand information is revealed. Eachi− j node is linked to a
set of⋄decision nodes, one for each demand scenario node in the following
period. Each⋄ is associated with one future demand scenario part and one
port and selects the first port visit for that port. For example, a ship can go
from end service node of port visit(A,1,1) to sum-up node A−B and sail to
the start service node related to physical portB in period 2 through the split
nodes. The horizontal line inside the node means that the time window of
this node is the whole period including the node. Another sum-up node on
the boundary between two periods is• i. This is associated with a journey
from port i to any port in a later period after the demand information for
next period is known. Again each• i node is linked to a set of⋄• nodes,
one for each demand scenario part. The decisions made on these⋄• nodes
can be different from each other according to the known demand situations.
The dot inside the node indicates that the arrival time to this node is fixed on
the period boundary. In the DP network both3 and© nodes are decision
nodes. We use different symbols here to tell whether a decision is made to
visit a node within the current period or a node in future period. The details
about how these nodes relate to different ship actions in theproblem are
given in the later.

Within demand scenario part of the DP network, a ship arrivesat a start
service nodeis , starts loading or unloading, finishes the service at nodeie

and sails to other nodes. In Figure 2, each node relates different discrete
values for the quantities on board ship when it arrives at thenode and a grid
of start service time points so that the cost function on eachnode has three
dimensions. An example of the cost function is given in Figure 3.

Since there are a group of discrete quantities and time points on each
node, a service is decided by the time points and quantities on both start
and end service node. See Figure 4 for example. In the example, we have
a point in the cost function of a start service nodeis and it relates to the
time t1 and quantityg1 on board a ship. Then three different points in the
cost function of an end service nodeie give three different service situations.
For instance, point(t4,g3) means a service lastingt4− t1 with a loading or
unloading quantity|g3−g1|.

Within a scenario part of the network, there are arcs from endservice
node ie to start service nodeis . These arcs are the traveling arcs, and there
are traveling times and traveling costs related on these arcs. Each end service
node ie (related to physical porti) is linked with several sum-up nodesi− j

and one sum-up node• i. The port visits of the same physical port share the
same sum-up nodes. For example, in the network both end service nodes of
port visit(A,1,k) and(A,2,k) are linked with sum-up nodeA−B, A−A and
•A. There is no transition time on the arcs from nodeie to node i− j so that
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Figure 5: Detailed DP network with different end service nodes within a part

the time grids on both nodes are the same. While sum-up node• i is on the
boundary of a period and there is only one time point in the cost function.
Hence the arcs from nodeie to node• i may have nonzero transition times
on them. There are also a set of arcs linking the end service node ie with the
final dummy node in the network. These arcs are needed when solving the
DP along the network.

The DP network shown in Figure 2 looks simple, but because each node
contains all the possible combination of discretet andg, we may have to
consider a large number of situations oft and g when updating the cost
function along an arc in the network. An alternative way to build the DP
network is to use different nodes for different discrete quantities on board
ship (g) instead of using a single node associated with a group of discrete
quantities on the node. Figure 5 shows an example DP network by using
different nodes for different quantitiesg within a demand scenario part of
DP network. A start service node links to several different end service nodes
with different quantities, and each link between the start service node to one
of the end service nodes relates to a loading or unloading service. In this type
of DP network, the end service nodes related to the same physical port and
the same quantity on board the ship will share the same sum-upnodes. For
instance, we can see from Figure 5 that end service node of(B,1,1,g1) and
(B,2,1,g1) are linked with the same sum-up nodesB−B, B−A and •B.
This DP network is used when we solve the subproblems in practice, and
later we will build DP recurrence formulation based on this kind of network.

According to the objective function of the ship routing subproblem, the
edge costs in the DP network are given in the following table:
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Edges Edge Costs Edge Time
is → ie −dQ

imk|g
E −gS|−dT

imktS
imk −dA

imk |gE −gS|/W
3 → is PkCii′v travel time
ie → is PkCii′v travel time

In the table,gS is the amount of commodity on board the ship when it arrives
at start service node(i,m,k), while gE is the amount of commodity on board
the ship at end service node(i,m,k). So the difference between them|gE −
gS| is the loading or unloading quantity in port visit(i,m,k). W is the loading
or unloading rate for the ship which is a constant.Pk is the cumulative
probability of reaching nodek in the scenario tree.Cii′v is the traveling cost
from port i to port i′ by shipv. Other edges which are in the network but
not included in the above table have zero costs and are used tobuild the
stochastic structure of the network.

This is a stochastic DP problem with time windows, because each node
in the network has a time window for start of service. Initially, the time
window of a node is the full time period but it can be reduced bythe Branch
and Bound method when solving the problem.

2.5.2 Dynamic Programming Formulation

The direction of solving stochastic dynamic programming isfrom dummy
final node to the dummy start node. The solution can then be tracked from
the start dummy node. In the networks of our ship subproblems, there are
several different types of nodes: start service nodesis , end service nodesie

, sum-up nodes i− j and • i, and split nodes3. These nodes are indexed in
different ways, so in order to avoid having to write different DP recurrence
relation for each possible transition we shall introduce a single index for
each node in the network. If this is denoted byl and then the recursive
formula flv(t) is the least expected cost from nodel at time t to the final
node in the network. In our problem, there is a time window forthe start
service time for each node (i.e.t ∈ [Ãlv, B̃lv]). The value on the final dummy
node fLv(t) is set to zero. However, if we want to give a reward for a ship
finishing early, then an increasing function can be used forfLv(t). The detail
DP formulation is given below.

For decision nodes (is , ie and3) the recurrence formulas for shipv are:

• For start service nodeis :

flv(t) = min
l′:l→l′

{ fl′v(t + T̃ll′)+C̃ll′v}, t ∈ [Ãlv, B̃lv] (2.21)

• For split node3:

flv(t) = min
l′:l→l′

min
max{Ãl′v,t+T̃

ll
′ }≤τ≤B̃l′v

{ fl′v(τ)+C̃ll′v}, t ∈ [Ãlv, B̃lv](2.22)
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• For end service nodeie :

flv(t) = min{ min
l′:l→l′

min
max{Ãl′v,t+T̃

ll
′ }≤τ≤B̃l′v

{ fl′v(τ)+C̃ll′v},

min
l′:l→l′

{ fl′v(t + T̃ll′)+C̃ll′v}}, t ∈ [Ãlv, B̃lv]

(2.23)

Ãlv and B̃lv are the lower and upper bounds of the time window at nodel.
C̃ll′v is the cost of edgel → l′ for ship v, which is shown in the table in the
previous section.T̃ll′ is the transition time from ais nodel to a ie nodel

′
,

and for other cases is the minimum time for the transition. Informula 2.23,
if l′ is a is node we use the first item, while ifl′ is a ie node, we use the
second item.

Whenl is a sum-up node i− j or • i, the cost function is:

flv(t) = ∑
l′:l→l′

fl′v(t), t ∈ [Ãlv, B̃lv] (2.24)

We want to find the cost function at start dummy nodefl0v(t), wherel0
is the dummy start node, according to above DP recurrence formulations.

2.5.3 Algorithm for solving subproblems

In literature, the algorithms for the shortest path problemwith time windows
usually assign pairs of labels to each time in each node. Eachnode in
the network is associated a label, which consists of a label for the cost of
the path to the actual node and a label for the visit time at thenode. The
algorithms update these labels for each node through the network according
to the dominance rules iteratively until there is no improvement can be
made for any node. This is called a Labeling Algorithm in literature.
Literature Desrochers and Soumis 1988a, Desrochers and Soumis 1988b
and Desrosiers et al. 1995 give the details about these algorithms.

As a stochastic model is built here, we want to find the shortest tree
through the network from the dummy start node to the final node. Each time
within a node has a label which is the lowest expected cost known from that
node to the final dummy node. By deleting the final node and the edges into
it we can get a tree. This is the shortest “tree” problem with time windows.
The shortest tree problem with time windows, can be solved bystochastic
dynamic programming, and generalizes the shortest path problem with time
windows. Cost on each node is the minimum expected cost from the current
node to the final node as a function of the time of reaching the current node.
An example of a cost function is shown in Figure 6. The cost functions in
our problem are increasing functions. In our DP network, there is a known
start node and a known final node, so in the deterministic casewe have the
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Cost

Start Service Time

Figure 6: Cost function

choice of calculating costs from the initial node or costs from the final node.
In the stochastic case however we need to calculate the expected costs to the
final node. We therefore start the iteration by setting the value of the final
node to 0 and all other nodes to infinity, and update the cost function on each
node in the network from the nodes on its outgoing arcs.

When solving the DP problem, we need to update each node in the
network using the DP formulation given in last section. Because the graph
contains directed cycles, we may not be able to finish the updating by
going through the network only once. So we have to update the node costs
iteratively and prepare to update the cost for one node several times. In an
iteration of updating, we go through each node in the network, and for each
node we consider all the outgoing arcs from the node. If therehas been any
updating in the end node of an outgoing arc in last iteration,we will update
the cost of the start node of the arc using the cost function ofthe end node.
For the sum-up nodes, if one of the corresponding split nodesis updated
in the previous iteration, the sum-up node will be updated inthe current
iteration. Therefore, we use a flag for each node to indicate whether or not
the node is updated (for any time) in the last DP iteration.

We do the updating through the DP network for each node in order from
smaller index to bigger index. The number of iterations required during the
updating is highly depended on the order in which the nodes ofthe network
are updated. Before updating cost functions through network, we need to
first find an order for nodes in the network and we do this as follows. In our
network, the minimum number of steps from each node to the final dummy
node is first calculated and an order of nodes is decided by checking the
numbers: the node with a smaller minimum number of steps to the final will
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get a smaller node index, which means it will be considered inan early order
during the updating.

Once we have updated cost function for all the nodes and therehave
been no changes, then the optimal costs have been found and wechoose the
least cost from the cost function of the start dummy node in the network and
track the shortest tree through the network.

3 Branch and Bound

The optimal solution of the stochastic ship routing problemmust satisfy the
discrete restrictions relating to the relation of single routes for each ship.
Branch and Bound algorithm is used here to search for feasible discrete
solutions. At each node of Branch and Bound tree a problem with the
discrete requirements relaxed is solved using column generation method.
If the solution of the problem does not satisfy the discrete constraints or
includes a cycle, we branch so as to eliminate one of these infeasibilities.
The columns generated from subproblems are kept in the master problem
for other Branch and Bound nodes, only the infeasible columnis deleted by
setting the upper bound of the column to zero. There are a lot of ways to
decide branching strategies. We do branching on the fractional variables in
the following order.

If there are columns with positive weight in the solution that correspond
to a path with a cycle, then we first branch on a time window so asto
eliminate a cycle. Assume that port visit(i,m,k) is involved in a cycle. Let
{tS1

imk, ..., t
SK
imk} be discrete start service times associated with the port visit

(i,m,k). Let t̄imk = 1/K ∑
y=1..K

tSy
imk denote the average of these start service

times. We do branching by splitting the time window[a,b] for the start
service time of port visit(i,m,k). Since the width of the port visit time
window is also reduced in child nodes, there is less chance ofgetting other
cycles later in the solution.

If there are no cycles in the solution but there are fractional port visit
variables, then a branch is made so as to either force a port visit to occur
or not to occur. For a porti and nodek, the set of port visit variablesyimk

satisfiesyi1k ≥ yi2k ≥ yi3k ≥ ...≥ yi,M−1,k ≥ yiMk and to be feasible all values
must be 0 or 1. We first calculate for each combination of(i,k) the difference
between consecutive pairs of variables and choose the maximum difference:

Yi,k = max
1≤m≤M−1

{yi,m+1,k − yi,m,k}

We then choose the minimum value forYi,k, and choose the maximum value
of yimk which is less than 1 and branch on that variable. If the chosenyimk ≥
0.5, we branch first onyimk = 1 and the other branch isyimk = 0. If the value
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of chosenyimk < 0.5, we branch first onyimk = 0 and the other branch is
yimk = 1.

When in a branch, whereyim′ k is set to 0, no port arrivals(i,m,k) can
occur form ≥ m

′
. So we delete all the port arrival(i,m,k) (wherem ≥ m

′
) as

well as all the edges linked with these port arrival from the network of each
ship. If yim′ k is set to 1 in a branch, no update happens for the structure of
the ship networks. However, an artificial negative cost is added to each edge
from start service node of port visit(i,m

′
,k) to end service node of(i,m

′
,k),

which makes port visit(i,m
′
,k) more attractive and more likely be included

in the solution of the corresponding subproblem.
If there are no cycles or non-integeryimk, then we calculate the flow

ximk jnlv, where ximk jnlv = ∑s∈Rv;(i,m,k)→( j,n,l)∈Es
xsv. This quantity defines

whether or not shipv sails from port visit(i,m,k) to port visit ( j,n, l). For
each( j,n, l), we find the maximum fractional value forximk jnlv. Then from
these maximum values we choose the minimum value over( j,n, l). The
formulation for this process is shown as the follows:

min
j,n,l

max
i,m,k,v

{ximk jnlv}

If the value of the chosen variable is less than 0.5, we branch first on
ximk jnlv = 0 andximk jnlv = 1 in the other branch. In the branch whereximk jnlv

is set equal to 0, the shipv does not sail from(i,m,k) to ( j,n, l). Hence all
corresponding edges are deleted from the network of shipv. In the branch
whereximk jnlv set to 1, we delete all the arcs for shipv coming out of(i,m,k)
except those going into( j,n, l). For all other ships, the arcs from(i,m,k) to
( j,n, l) are deleted from the networks.

Depth first branch-and-bound algorithm is not the fastest strategy if we
wish to prove optimality. However, because of the problem size of the
stochastic ship routing problem, we may fail to find the integer solution
before reach the memory or solving time limits. Hence when solving the
problem, we use Depth First branch-and-bound algorithm here so as to
find a feasible integer solution earlier. However, Best First branch-and-
bound algorithm is known as the fastest searching strategy.Therefore, we
can combine these two branch-and-bound strategies together, using the first
Depth First Search to find an early integer solution and then switch to the
Best First Search so that we can finish the searching earlier.This mixed
strategy was tried on some examples and was effective, however the results
below are for the depth first search case.

4 Examples and Results

To test the models and solution methods developed in this paper, a set
of test problems has been built. The implementation is written in C and
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CPLEX10.0 is used to solve the sequence of LPs in each Branch and Bound
node of the master problem. The ship subproblems are independent of each
other and are solved in parallel using OpenMP. The structureof networks of
subproblems are generated a priori and input as data.

Table 1 gives the characteristics of each test problem.

EX Ports Max Arrival Scenario Nodes in tree Planning Periods Branches Ships

a1 3 2 3 2 2 2
b1 5 3 3 2 2 2
b2 5 3 3 2 2 2
b3 5 3 3 2 2 2
c1 5 3 7 3 2 2
c2 5 3 7 3 2 2
c3 5 3 7 3 2 2
d1 6 4 7 3 2 3
d2 6 4 7 3 2 3
d3 6 4 7 3 2 3
f1 5 3 13 3 3 2
f2 5 3 13 3 3 2
g1 6 3 13 3 3 3
g2 6 3 13 3 3 3
g3 6 3 13 3 3 3
h1 8 4 40 4 3 3
h2 8 4 40 4 3 3

Table 1: Example Information

In table 1, a1 is a very small problem. This example was built to
demonstrate the details of the solution, including the visit sequences, start
service time, quantity on board each ship, the storage levels, and so on.
All of these details are given as an example later in this section. The
examples named with the same first letter are problems with the same
physical ports layout and the same scenario tree structure,but different initial
inventory levels and demand rate situations at each port. The ‘Max Arrival’
column gives the maximum number of possible arrivals for each port in each
scenario tree node, which is the parameterM in the formulation introduced
before. ‘Scenario Nodes’, ‘Planning Periods’ and ‘Branches’ columns give
the structure of the scenario tree. For example, in exampleg1, there are
13 scenario tree nodes, 3 time periods and 3 branches each period in the
scenario tree, which indicates a scenario tree as shown in Figure 7.

In the stochastic ship routing problem, we use the combinations of (port,
arrival, scenario node) as the state of the problem. For eachport visit
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Figure 7: Scenario tree of Ex. g1

(i,m,k), the start service time of the port visit should be within a time
window. In all the examples here, we set the initial time window for each
port visit (i,m,k) to be the full time period of the scenario tree nodek. In
the dynamic programming problem for ship subproblems, there are several
nodes related to a port visit, for instance start service node, end service node,
two types of sum-up nodes and splitting nodes, as discussed in Section 2.5.1.
There are also a set of links between two nodes in the DP network. We allow
ships to travel between supply port visit and consumer port visit, and travels
between two close consumer ports within the same scenario tree node. There
are arcs linking the sum-up nodes and the splitting nodes as well as linking
the splitting nodes to the start service nodes. This information is given in
Table 2. The table also shows the number of(i,m,k) combinations and the
number of constraints in the master problem.

The computational results are shown in Table 3.
Table 3 gives the number of branch-and-bound nodes used to find the

optimal discrete solution, the total number of columns generated from
the subproblems, the total solving time, the elapsed time for solving the
subproblems and the total number of column generation iterations in the
master problem.

Examples a1 to c3 are relatively small and can be solved within a minute.
However, when the problem size is increased, the solving times for the later
examples increase sharply. Another factor which may effectthe solving time
is the initial storage levels and demand situations. For instance, examplef 1
and f 2 have the same problem structure, but different initial storage levels
and demand situations, andf 2 is solved much faster thanf 1. This is because
the initial storage levels and demand situations are related to the number of
visits to each port in each scenario tree node. If there is sufficient initial
storage at a port, fewer visits may be required, which reduces the length of
the visiting sequences for ships and makes the problem easier to solve.

As previously discussed, because of the size of the DP networks, the
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EX nodes edges (i,m,k) combinations constraints
a1 56 82 18 152
b1 137 706 45 372
b2 137 706 45 372
b3 137 706 45 372
c1 347 1786 105 862
c2 347 1786 105 862
c3 347 1786 105 862
d1 416 2335 126 1033
d2 416 2335 126 1033
d3 416 2335 126 1033
f1 632 3421 195 1607
f2 632 3421 195 1607
g1 758 3421 234 1928
g2 758 4477 234 1928
g3 758 4477 234 1928
h1 3170 23481 960 7898
h2 3170 23481 960 7898

Table 2: DP and Master Problem Dimensions

major solving time in each example is used to solve the ship subproblems,
and Table 3 indicates that around 75% – 93% of the total time isused solving
the subproblems. Here we solve subproblems in a parallel wayso as to
reduce the total solving for the subproblems.

Some detailed solutions are given based on two of the above examples.
In examplec1, there are 5 ports, and portsA, B andC are customer ports
and portsD andE are supply ports. The left hand side of Figure 8 shows the
scenario tree of the example, and the demand trend changes ineach scenario
tree node. The tree of routes on the right hand side of Figure 8shows the
ship routes in the solution ofc1. In the figure, ships choose different routes
according to the different demand situations in each period. For instance,
ship 1 visits the different ports in the upper and lower casesof period 2, since
in the upper case the demand for portA andB goes up while the demand for
port C goes down, and in the lower case the demand situations are just the
opposite. In period 3, ship 1 does nothing in the lower case, and this is
because all of the demands are satisfied in the case so that there is no need
to travel any further.

Figure 9 shows the optimal solution for example b1. The physical routes,
inventory levels and quantities on board ships are shown. The changes in
the storage of each consumer port and on ships as a function oftime can
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EX B&B nodes Columns time total time sub Master iters
a1 6 56 0.8 0.6 24
b1 78 1251 13 11 497
b2 177 3079 31 25 1407
b3 219 4204 47 41 1973
c1 81 2435 20 18 879
c2 87 3948 26 21 1633
c3 237 4757 57 48 1978
d1 564 6206 120 103 2649
d2 63 1353 15 14 284
d3 750 6945 138 105 2954
f1 405 9034 439 379 3799
f2 138 3623 126 118 1181
g1 342 7241 403 352 2805
g2 624 11557 705 611 4731
g3 132 4109 181 161 1298
h1 3598 30753 3690 3112 43850
h2 2987 31983 3371 2958 40791

Table 3: Computational Results without Tolerance

be clearly seen. In period 1, ship 1 sails the routeD → A → D. There is a
unloading service made by the ship at portA so that there is an increase in
the storage level at portA. There are also two visits made by ship 2 to port
C, so the storage level of portC goes up twice during the period. There is
no visit to portB for the whole period, and the stock level of portB goes
down throughout the period because of the constant demand rate. A similar
situation can be seen in period 2 from the same figure.

5 Conclusion

In this paper, we propose a solution approach to solve stochastic ship routing
problem with inventory management problem. In the problem,demand
is the only uncertainty. A Branch and Price algorithm is presented in the
paper. A master problem is formulated as a set partitioning model including
inventory constraints, while a subproblem for each ship is solved by dynamic
programming to find the least reduced cost columns for the master problem.
The optimal integer solution is searched along the Branch and Bound tree
and column generation method is used to solve the relaxed LP iteratively in
each Branch and Bound node.
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Figure 8: Solution c1

To solve the ship routing subproblems, a backward set labeling algorithm
is used to solve the stochastic dynamic programming problem. The method
we use is analogous to the methods that have been used in the deterministic
case, but have had to be extended to deal with the scenario branching in the
stochastic case. The minimum expected costs from the start node to the final
dummy node is calculated. Because of the complicated DP network, there
are many possible cycles (which are not feasible in a solution). 2-cycles
are eliminated when solving the subproblems and other cycles with length
greater than 2 are eliminated during the Branch and Bound algorithm by
splitting the time windows. Because the ship subproblems are independent
of each other, OpenMP is used to solve these subproblems in parallel on a
multi core computer.

From the computational experience, our decomposition method is able
to solve medium sized examples. A set of test examples with different
geographical port layouts, number of ships, scenario tree and initial storage
situations were built and were solved by the decomposition method. Our
computational experience shows that around 75% – 93% of the elapsed
time to solve the problem is used to solve the ship subproblems, even when
examples are solved in parallel. The rest of the elapsed timewas used to do
Branch and Bound administration and solve the LPs. We cannothowever
solve large problems. Because of the need to model on entire scenario tree,
the stochastic problems become large, even for a small transport network.

For the future work, an alternative model, which allows diverting cases
during sailing for ships, can be explored based on the model given in the
paper. Generating useful columns in a heuristic way a prioriis another
possible further work. The generated columns can be added into the master
problem as initial columns so that we can solve the problem with a warm
start, which can help us solve the problem quickly.
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