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Oil production optimization
Solved by Piecewise linearization in a

Branch & Price framework

V. Gunnerud (NTNU),B. A. Foss (NTNU),
K. I. M. McKinnon (Edinburgh University),B. Nygreen (NTNU)

Abstract

This paper presents a method for optimizing oil production on
large scale production networks such as the Troll west field in the
North Sea. The method is based on piecewise linearization of all non-
linearities, and on decomposition of the full scale problem into smaller
sub-problems. Column generation in a Branch & Price framework is
used to solve the decomposed problem. The methods differs from most
Branch & Price methods by branching only on continuous quantities
and by solving the subproblems using commercial MILP software.

The method is applied to a realistic model of an oil field, the Troll
oil and gas field at the Norwegian Continental Shelf, a petroleum asset
with severe production optimization challenges due to rate dependent
gas-coning wells. This study shows that the method is capable of
solving instances of practical size to proven optimality.

Keywords: Oil production planning, oil rim reservoir, Mixed Integer Linear
Programming, Column Generation, Branch & Price.
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1 Introduction

Development of a gas and oil field requires planning on multiple horizons. On
a long-term horizon, typically from one year and up to the field’s lifetime,
strategic reservoir planning is based on market conditions, field properties
and the strategic considerations of the developing company. Decisions related
to technology on this horizon will include; where to drill wells, whether to
process the fluid onshore or offshore, and how to export the different products
produced. The analyses and subsequent development plan seek to maximize
the expected net present value of an asset by for instance maximizing oil and
gas recovery. The article [Nygreen et al., 1998] discusses these issues.

On a medium-term horizon, typically from a few weeks to a year, the
planner will seek specify an approximate operating policy so as to extract
as much oil and gas from the reservoir as possible within the limits set by
strategic decisions on investment and long-term operating policy. For exam-
ple in the north west part of the Troll oil and gas field the extraction of gas
is limited to ensure higher pressure in the reservoir for easier extraction of
oil in the future.

This paper will focus on the real-time production optimization problem
(RTPO), which has a short-term horizon of days to weeks. On this time scale
the current state of the production system is known and the objective is to
optimize the value of the production from the field subject to any current
constraints on operation. Whenever the state of the system changes, for
example due to breakdowns of equipment or new measurements, the RTPO
has to be rerun, and so it is important that this can be done quickly.

Oil and gas production systems involve reservoirs, wells, gathering net-
works, and separators for splitting oil from gas and water, as well as systems
for distributing the products. This paper models the optimization of the
gathering network from the reservoirs to the inlet of the first separator (see
Fig. 1). The boundary conditions are the pressure at the separator and the
gas and water capacities of the separator. The data used in the study is
based on the Norwegian Troll field.

The problem could be modelled as a mixed integer nonlinear program
(MINLP). However the nonlinear equations which are needed to accurately
describe the flows in pipes and wells are very complex, and including these in
the model along with discrete variables for well connections would produce
a model for which it would be unrealistic to expect to be able to guarantee
global optimality. To overcome this problem we approximate the well and
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Figure 1: Cluster topology

pipe behaviour by a piecewise linearization using special ordered sets of type
2 (SOS2), which will yield a MILP approximation to the problem. This
modular approach allows us to use results from any pipe and well simulators
in our MILP optimization model.

The solution of this MILP would yield the global optimum. Unfortu-
nately for many industrial problems it is not possible to solve this problem
to global optimality using a standard commercial MILP solver: either the
result is needed long before before the computation is complete or the com-
putation fails due to lack of memory. To address this problem this paper
develops a branch and price (B&P) decomposition method which maintains
the theoretical convergence properties of the standard approach but also con-
verges much faster for large problems.

The remainder of this paper is organized as follows: Section 2 describes
the real problem, Section 3 gives the MILP model, Section 4 describes the
Branch & Price and method, Section 5 give details of the implementation,
Section 6 gives computational results and analysis, and Section 7 gives con-
clusions.
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2 The Real Time Production Optimization

Problem (RTPO)

2.1 Previous approaches and literature

There are several commercial products in use today that attempt to solve the
RTPO problem optimally, for example REO from [Weatherford, 2011], GAP
from [Petroleum Experts, 2010], and MaxPro from [FMC Technologies, 2010].
These systems have realistic models of wells and pipes. They solve the opti-
mization problem by a combination of linear and nonlinear techniques, but
can not guarantee to find the global optima.

[Wang, 2003] provides a comprehensive overview of models and solution
algorithms for different problems in the oil industry. He considers both lin-
ear and nonlinear formulations, with related techniques for solving them. A
survey of the most common concepts and components of an oil production
problem is presented in [Bieker et al., 2006], and other work on the subject
is presented in [Saputelli et al., 2003]. Common to this literature, is a focus
on the production chain from the reservoir to the inlet of the first separator,
which is operated at a fixed pressure. Normally only a part of the prob-
lem is addressed or ad hoc rules are applied, which may lead to suboptimal
solutions.

However, the following papers do address problems in the same category
as in this work. [Bieker, 2007] solves a problem with simple network topology
as a MILP, but without decomposition. [Kosmidis et al., 2005] deals with
more flexible network topologies that allow routing of fluid streams from
wells between different pipelines and to different separators. It solves the
problems as an undecomposed MINLP using piecewise linearization of the
wells’ performance and outer approximation for the pipe characteristics, but
because of non-convexity does not guarantee global optimality.

The following papers use a decomposition approach and model similar
networks to the ones in this paper. [Foss et al., 2009] use Lagrangian relax-
ation using sub-gradient optimization to converge the prices and [Gunnerud and Foss, 2010]
compare this with Dantzig-Wolfe decomposition. These methods differ only
in how the prices are generated for the subproblems and both methods will
give the same bound on the solution if continued to convergence. Dantzig-
Wolfe has a finite method of converging the upper bound and in the experi-
ments it took fewer iterations to converge. Neither method is able to guaran-
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tee to find the global optima and on the problems in [Gunnerud and Foss, 2010]
neither method dominated the other on this measure. [Gunnerud et al., 2010]
and [Torgnes et al., 2012] show that the elapsed time to solve the Dantzig-
Wolfe method can be reduced by solving the subproblems in parallel. Also
[Torgnes et al., 2012] extracts more solutions from each subproblem solve,
which yields better feasible solutions but does not improve the bound.

When Dantzig-Wolfe and Lagrangian relaxation terminate they both give
a bound on how sub-optimal the best solution found might be. However nei-
ther of them can guarantee to reach a pre-assigned tolerance. B&P on the
other hand is able to give this guarantee. The first step of B&P is equivalent
to Dantzig-Wolfe, but the method also contains a branching strategy to re-
duce the bound gap to any required tolerance. (In this paper all results are
obtained to within 0.01% which is much lower than can be obtained without
branching.) It is normal in B&P to branch on discrete variables, however the
version in this paper branches on the continuous gas and water quantities.

The models and data used in this paper are more realistic than in the
previous decomposition approaches – there are constraints on both gas an
water, the effect of pipes outlet pressure is included and the data is derived
from commercial simulators.

2.2 Problem structure

It is common in the offshore oil industry to have a production platform
connected to several clusters each of which consists of a collection of wells
and pipelines connecting the wells to the platform. An illustration of a typical
cluster in an oil production system is showed in Figure 1. Different clusters
may contain different numbers of pipelines, manifolds and wells. A pipeline
consist of one or more pipes, each pipe either joining two manifolds or a
manifold and the separator.

The flow of oil, gas and water from a well is a function of the well-
head pressure, and the relationship is known as the Well Performance Curve
(WPC). The pressure drop through a pipe depends strongly on the flow of
oil, gas and water through the pipe, and weakly on the inlet temperature and
outlet pressure. The well flow and pipe pressure drop functions are highly
nonlinear and accurate models of them requires complex thermodynamic and
multi-phase flow calculations. We use commercial simulators for these calcu-
lations, and evaluate the functions at grids of points. Based on these values
piecewise linear approximations are defined and included in the optimization
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model. (See Section 3.)
Each well has a choke valve through which the well’s output flows before

entering the manifold and one of the pipelines. By operating this valve is it
possible to increase the wellhead pressure and thereby reduce the flow. To
prevent back flow into the well the model must ensure that whenever the
choke is open to any extent the pressure in the manifold does not exceed the
pressure in the wellhead. Furthermore a well cannot be connected to more
than one pipeline, so when there is more than one pipeline in a manifold
there is also a diverter valve which must be set to connect the well to exactly
one of them. The fluid then flows through the pipeline to the production
platform, which has a limited capacity for separating gas and water from the
oil.

3 Model formulation

The following indexing conventions are used throughout the paper. Each
cluster is identified by a single index i. Each manifold is identified by 2
indices im, the index of the cluster in which it lies and its own index within
the cluster. The index of the manifold is its number counting from the
separator, which for convenience is treated as a manifold with index 0. Each
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well is identified by 3 indices imj, 2 indices im to identify the manifold to
which it is connected, and the index j of the well within the group of wells
connected to that manifold. Each pipeline is identified by 2 indices it, the
index of the cluster i where it lies and an index t of the pipeline within the
cluster. Each pipe is identified by 3 indices imt, the indexes it of the pipeline
of which it is a part and the index m of the manifold at its inlet end.

All the symbols used in the model are defined in Tables 1 to 5 All variables
are non-negative, and the main ones are illustrated in Figure 2.

Table 1: Indices
i - Cluster
m - Manifold when m > 0, and separator when m = 0
j - Well
t - Pipeline
p - Phase (gas, oil and water)
k - Breakpoint index for the piecewise linearization of the well

model
np - Breakpoint index for the piecewise linearization of the

pressure drop in pipes dependent on phase p
(ng for gas, no for oil, nw water)

Table 2: Sets
I - Set of clusters
Mi - Set of manifolds 1..Mi in cluster i
Jim - Set of wells connected to manifold m in cluster i
Ti - Set of pipelines in cluster i
P - Set of phases (g for gas, o for oil, w for water)
PC - Set of capacity constrained phases
Kimj - Set of indices of breakpoints for the piecewise linearization of

the well performance curve (WPC) for well imj
Nimp - Set of indices of breakpoints for the phase p coordinate in the

piecewise linearization of the pressure drop in pipes imt (same
for all piplines t ∈ Ti)

Objective function
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Table 3: Parameters
CT

p - Capacity of phase p in the first stage separator
P SEP - Pressure at first-stage separator at platform (= pM

i0t)
PD

imtngnonw
- Pressure drop in pipe imt corresponding to interpolation

indices ng, no and nw in the pipe pressure drop
piecewise linearization

PMAX
imj - Maximum difference between the wellhead pressure and

the pressure inside the manifold
PW

imjk - Wellhead pressure of well imj for interpolation index k
in the piecewise linearization of the well performance
curve (WPC)

QP
imtpnp

- Flow of phase p in pipe imt interpolation index np.

QWMAX
imjp - Maximum flow rate of phase p from well imj

QW
imjpk - Flow rate of phase p from well imj corresponding to

interpolation index k in the piecewise linearization of
the well performance curve (WPC)

Mi - Number of manifolds in cluster i

The objective is to maximize the total oil flow from all clusters.

max z =
∑
i∈I

qC
io (1)

Constraints
The constraints can be segmented into the following groups:
Capacity constraints (2) are the only constraints that connect the clus-

ters. They state that the sum of gas rates and water rates from all clusters
must be less than the separator’s gas handling capacity and water handling
capacity respectively.∑

i∈I

qC
ip ≤ CT

p ∀ p ∈ PC (2)

Apart from these capacity constraints, all other constraints are defined lo-
cally for each cluster i ∈ I. For the sake of simplicity this indexing definition
will be omitted from the rest of the formulation.

The total flow from cluster i is the sum of flows from the pipes entering
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Table 4: General Variables
pM

imt - Pressure in pipeline it in manifold or separator m
pD

imt - Pressure drop in pipe imt at the reference outlet pressure
pW

imj - Wellhead pressure in well imj
qC
ip - Total flow of phase p from cluster i

qP
imtp - Flow rate of phase p in pipe imt

qW
imjp - Flow rate of phase p from well imj

qS
imjtp - Flow rate of phase p from well imj into pipeline t

tTimt - Temperature at inlet of pipe imt
yimjt - Equals 1 if well imj is routed to pipeline t, 0 otherwise

Table 5: Interpolation Variables
γimjk - Weighting variable associated with interpolation index k

in the piecewise linearization of the WPC for well imj
λimtngnonw - Weighting variable associated with the interpolation

indices ng, no, nw in the piecewise linearization of
the pressure drop in pipe imt

ηimtpnp - Sum of all λimtngnonw for a fixed value of np. Used in SOS2
sets for coordinate p in the piecewise linearization of the
pressure drop in pipe imt

the separator.∑
t∈Ti

qP
imtp = qC

ip ∀ m = 1, p ∈ P (3)

The well model: The output from a well depends on the properties of
the reservoir and the wellbore and is characterised by the Well Performance
Curve (WPC). This specifies the output of each phase as a function of well-
head pressure. Our model uses the same piecewise linear approximation of
the WPC as in [Gunnerud and Foss, 2010]. Let PW

imjk be the kth pressure
breakpoint for well imj and let QW

imjpk be the corresponding flow of phase p.
The piecewise linear approximations are shown in (4)-(7)

pW
imj =

∑
k∈Kimj

PW
imjkγimjk ∀ m ∈Mi, j ∈ Jim (4)

qW
imjp =

∑
k∈Kimj

QW
imjpkγimjk ∀ m ∈Mi, j ∈ Jim, p ∈ P (5)
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∑
k∈Kimj

γimjk = 1 ∀ m ∈Mi, j ∈ Jim (6)

γimjk is SOS2 for k ∀ m ∈Mi, j ∈ Jim (7)

Network logic constraints: The following inequality ensures that well
imj is connected to at most one pipeline:∑

t∈Ti

yimjt ≤ 1 ∀ m ∈Mi, j ∈ Jim (8)

Well and pipe pressure and flow linkage constraints

∑
t∈Ti

qS
imjtp = qW

imjp ∀ m ∈Mi, j ∈ Jim, p ∈ P (9)

qS
imjtp ≤ QMAX

imjp yimjt ∀ m ∈Mi, j ∈ Jim, t ∈ Ti, p ∈ P(10)

qP
imtp =

∑
j∈Jim

qS
imjtp + qP

i(m+1)tp ∀ 1 ≤ m < Mi, t ∈ Ti, p ∈ P (11)

qP
imtp =

∑
j∈Jim

qS
imjtp ∀ m = Mi, t ∈ Ti, p ∈ P (12)

pM
imt ≤ pW

imj + PMAX
imj (1− yimjt) ∀ m ∈Mi, j ∈ Jim, t ∈ Ti (13)

Constraint (9) states that the flow from a well has to be equal to the flow
into the pipelines. Constraints (11) and (12) define the flow balance between
wells and pipes at each manifold, (12) for the furthest out manifolds and (11)
the others. When the connection between well imj and pipe imt is open,
then yimjt = 1 so (10) does not constrain the flow from the well to the pipe
and (13) constrains the pressure in the manifold to be no higher than the
wellhead pressure. When the connection is closed, then yimjt = 0 and (10)
ensures that there is no flow from the well into that pipeline, and (13) is
relaxed so that there is no link between the wellhead and pipeline pressure.

Pipe Model: The pressure drop F P
imt(qg, qo, qw, p, t) between the inlet

and outlet ends of pipe imt can be expressed as a function of the flows of
gas qg, oil qo and water qw and the inlet temperature t and outlet pressure
p. Over the range where they can vary, the variation of pressure drop with
t is not significant and the variation with p is small. We therefore make the

10



following approximation

F P
imt(qg, qo, qw, p, t) ' F P

imt(qg, qo, qw, PREF
imt , TREF

imt ) + αimt(p− PREF
imt )

where αimt =
∂F P

imt

∂p
(QREF

imtg , QREF
imto , QREF

imtw, PREF
imt , TREF

imt ),

where the REF quantities are fixed and chosen to be in the middle of the ex-
pected range for the corresponding variables. F P

imt(qg, qo, qw, PREF
imt , TREF

imt ) is
a nonlinear function of the 3 variables qg, qo and qw and we approximate it by
a piecewise linear function in the same way as in [Gunnerud and Foss, 2010].
The model in that paper does not account for the variation of pressure drop
with outlet pressure and is the special case of the model in this paper where
all αimt = 0. The pressure drop variable for pipe imt at the reference out-
let pressure PREF

imt is pD
imt, so in the model the equation for the approximate

pressure drop is

pM
imt − pM

i(m−1)t = pD
imt + αimt(p

M
i(m−1)t −PREF

imt ) ∀ m ∈Mi, t ∈ Ti (14)

The piecewise linear function for pD
imt is constructed as follows. Given the

pipe’s reference pressure PREF
imt and temperature TREF

imt the simulator is used
to calculate

Pimtngnonw = F P
imt(Q

P
imtgng

, QP
imtono

, QP
imtwnw

, PREF
imt , TREF

imt ),

for all breakpoints, where QP
imtpnp

is the flow of phase p at the breakpoint
with index np. Using this breakpoint data the piecewise linear function is
now defined by (15) to (21) below.

pD
imt =

∑
ng∈Nimg

∑
no∈Nimo

∑
nw∈Nimw

PD
imtngnonw

λimtngnonw ∀ m ∈Mi, t ∈ Ti (15)

qP
imtp =

∑
ng∈Nimg

∑
no∈Nimo

∑
nw∈Nimw

QP
imtpnp

λimtngnonw ∀ m ∈Mi, t ∈ Ti, p ∈ P

(16)∑
ng∈Nimg

∑
no∈Nimo

∑
nw∈Nimw

λimtngnonw = 1 ∀ m ∈Mi, l ∈ Ti (17)

In addition we require that all non-zero λimtngnonw weights are at vertices
of a cube of neighbouring breakpoints. This condition can be enforced by
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3 SOS2s, one for each of the gas, oil and water dimensions and defined as
follows

ηimtgng =
∑

no∈Nimo

∑
nw∈Nimw

λimtngnonw ∀ m ∈Mi, t ∈ Ti, ng ∈ Nimg (18)

ηimtono =
∑

ng∈Nimg

∑
nw∈Nimw

λimtngnonw ∀ m ∈Mi, t ∈ Ti, no ∈ Nimo (19)

ηimtwnw =
∑

ng∈Nimg

∑
no∈Nimo

λimtngnonw ∀ m ∈Mi, t ∈ Ti, nw ∈ Nimw (20)

ηimtpnp is SOS2 for np ∀ m ∈Mi, t ∈ Ti, p ∈ P (21)

It should be mentioned that only 4 neighboring λimtngnonw are needed to
enclose the solution, so 8 neighboring λimtngnonw will therefore result in several
degrees of freedom. These could be removed by including SOS2 sets on the
diagonal as described in [Williams, 2005], however, as this adds complexity,
we compensate instead by using more breakpoints.

Fixed separator pressure: To facilitate a compact formulation, the
separator is defined as m = 0. The pressure P SEP at the separator is fixed
and is equal to the outlet pressure pM

i0t of all pipes i0t connected to it, so

pM
i0t = P SEP t ∈ Ti (22)

For pipe i1t, i.e. the one connected to the separator, we take the reference
outlet pressure to be PREF

i1t = P SEP . It follows that when m = 1 the last
term in (14) is zero.

4 Branch & Price (B&P)

In formulation (1) - (22) it is only the objective (1) and the constraints (2)
that involve variables from more than one cluster. Further, each of these
expressions involves only a sum of these variables, so by removing these con-
straints and instead dealing with them by pricing, the problem decomposes
into independent subproblems, one for each cluster and each subproblem is
itself a MILP. A common approach for problems of this form is Lagrangian
relaxation, however in this paper we use branch & price (B&P). B&P has
the advantages of Lagrangian relaxation, and can in addition guarantee to
find the global optimum.
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4.1 Branch & Price overview

In B&P there is a master problem which constructs an optimal solution
by selecting feasible solutions (or modes of operation) of subproblems and
combining them optimally. The master problem contains constraints for the
common resources (gas and water separation capacity in our case). Each
column in the master problem corresponds to a mode of operation of a sub-
problem and its coefficients in the resource constraint rows are the total use
of that resource by the subproblem mode. The master problem is solved by
branch and bound and the problem at each node of the branch and bound
tree is solved by column generation, [Desrosiers and Lübbecke, 2005].Column
generation is used because there is an infinite number of possible subproblem
modes so it is not possible to generate the master problem explicitly. The
master problem at a B&P node is solved iteratively. Each iteration starts by
solving a Restricted Master Problem (RMP), which consists of a finite subset
of the possible master problems columns. Then the subproblems are solved
using the dual values for the common constraints to find the column with
the most attractive reduced cost. If there is no attractive column the master
problem at that B&P node is solved, otherwise a new column is added to the
master and the iterations continue.

The solution of the master problem at a B&P node will consist for each
subproblem of either a single mode of operation or a convex combination of
modes. In most nodes there will be some subproblem with convex combina-
tion of modes that is not physically possible. To get round this problem and
generate feasible solutions we also solve the RMP as an integer problem to
select exactly one operating mode per subproblem.

In most B&P applications the branching is done on a discrete subproblem
structure, though in some routing problems branching is done also on one
continuous quantity, usually time. In this paper all the branching is done on
the continuous capacity usages.

Also the subproblems in B&P usually have a structure which can be solved
effectively by dynamic programming, see [Irnish and Desaulniers, 2005] and
[Amr and de Carvalho, 2005]. However, the subproblems presented in this
paper have a more general structure, so we solve them using a commercial
MILP solver, which is efficient and makes the implementation simpler.

13



4.2 Restricted master problem

Let µis be a variable representing the weighting within the RMP of operating
mode s of cluster i, and let QMODE

isp be the total production of phase p in
this mode. Also let Si be the set of existing modes for cluster i which satisfy
the cluster’s gas and water production constraints at the current B&P node.
Then the RMP is as follows:

max
∑
i∈I

∑
s∈Si

QMODE
iso µis (23)

subject to ∑
i∈I

∑
s∈Si

QMODE
isp µis ≤ CT

p ∀ p ∈ PC (24)∑
s∈Si

µis = 1 ∀ i ∈ I (25)

µis ≥ 0 ∀ i ∈ I, s ∈ Si (26)

Expression (23) is the objective function, (24) represents the constrained
common resources, and (25) and (26) allows a convex combination of all
solutions found for a given subproblem.

When this problem is solved, it produces a primal solution, µis, and a
dual solution. If we denote the dual variables for (24) by πCAP

p and for (25)
by πCONV EX

i , the reduced cost, cis, for µis can be expressed as:

cis = QMODE
iso −

∑
p∈Pc

πCAP
p QMODE

isp − πCONV EX
i ∀ i ∈ I, s ∈ Si (27)

4.3 Structure of the master problem solution

The RMP is an LP with one equality convexity constraint for each subprob-
lem and |PC | common inequality constraints. If we add slack variables for
the inequalities, then since there is one basic variable per row, the problem
will have |PC | more basic variables than clusters. Hence the number of basic
variables among the µis variables is the number of clusters + the number
of nonbasic slack variables, which is at most |PC |. Since the convexity con-
straints have positive RHS there must be at least one non zero µis in each
cluster, and this must be basic. In addition to these basic variables there can
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be up to |PC | other basic variables among the µis. For the case in this paper
when |PC | = 2, there can be either 2 clusters with 2 basic variables each,
or 1 cluster with 3 basic variables, or 1 cluster with 2 basic variables, or no
clusters with more than one basic variable. Also since all nonbasic variables
are 0, if a cluster has a single basic variable, then this must be integer with
value 1. If the problem is non-degenerate, then clusters with more than one
basic variable will be fractional, however this is not necessary the case if
the problem is degenerate. Hence for our problems where |PC | = 2 one of
the following cases must occur: 2 clusters with 2 fractional values in each, 1
cluster with 2 or 3 fractional values, or 0 clusters with fractional values. It
follows that except in cases of degeneracy or non-binding common capacities,
the RMP solution will contain fractional weights.

4.4 Subproblem

If we want to improve the continuous solution of the RMP, we need to find
a feasible mode of operation for at least one of the clusters which gives a
positive reduced cost according to (27). If such a production mode exist, it
can be found by solving separately for each cluster, i, the MILP subproblem

zi = max qC
io −

∑
p∈PC

πCAP
p qC

ip − πCONV EX
i (28)

subject to (3)-(22) and

QMIN
ip ≤ qC

ip ≤ QMAX
ip ∀ p ∈ PC (29)

where QMIN
ip and QMAX

ip are the lower and upper bounds on qC
ip in the cur-

rent B&P node. (Constraint (29) will be discussed later in relation to the
branching.)

As mentioned earlier, these MILP subproblems will be solved by a com-
mercial MILP solver that is able to treat SOS2 automatically. Whenever an
optimal subproblem objective, zi, is positive, we create a new column for the
master, with index s say, with entries QMODE

iso in the objective row, QMODE
isg

and QMODE
isw in the gas and water rows respectively, and a 1 in the convexity

row for cluster i. Here QMODE
isp for each phase p is the optimal value of qC

ip in
the solution for cluster i. Finally s is added to set Si.

If no column with a positive reduced cost is found for any of the clusters,
then the current solution is the optimal continuous solution to the current
node of the B&P tree.
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4.5 Finding feasible solutions

We noted in Section 4.3 that except in cases of degeneracy, the RMP solution
will contain fractional weights. If any modes in a cluster that have fractional
weights have a different set of nonzero binary or SOS2 variables, then the
convex combination will not be feasible.

In order to find an integer feasible solution we solve the RMP (23) - (26)
as a pure binary problem with (26) replaced by

µis ∈ {0, 1} ∀ i ∈ I, s ∈ Si (30)

The set Si here consists of all previously generated operating modes, not just
those from the current B&P node. This step is done after the solution of each
B&P node. In the following, the IP version of the RMP is denoted RMP-IP
while the LP version is denoted RMP.

4.6 Branching strategy

The lower bound on the optimal solution is given by the best RMP-IP solu-
tion, and the upper bound is given by highest optimal RMP objective value
among all active nodes in the B&P tree. To close this gap we need to create
new modes of operation for the different clusters so that better IP solutions
can be created, and we need to branch to tighten the LP upper bounds by
splitting nodes.

In B&P it is normal to branch on the original discrete variables, see
[Barnhart et al., 1998]. Our problem contains two types of discrete vari-
ables, the binary variables in (8), and the SOS2 variables in (7) and (21).
There are very many of these variables and so it is likely that using them
for branching will result in a very large number of branches. The column
generation procedure however is time consuming, so only a small number of
master B&P nodes can be solved in a reasonable amount of time, and so this
approach is unlikely to be successful.

In this paper, instead of branching on the original integer and SOS vari-
ables, we branch on the continuous gas and water flow variables from each
cluster by imposing bounds on the available capacities. Columns which con-
flict with these new bounds are removed from the child nodes.

Our aim in choosing the branching variable qC
ip is to maximize the distance

between the solution at the parent and the closer of the solutions at its
children. This should keep the branch and bound tree balanced and avoid
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generating new production modes that are close to existing modes. We use
the following method:

First identify all µis with fractional values. (There must be at least one
otherwise the node would be feasible and it would not have been branched
on.) As noted in Section 4.3 the only cases that can occur are two clusters
with 2 fractional variables each, or one cluster with 2 or 3 fractional variables.
In the first case we need to select a cluster and a phase and in the other cases
only a phase. The following rules are used in all cases:

Let the interpolated production of phase p (gas or water) in the RMP
solution of subproblem i be denoted QAV

ip . For each subproblem i such that
µis is fractional for some mode s, calculate

Disp =| QMODE
isp −QAV

ip | ∀p ∈ PC ,∀s ∈ Si, 0 < µis < 1 (31)

(Disp is the absolute difference between the RMP solution and a column used
in the interpolation.) Then for each cluster i with a fractional µis and each
phase p find the second largest value of Disp among the 2 or 3 modes s with
fractional µis and denote this by D∗

ip. Then find the cluster i∗ and phase p∗

which give the largest relative values of these D∗
ip, i.e.

i∗, p∗ = arg max
i,p

D∗
ip

QAV
ip

(32)

Then branch on cluster i∗ and phase p∗. Finally set the branching value to
QAV

ip , i.e. enforce the bound qC
ip ≤ QAV

ip in the lower branch and qC
ip ≥ QAV

ip

in the upper branch.

4.6.1 Choice of master node to evaluate

As can be seen in the results section, Section 6, the number of B&P nodes
is small and we are able to explore the full tree. We therefore choose best
first search for node selection to minimize the number of B&P nodes solved.
Another advantage of this compared to depth first search is that it generates
a more diverse set of modes early on in the search and this is likely to improve
the integer solutions found by RMP-IP.

When there is a choice between two child nodes of the same parent we
choose the lower branch. This is likely to produce a mode with lower resource
use than the upper branch and a mode with less resource use is more likely to
generate a feasible solution in combination with other existing modes. This
new solution may allow the other twin branch to be eliminated.
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4.7 Branch & Price algorithm

Algorithm 1 shows a pseudo code of the basic version of the B&P algorithm
we are using to solve the RTPO problem.

Algorithm 1: Branch & Price (B&P-1)

forall the clusters do
generate zero and max production columns

end

create root-node
repeat

choose node to calculate
repeat

solve RMP
send dual values for common constraints to subproblems

forall the clusters do
solve cluster subproblem

if column has positive reduced cost then
send new column to RMP

end

end

until no new columns with positive reduced cost found ;

solve RMP as IP
update bounds

if IP gap < termination criteria then
optimal solution found

else
if node is feasible and LP > global LB then

branch and create new nodes
add new nodes to list of unsolved problems

end

end

until optimal solution found ;

The B&P algorithm starts by generating several initial columns i .e. modes
of operating the clusters. This is done by creating a zero production column
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and a maximum production column for each cluster. This guarantees that
there is an initial feasible solution to the continuous RMP at the root B&P
node. The next step is to solve the continuous RMP to find dual values on
the common capacity constraints. These prices are sent to the subproblems,
and all subproblems are solved. Each subproblem which returns with a pos-
itive reduced cost has its optimal solution added as a column to the RMP.
The column generation procedure is repeated until no new positive reduced
cost column is generated, at which stage the master problem at that node
has been solved.

At this stage, the RMP-IP is solved to provide a feasible integer solu-
tion, and hence a lower bound on the optimal for the problem. If the gap
between the upper bound and this feasible solution is within the predefined
termination criteria, the algorithm terminates. Otherwise the B&P algo-
rithm creates two new problems based on the branching rules described in
Section 4.6. These two problems are then added to the list of unsolved prob-
lems. The next step is to choose one of these unsolved problems based on
the search strategy in Section 4.6.1, gather the set Si of existing modes for
cluster i which satisfy the cluster’s gas and water production limits, and run
the column generation procedure over again.

We shall compare the following variants of the B&P method

• B&P-1 is our basic B&P method, B&P-2 and B&P-3 builds on this
method. It uses a best first search and branches on the gas or water
production from clusters with fractional solution in the RMP, as de-
scribed in Section 4.6. All subproblems are solved before the RMP is
resolved. Each mode which has a positive reduced cost and is the most
positive in its subproblem is added to RMP. To create feasible solutions
the RMP-IP is solved using all the columns so far generated. This is
done once per B&P node after its column generation has converged.

• B&P-2 is the same as B&P-1 with 2 changes. Firstly the RMP is
re-solved after each subproblem if a new production mode is found.
Secondly when a subproblem fails to produce a column in one itera-
tion it is not solved again until after an iteration which produces no
columns. At that stage all the subproblems are again made active and
the solution continues using the current dual prices.

• B&P-3 is the same as B&P-2 except that after each iteration a three
step procedure is used to generate a better incumbent. Firstly all sub-
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problems are solved with dual variables equal zero, and upper bounds
on gas and water production equal to their RMP-IP solution plus the
gap between their RMP-IP solution and the total production capaci-
ties (the slack on the two global constraints). Secondly, any of these
columns that are better than the column for that subproblem selected
in the RMP-IP are added to the RMP. Thirdly if any better columns
have been found, the RMP-IP is solved again (which will give a better
incumbent).

5 Implementation

The data for the piecewise linearization of the well and pipe models can be
generated using any suitable simulators. In this paper we have used three
state of the art simulators, GORM, [Mjaavatten et al., 2006] (an in house
Statoil simulator) in combination with PROSPER, [Petroleum Experts, 2005],
for the wells, and GAP, from Petroleum Experts [Petroleum Experts, 2010],
for the pipes. These simulators are used currently in Troll operations. For
each well we calculate the gas, oil and water flow for every wellhead pressure,
and for each pipe we calculate the pressure drop through the pipe for every
combination of gas, oil and water flow at the reference outlet pressure and
temperature and estimate the gradient of pressure drop with outlet pressure.
The results are then stored in tables in a form suitable for Xpress

In the Troll field the parallel pipelines are identical. In such situations
swapping the set of wells attached to each pipeline produces an equivalent
solution, and this introduces a symmetry which makes branch and bound for
each subproblem much harder. We remove this symmetry, by selecting one
well in each cluster that is likely to be producing and only allowing it to be
routed to (at most) one of the pipelines.

The B&P optimization algorithm is implemented in Mosel in Xpress-IVE
[FICO, 2009] without any parallelization. “mmjobs” is used to jump between
the sub and master problems, and breakpoint tables together with other
topology information are included through data files. The computations
were performed on single core of a Intel E5472, 3.0 GHz, 16GB RAM. Both
Linux and Xpress were 64 bit versions. The solution times presented do not
include time used to simulate well and pipe data. New runs for some of the
well models i.e. for the wells that have changed behavior, is done before every
optimization run, which in total takes typically a few seconds to a minute.
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The pipe models don’t change so they need to be run only once.

6 Results and discussion

To validate our B&P method we have constructed a realistic model based on
the structure of Troll B and C and we are using pipe and well data from these
platforms. The structure was shown in Figure 1 and its size is comparable
to the largest subsea production systems in the world. The full model has
8 clusters each containing 8 wells, 2 manifolds and 2 parallel pipelines. We
wanted to compare our B&P methods with solving this problem without
any decomposition, however this full problem is too difficult to solve as a
single MILP. To be able to do some comparisons, we have generated 9 other
problems by choosing 2, 4 or 6 clusters from the full problem and reducing
the common capacities constraints for gas and water to make them binding.

Section 2.1 compared the B&P approach in this paper to the methods
used in [Foss et al., 2009], [Gunnerud and Foss, 2010], [Gunnerud et al., 2010]
and [Torgnes et al., 2012]. These papers tackle a problem with the same
structure as the one in this paper. There are three major differences between
these papers and this paper that affect the computational results. Firstly
our B&P methods will always find an optimal solution within a predefined
tolerance level if they are allowed to run until termination, while the methods
in the other papers cannot guarantee to achieve a predefined tolerance level.
The tolerance of 0.01% used for all the B&P runs reported in this paper is
much smaller that is usually achieved by the methods in the other papers.
Secondly we improve the accuracy of the model by including a term in the
pressure drop equation (14) to allow for the effect of pipe outlet pressure.
Thirdly we did new simulator runs to get more accurate representations of
the pipeline models.

The purpose of the numerical study is to compare the four solution meth-
ods, Standard, i.e. the problem is solved as one large MILP without de-
composition, B&P-1, B&P-2 and B&P-3. Our three B&P methods solved
all our test cases to our predefined relative optimality tolerance of 0.01 %,
so this has been omitted from the results tables.

The first two rows of the four result tables give the achieved relative
optimality gaps and solution times for the Standard method. A dagger in
the time field indicates that the run failed at that time because of lack of
memory – on a 64 bit machine with 16 GB of RAM. After the first two rows
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there are three sets each of 3 rows. The first set shows the total run time
for our B&P methods, the second set shows the number of B&P nodes, and
the last set gives information on the number of subproblem solves. The first
number in a cell is the number of subproblems solved and the second is the
number of subproblems which did not generate a new production mode for
the cluster.

Table 6: Results for 2 clusters

Problem 2a 2b 2c
Standard gap <0.01% <0.01% <0.01%
Standard time [min] 0.7 0.5 39.7
B&P-1 time [min] 6.4 11.1 30.8
B&P-2 time [min] 1.4 8.3 19.2
B&P-3 time [min] 0.7 8.8 18.2
B&P-1 nodes 4 12 8
B&P-2 nodes 4 11 8
B&P-3 nodes 1 10 7
B&P-1 subs s,z 24, 14 60, 36 64, 31
B&P-2 subs s,z 21, 11 50, 30 54, 23
B&P-3 subs s,z 15, 6 55, 30 49, 18

Table 6 shows the results for the three problems with 2 clusters. All the
three problems were solved to optimality with the standard method, with a
time that varied from under 1 to nearly 40 minutes. The time for the B&P
methods varied in a similar range. The difference between B&P-2 and B&P-
3 is small and both worked better than B&P-1 for all the 3 test case. The
number of subproblems that failed to yeild a new operating mode decreases
from B&P-1 to B&P-2 and from B&P-2 to B&P-3.

Table 7 shows the results for the three test cases with problems with 4
clusters. The standard method only managed to solve one of the problems
to optimality. All the B&P methods solved all the problems to optimality
in times significantly better than the times for the Standard method. The
problem that was solved to optimality by the standard method took 153
minutes compared to between 26 and 52 minutes by the B&P methods.

Table 8 shows the results for the three test cases with problems with 6
clusters. None of these problems were solved to optimality by the standard
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Table 7: Results for 4 clusters

Problem 4a 4b 4c
Standard gap 3.17% <0.01% 4.01%
Standard time [min] 181 † 153 174 †
B&P-1 time [min] 123 52 84
B&P-2 time [min] 119 26 54
B&P-3 time [min] 102 27 89
B&P-1 nodes 22 9 6
B&P-2 nodes 22 9 6
B&P-3 nodes 16 7 5
B&P-1 subs s,z 192, 149 120, 79 64, 42
B&P-2 subs s,z 175, 134 95, 58 60, 41
B&P-3 subs s,z 141, 97 87, 45 68, 34

Table 8: Results for 6 clusters

Problem 6a 6b 6c
Standard gap 9.51% 6.99% 11.3%
Standard time [min] 430 † 519 † 394 †
B&P-1 time [min] 254 25 230
B&P-2 time [min] 181 27 142
B&P-3 time [min] 192 18 46
B&P-1 nodes 14 4 20
B&P-2 nodes 13 4 19
B&P-3 nodes 13 4 5
B&P-1 subs s,z 198, 158 72, 46 306, 250
B&P-2 subs s,z 152, 121 68, 46 240, 189
B&P-3 subs s,z 173, 119 71, 41 100, 53
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method. The B&P results for the 4 and the 6 cluster problems show similar
variations between the test cases as we found for the 2 cluster problems.

Table 9: Average for 2, 4 and 6 clusters and Results for 8 clusters

Problem 2-Aver 4-Aver 6-Aver 8
Standard gap <0.01% 2.39% 9.3% 10.9%
Standard time [min] 13.6 169 † 448 † 623 †
B&P-1 time [min] 16.1 86 170 195
B&P-2 time [min] 9.6 66 117 125
B&P-3 time [min] 9.3 73 85 121
B&P-1 nodes 8 12 13 14
B&P-2 nodes 8 12 12 14
B&P-3 nodes 6 9 7 13
B&P-1 subs s,z 49, 27 125, 90 192, 151 264, 213
B&P-2 subs s,z 42, 22 110, 78 153, 119 214, 177
B&P-3 subs s,z 40, 18 99, 59 115, 71 245, 172

Table 9 compares our single test case with 8 clusters with the average
of the results for the sets of problems with 2, 4 and 6 clusters. This table
shows an increase in the relative gap for the standard method with increase
in the number of clusters (though the highest relative gap for a single case is
11.3% for test case 6c). The table also shows that both B&P-2 and B&P-3
are faster than B&P-1 and that neither of the 2 faster ones dominates the
other. The solution times for the B&P methods show very modest growth
as the number of clusters in the problem increases.

The Standard method achieved the target tolerance of 0.01% only for the
2 cluster cases and for one of the 4 cluster cases. In all other cases it ran
out of memory and failed with an unacceptably high bound gap and took
a longer time for this that B&P-1 took to solve the problem. For 9 of the
10 problems B&P-2 is significantly faster than B&P-1. The number of B&P
nodes are similar, however the recalculation of the master solution after each
subproblem solve and postponing resolving any subproblem that did not give
a new production mode during its last solve has succeeded in significantly
reducing the number of subproblem solved. By in addition utilizing the
spare capacity of the common constraints as done in B&P-3 we see a further
improvement in solution time for 6 of the 10 problems. B&P-3 never took
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more B&P nodes than B&P-2 for any of our test cases and it always had
fewer subproblems that failed to find a new operating mode.

The RMP solution time is in the order of 0.01 second, while the RMP-IP
solution time is usually one magnitude higher, and both these times are neg-
ligible compared to the subproblem solution times. Most subproblems solve
in 5 - 120 seconds with 2000 - 100000 branch & bound nodes. However, on
some occasions, the subproblem can be much harder to solve, taking several
thousand seconds and more than a million branch & bound nodes. Small
variations in the number of these slow solves can have a big effect on the
solution time. The computational effort involved in solving the subproblems
is mainly due to the piecewise linearization required to model the nonlinear
well and pipe models. The well flow piecewise linearization have 20 to 100
breakpoints, and the pipe pressure drop linearization each have 343 break-
points, corresponding to 7 breakpoints in each of the gas, water and oil flow
SOS2s. There are 2 binary variables and one SOS2 per well and three SOS2s
per pipe. Because of nonconvexities a lot of branching occurs on the SOS2s.

The optimization methods presented in this paper are intended as a tool
for production engineers at oil and gas fields like Troll. Being able to find
solutions overnight is of significant value, and all test problems in this study
were solved by B&P-3 within 3.25 hours, so comfortably satisfying this cri-
terion. There are however occasions when faster solution times would be
useful, for example if a well or cluster has to be closed down suddenly due
to a production problem. Fortunately good suboptimal solutions are usually
found much earlier in the solution process. Figure 3 shows for the 8 cluster
example the variation over time of the gaps between the upper and lower
bounds. This shows that B&P-3 produced very good solutions within an
hour for our largest test problem.

7 Conclusion

This paper presents a method that solves a Real Time Production Optimiza-
tion problem (RTPO) using column generation in a Branch & Price frame-
work. The contribution lies in continuous branching on the cluster gas and
water production variables, and on the MILP formulation of the subprob-
lems which enables us to use a commercial solver. In addition, we utilize the
spare capacity of the common constraints, after solving the restricted master
problem, as an IP to create better feasible solutions. In this way we improve
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Figure 3: Bound gap as function of time for 8 cluster problem

the lower bound. Since the master problem solution time is negligible, it is
re-solved each time a subproblems returns with a new column. To improve
the solution time further, subproblems which once return without generating
new columns are skipped until no further columns are generated, at which
point the subproblems are solved again to establish the bounds.

The B&P method outperforms the standard implementation, which is
only capable of finding the optimal solution of the smallest two cluster prob-
lems and one of the four cluster problems. The proposed algorithm termi-
nates with no more than 22 B&P nodes for all tested cases, and near optimal
solutions were always found in less than 1 hour.

In the Troll case there are 2 parallel pipelines in each cluster and pipelines
join only at the separators. In some fields the clusters have different numbers
of parallel pipelines and more complex topologies. Our model deals with an
arbitrary number of parallel pipelines, however if modified slightly, it could
deal with other topologies as well. The computational performance is unlikely
to be affected by this change. For some fields a useful extension would be
to include the optimization of gas lift or pump operation within the model.
The same solution framework extends to this problem but with more linking
constraints between the clusters.
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The RTPO problem is a challenge for the production engineers at Troll
and other gas and oil producing installations with rate dependent gas, oil
and water flow-fractions. The study performed in this paper was initiated by
industrial partners, and has shown the potential to have significant impact
when successfully integrated into their operating practices
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