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NONRATIONAL DEL PEZZO FIBRATIONS

IVAN CHELTSOV

Abstract. Let X be a general divisor in |3M + nL| on the rational scroll Proj(⊕4
i=1OP1(di)),

where di and n are integers, M is the tautological line bundle, L is a fibre of the natural
projection to P1, and d1 > · · · > d4 = 0. We prove that X is rational ⇐⇒ d1 = 0 and n = 1.

1. Introduction.

The rationality problem for threefolds1 splits in three cases: conic bundles, del Pezzo fibra-
tions, and Fano threefolds. The cases of conic bundles and Fano threefolds are well studied.

Let ψ : X → P1 be a fibration into del Pezzo surfaces of degree k > 1 such that X is smooth
and rkPic(X) = 2. Then X is rational if k > 5. The following result is due to [1] and [12].

Theorem 1.1. Suppose that fibres of ψ are normal and k = 4. Then X is rational if and only if

χ
(

X
)

∈
{

0,−8,−4
}

,

where χ(X) is the topological Euler characteristic.

The following result is due to [8].

Theorem 1.2. Suppose that K2
X 6∈ IntNE(X) and k 6 2. Then X is nonrational.

In the case when k 6 2 and K2
X ∈ Int NE(X), the threefold X belongs to finitely many de-

formation families, whose general members are nonrational (see [13], [4], [6], Proposition 1.5).
Suppose that k = 3. Then X is a divisor in the linear system |3M + nL| on the scroll

Proj
(

⊕4
i=1 OP1

(

di

)

)

,

where n and di are integers, M is the tautological line bundle, and L is a fibre of the natural
projection to P1. Suppose that d1 > d2 > d3 > d4 = 0.

Suppose that X is a general2 divisor in |3M + nL|. The following result is due to [8].

Theorem 1.3. Suppose that K2
X 6∈ IntNE(X). Then X is nonrational.

It follows from [5], [11], [2], [13], [3], [4] that X is nonrational when
(

d1, d2, d3, n
)

∈
{

(

0, 0, 0, 2
)

,
(

1, 0, 0, 0
)

,
(

2, 1, 1,−2
)

,
(

1, 1, 1,−1
)

}

.

We prove the following result in Section 3.

Theorem 1.4. The threefold X is rational ⇐⇒ d1 = 0 and n = 1.

Therefore, the threefold X is nonrational in the case when χ(X) 6= −14. Indeed, we have

χ(X) = −4K3
X − 54 = −4

(

18 − 6
(

d1 + d2 + d3

)

− 8n
)

− 54 = 18 − 24
(

d1 + d2 + d3

)

− 32n,

and χ(X) = −14 implies that (d1, d2, d3, n) = (0, 0, 0, 1) or (d1, d2, d3, n) = (2, 1, 1,−2).

The author would like to thank A.Corti, M. Grinenko, V. Iskovskikh, V. Shokurov for fruitful conversations.
1All varieties are assumed to be projective, normal, and defined over C.
2A complement to a countable union of Zariski closed subsets.
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2 IVAN CHELTSOV

The inequality 5n > 12−3(d1+d2+d3) holds whenK2
X 6∈ IntNE(X). For n < 0, the inequality

5n > 12 − 3
(

d1 + d2 + d3

)

implies that K2
X 6∈ Int NE(X) (see Lemma 36 in [3]). Hence, the threefold X does not belong to

finitely many deformation families in the case when K2
X ∈ Int NE(X) (see Section 2).

Let us illustrate our methods by proving the following result.

Proposition 1.5. Let X be double cover of the scroll

Proj
(

OP1

(

2
)

⊕OP1(2) ⊕OP1

)

that is branched over a general3 divisor D ∈ |4M − 2L|, where M is the tautological line bundle,

and L is a fibre of the natural projection to P1. Then X is nonrational.

Proof. Put V = Proj(OP1(2) ⊕OP1(2) ⊕OP1). The divisor D is given by the equation

α6x
4
1 + α1

6x
3
1x2 + α4x

3
1x3 + α2

6x
2
1x

2
2 + α1

4x
2
1x2x3 + α2x

2
1x

2
3 + α3

6x1x
3
2+

+ α2
4x1x

2
2x3 + α1

2x1x2x
2
3 + α0x1x

3
3 + α4

6x
4
2 + α3

4x
3
2x3 + α2

2x
2
2x

2
3 + α1

0x2x
3
3 = 0

in bihomogeneous coordinates on V (see §2.2 in [9]), where αi
d = αi

d(t1, t2) is a sufficiently general
homogeneous polynomial of degree d > 0. Let

χ : Y −→ Proj
(

OP1

(

2
)

⊕OP1(2) ⊕OP1

)

be a double cover branched over a divisor ∆ ⊂ V that is given by the same bihomogeneous
equation as of divisor D with the only exception that α0 = α1

0 = 0. Then Y is singular, because
the divisor ∆ is singular along the curve Y3 ⊂ V that is given by the equations x1 = x2 = 0.

The Bertini theorem implies the smoothness of ∆ outside of the curve Y3.
Let C be a curve on the threefold Y such that χ(C) = Y3. Then the threefold Y has singula-

rities of type A1 × C at general point of the curve C. We may assume that the system

α2

(

t1, t2
)

= α1
2

(

t1, t2
)

= α2
2

(

t1, t2
)

= 0

has no non-trivial solutions. Then Y has singularities of type A1 × C at every point of C.
Let α : Ṽ → V be the blow up of Y3, and β : Ỹ → Y be the blow up of C. Then the diagram

Ỹ

β

��

χ̃
// Ṽ

α

��

Y
χ

// V

commutes, where χ̃ : Ỹ → Ṽ is a double cover. The threefold Ỹ is smooth.
Let E be the exceptional divisor of α, and ∆̃ be the proper transform of ∆ via α. Then

∆̃ ∼ α∗
(

4M − 2L
)

− 2E,

which implies that ∆̃ is nef and big, because the pencil |α∗(M − 2L) − E| does not have base

points. The morphism χ̃ is branched over ∆̃. Then rkPic(Ỹ ) = 3 by Theorem 2 in [10].
The linear system |g∗(M − L) − E| does not have base points and gives a P1-bundle

τ : Ṽ −→ Proj
(

OP1

(

2
)

⊕OP1

(

2
)

)

∼= F0,

which induces a conic bundle τ̃ = τ ◦ χ̃ : Ỹ → F0.
Let Y2 ⊂ V be the subscroll given by x1 = 0, and S be a proper transform of Y2 via α. Then

Y2
∼= Proj

(

OP1

(

2
)

⊕OP1

)

∼= F2,

3A complement to a countable union of Zariski closed subsets.



NONRATIONAL DEL PEZZO FIBRATIONS 3

and S ∼= Y2. But τ maps S to the section of F0 that has trivial self-intersection.
Let S̃ be a surface in Ỹ such that χ̃(S̃) = S, and Z ⊂ Ỹ be a general fibre of the natural

projection to P1. Then −KZ is nef and big and K2
Z = 2. But the morphism

α ◦ χ̃
∣

∣

S̃
: S̃ −→ Y2

is a double cover branched over a divisor that is cut out by the equation

α4
6

(

t0, t1
)

x2
2 + α3

4

(

t0, t1
)

x2x3 + α2
2

(

t0, t1
)

x2
3 = 0.

Let Ξ ⊂ F0 be a degeneration divisor of the conic bundle τ̃ . Then

Ξ ∼ λτ̃
(

S̃
)

+ µτ̃
(

Z
)

,

where λ and µ are integers. But λ = 6, because K2
Z = 2. We have τ̃ (S̃) 6⊂ Ξ. Then

µ = τ̃(S̃) · Ξ = 8 −K2

S̃
,

because µ is the number of reducible fibres of the conic bundle τ̃ |S̃ . These fibers are given by
(

α3
4

(

t0, t1
)

)2

= 4α2
2

(

t0, t1
)

α4
6

(

t0, t1
)

,

which implies that µ = τ̃(S̃) ·Ξ = 8. Then Ỹ is nonruled by Theorem 10.2 in [11], which implies
the nonrationality of the threefold X by Theorem 1.8.3 in §IV of the book [7]. �

2. Preliminaries.

All results of this section follow from [3]. Take a scroll

V = Proj
(

⊕4
i=1 OP1

(

di

)

)

,

where di is an integer, and d1 > d2 > d3 > d4 = 0. Let M and L be the tautological line bundle
and a fibre of the natural projection to P1, respectively. Then Pic(V ) = ZM ⊕ ZL.

Let (t1 : t2;x1 : x2 : x3 : xk) be bihomogeneous coordinates on V such that xi = 0 defines
a divisor in |M − diL|, and L is given by t1 = 0. Then |aM + bL| is spanned by divisors

ci1i2i3i4

(

t1, t2
)

xi1
1
xi2

2
xi3

3
xi4

k = 0,

where
∑

4

j=1
ij = a and ci1i2i3i4(t1, t2) is a homogeneous polynomial of degree b+

∑

4

j=1
ijdj .

Let Yj ⊆ V be a subscroll x1 = · · · = xj−1 = 0. The following result holds (see §2.8 in [9]).

Corollary 2.1. Take D ∈ |aM + bL| and q ∈ N, where a and b are integers. Then

multYj

(

D
)

> q ⇐⇒ adj + b+
(

d1 − dj

)(

q − 1
)

< 0.

Let X be a general4 divisor in |3M + nL|, where n is an integer.

Lemma 2.2. Suppose X is smooth and rkPic(X) = 2. Then d1 > −n and 3d3 > −n.
Proof. We see that Y2 6⊂ X. Then Y3 6⊂ X, because rkPic(X) = 2. But multY4

(

X
)

6 1, because
the threefold X is smooth. The assertion of Corollary 2.1 concludes the proof. �

Lemma 2.3. Suppose X is smooth and rkPic(X) = 2. Then either d1 = −n or d2 > −n.
Proof. Suppose that r = d1 + n > 0 and d2 < −n. Then X can be given by the equation

∑

i, j, k>0

i+j+k=2

γijk(t0, t2)x
i
1x

j
2
xk

3x4 = αr(t1, t2)x1x
2
4 +

∑

i, j, k>0

i+j+k=3

βijk(t0, t2)x
i
1x

j
2
xk

3 ,

4A complement to a Zariski closed subset in moduli.



4 IVAN CHELTSOV

where αr(t1, t2) is a homogeneous polynomial of degree r, βijk and γijk are homogeneous poly-
nomial of degree n+ id1 + jd2 + kd3. Then every point of the intersection

x1 = x2 = x3 = αr

(

t1, t2
)

= 0

must be singular on the threefold X, which is a contradiction. �

Lemma 2.4. Suppose X is smooth, d2 = d3, n < 0 and rkPic(X) = 2. Then 3d3 6= −n.

Proof. Suppose that 3d3 = −n. Then X can be given by the the bihomogeneous equation
∑

j, k, l>0

i+j+k=2

γjkl(t0, t2)x1x
j
2
xk

3x
l
4 = f3(x2, x3) + αr(t0, t2)x

3
1 +

∑

j, k, l>0

j+k+l=1

βjkl(t0, t2)x
2
1x

j
2
xk

3x
l
4,

where f3(x2, x3) is a homogeneous polynomial of degree 3, βjkl and γjkl are homogeneous poly-
nomial of degree n+ 2d1 + jd2 + kd3 and n+ d1 + jd2 + kd3 respectively, αr is a homogeneous
polynomial of degree r = 3d1 +n. The threefold X contains 3 subscrolls given by the equations

x1 = f3(x2, x3) = 0,

which is impossible, because rkPic(X) = 2. �

The following result follows from Lemmas 2.2, 2.3 and 2.4.

Lemma 2.5. The threefold X is smooth and rkPic(X) = 2 whenever

(1) in the case when d1 = 0, the inequality n > 0 holds,

(2) either d1 = −n and 3d3 > −n, or d1 > −n, d2 > −n and 3d3 > −n,
(3) in the case when d2 = d3 and n < 0, the inequality 3d3 > −n holds.

Proof. Suppose that all these conditions are satisfied. We must show that X is smooth, because
the equality rkPic(X) = 2 holds by Proposition 32 in [3].

The linear system |3M+nL| does not have base points if n > 0. So, the threefold X is smooth
by the Bertini theorem in the case n > 0. Therefore, we may assume that n < 0.

The base locus of |3M+nL| consists of the curve Y4, which implies that X is smooth outside of
the curve Y4 and in a general point of Y4 by the Bertini theorem and Corollary 2.1, respectively.

In the case when d1 = −n and d2 < −n, the bihomogeneous equation of the threefold X is
∑

i, j, k>0

i+j+k=2

γijk(t0, t2)x
i
1x

j
2
xk

3x4 = α0x1x
2
4 +

∑

i, j, k>0

i+j+k=3

βijk(t0, t2)x
i
1x

j
2
xk

3,

where βijk and γijk are homogeneous polynomials of degree n+id1+jd2+kd3 and α0 is a nonzero
constant. The curve Y4 is given by x1 = x2 = x3 = 0, which implies that X is smooth.

In the case when d1 > −n and d2 > −n, the bihomogeneous equation of X is

∑

i, j, k>0

i+j+k=2

γijk(t0, t2)x
i
1x

j
2
xk

3x4 =

3
∑

i=1

αi(t0, t2)xix
2
4 +

∑

i, j, k>0

i+j+k=3

βijk(t0, t2)x
i
1x

j
2
xk

3,

where αi is a homogeneous polynomial of degree di + n, and βijk and γijk are homogeneous
polynomials of degree n+ id1 + jd2 + kd3. Therefore, tither α1x1x

2
4

or α2x2x
2
4

does not vanish
at any given point of the curve Y4, which implies that X is smooth. �

Thus, there is an infinite series of quadruples (d1, d2, d3, n) such that the threefoldX is smooth,
the equality rkPic(X) = 2 holds, the inequality 5n < 12 − 3(d1 + d2 + d3) holds and n < 0.
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3. Nonrationality.

We use the notation of Section 2. Let X be a general5 divisor in |3M +nL|, and suppose that
the threefold X is smooth, rkPic(X) = 2, and X is rational. Let us show that d1 = 0 and n = 1.

The threefold X is given by a bihomogeneous equation

3
∑

l=0

αi

(

t0, t2
)

xi
3x

3−i
4

+ x1F
(

t0, t1, x1, x2, x3, x4

)

+ x2G
(

t0, t1, x1, x2, x3, x4

)

= 0,

where αi is a general homogeneous polynomial of degree n+ id3, and F and G stand for
∑

i, j, k, l>0

i+j+k+l=2

βijkl(t0, t2)x
i
1x

j
2
xk

3x
l
4 and

∑

i, j, k, l>0

i+j+k+l=2

γijkl(t0, t2)x
i
1x

j
2
xk

3x
l
4

respectively, where βijkl is a general homogeneous polynomial of degree n+(i+1)d1 + jd2 +kd3,
and γijkl is a general homogeneous polynomial of degree n+ id1 + (j + 1)d2 + kd3.

Let Y be a threefold given by x1F+x2G = 0. Then Y3 ⊂ Y , where Y3 is given by x1 = x2 = 0.

Lemma 3.1. The threefold Y has 2d1 + 2d2 + 4d3 + 4n > 0 isolated ordinary double points.

Proof. The threefold Y is singular exactly at the points of V where

x1 = x2 = F
(

t0, t1, x1, x2, x3, x4

)

= G
(

t0, t1, x1, x2, x3, x4

)

= 0

by the Bertini theorem. But Y3
∼= Proj(OP1(d3) ⊕ OP1) ∼= Fd3

, where (t0 : t1;x3 : x4) can be
considered as natural bihomogeneous coordinates on the surface Y3.

Let C and Z be the curves on Y3 that are cut out by the equations F = 0 and G = 0, respec-
tively. Then C and Z are given by the equations

∑

k, l>0

k+l=2

βkl(t0, t2)x
k
3x

l
4 = 0 and

∑

k, l>0

k+l=2

γkl(t0, t2)x
k
3x

l
4 = 0

respectively, where βkl = β00kl and γkl = γ00kl.
The degrees of βkl and γkl are n+ d1 + kd3 and n+ d2 + kd3, respectively.
Let O be a point of the scroll V such that the set

x1 = x2 = F
(

t0, t1, x1, x2, x3, x4

)

= G
(

t0, t1, x1, x2, x3, x4

)

= 0

contains the point O. Then O ∈ C ∩ Z and O ∈ Sing(Y ).
It is easy to see that O is an isolated ordinary double point of the threefold Y in the case when

the curves C and Z are smooth and intersect each other transversally at the point O.
Put M̄ = M |Y3

and L̄ = L|Y3
. Then C ∈ |2M̄ + (n+ d1)L̄| and Z ∈ |2M̄ + (n+ d2)L̄|. But

∣

∣

∣
2M̄ +

(

n+ d1

)

L̄
∣

∣

∣

does not have base points, because d1 + n > 0 by Lemma 2.2. So, the curve C is smooth.
The linear system |2M̄ +(n+d2)L̄| may have base components, and Z may not be reduced or

irreducible. We have to show that C intersects Z transversally at smooth points of Z, because
∣

∣C ∩ Z
∣

∣ = C · Z = 2d1 + 2d2 + 4d3 + 4n,

where 2d1 + 2d2 + 4d3 + 4n > 0 by Lemmas 2.2, 2.3 and 2.4.
Suppose that d1 > −n. Then d2 > −n by Lemma 2.3. We see that |2M̄ +(n+ d2)L̄| does not

have base points. Then Z is smooth and C intersects Z transversally at every point of C ∩ Z.
We may assume that d1 = −n. Let Y4 ⊂ Y3 be a curve given by x3 = 0. Then

C ∩ Y4 = ∅,
5A complement to a countable union of Zariski closed subsets.
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and either the linear system |2M̄ + (n + d2)L̄| does not have base points, or the base locus of
the linear system |2M̄ + (n+ d2)L̄| consist of the curve Y4. However, we have

C ∩ Z ⊂ Y3 \ Y4,

which implies that C intersects the curve Z transversally at smooth points of Z. �

Let π : Ṽ → V be the blow up of Y3, and Ỹ be and the proper transforms of Y via π. Then

Ỹ ∼ π∗
(

3M + nL
)

− E,

where E is and exceptional divisor of π. The threefold Ỹ is smooth.

Lemma 3.2. The equality rkPic(Ỹ ) = 3 holds.

Proof. The linear system |π∗(M − d2L) − E| does not have base points. Thus, the divisor

Ỹ ∼ π∗
(

3M + nL
)

− E

is nef and big when n > 0 by Lemmas 2.2, 2.3 and 2.4. Hence, the equality rkPic(Ỹ ) = 3 holds
in the case when n > 0 by Theorem 2 in [10]. So, we may assume that n < 0.

Let ω : Ỹ → P1 be the natural projection and S be the generic fibre of ω, which is considered
as a surface defined over the function field C(t). Then S is a smooth cubic surface in P3, which
contains a line in P3 defined over the field C(t), because Y3 ⊂ Y . Then rkPic(S) > 2.

To conclude the proof we must prove that rkPic(S) = 2, because there is an exact sequence

0 −→ Z
[

π∗
(

L
)

]

−→ Pic
(

Ỹ
)

−→ Pic
(

S
)

−→ 0,

because every fibre of τ is reduced and irreducible (see the proof of Proposition 32 in [3]).

Let S̆ be an example of the surface S that is given by the equation

x
(

q(t)x2 + p(t)w2
)

+ y
(

r(t)y2 + s(t)z2
)

= 0 ⊂ Proj
(

C[x, y, z, t]
)

,

where q(t), p(t), r(t), s(t) are polynomials such that the inequalities

deg
(

q(t)
)

> 0, deg
(

p(t)
)

> 0, deg
(

r(t)
)

> 0,deg
(

q(t)
)

> 0

hold. The existence of the surface S̆ follows from the equation of the threefold Y .
Let K be an algebraic closure of the field C(t), let L be a line x = y = 0, and let

γ : S̆ → P1

be a projection from L. Then γ is a conic bundle defined over C(t). But γ has five geometrically
reducible fibres F1, F2, F3, F4, F5 defined over F such that

• Fi = F̃i ∪ F̄i, where F̃i and F̄i are geometrically irreducible curves,
• the curve L ∪ Fi is cut out on the surface S̆ by the equation

y = ǫi 3

√

q(t)

r(t)
x,

where ǫ = −(1 +
√
−3)/2 and i ∈ {1, 2, 3},

• the curve F4 ∪ L is cut out on the surface S̆ by the equation x = 0,
• the curve F5 ∪ L is cut out on the surface S̆ by the equation y = 0.

The group Gal(K/C(t)) naturally acts on the set

Σ =
{

F̃1, F̃2, F̃3, F̃4, F̃5, F̄1, F̄2, F̄3, F̄4, F̄5

}

,

because the conic bundle γ is defined over C(t). The inequality rkPic(S̆) > 2 implies the exis-
tence of a subset Γ ( Σ consisting of disjoint curves such that Γ ( Σ is Gal(K/C(t))-invariant.
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The action of Gal(K/C(t)) on the set Σ is easy to calculate explicitly. Putting

∆ =
{

F̃1, F̃2, F̃3, F̄1, F̄2, F̄3

}

, Λ =
{

F̃4, F̄4

}

, Ξ =
{

F̃5, F̄5

}

,

we see that the group Gal(K/C(t)) acts transitively on each subset Λ, Ξ, ∆, because we may
assume that q(t), p(t), r(t), s(t) are sufficiently general. But each subset Λ, Ξ, ∆ does not consist

of disjoint curves. Hence, the equality rkPic(S̆) = 2 holds, which implies that rkPic(S) = 2. �

The linear system |π∗(M − d2L) − E| does not have base points and induces a P2-bundle

τ : Ṽ −→ Proj
(

OP1

(

d1

)

⊕OP1

(

d2

)

)

∼= Fr,

where r = d1 − d2. Let l be a fibre of the natural projection Fr → P1, and s0 be an irreducible
curve on the surface Fr such that s20 = r, and s0 is a section of the projection Fr → P1. Then

π∗
(

M − d2L
)

− E ∼ τ∗
(

s0
)

and π∗(L) ∼ τ∗(l). The morphism τ induces a conic bundle τ̃ = τ |Ỹ : Ỹ → Fr.
Let ∆ be the degeneration divisor of the conic bundle τ̃ . Then

∆ ∼ 5s∞ + µl,

where µ is a natural number, and s∞ is the exceptional section of the surface Fr.
Let S be a surface in Ỹ and B be a threefold in Ṽ dominating the curve s0. Then

B ∼= Proj
(

OP1

(

d1

)

⊕OP1

(

d3

)

⊕OP1

)

and π(B) ∼= B. But π(B) ∩ Y = π(S) ∪ Y3.
The surface Y3 is cut out on π(B) by the equation x1 = 0, where π(B) ∈ |M − d2L|. We have

S ∼ 2T +
(

d1 + n
)

F,

where T is a tautological line bundle on B, and F is a fibre of the projection B → P1. Then

K2
S = −5d1 + 2d3 − 4d2 − 3n+ 8

and µ = s0 · ∆ = 5d1 − 2d3 + 4d2 + 3n.
It follows from the equivalence 2KFr + ∆ ∼ s∞ + (3d1 − 2d3 + 6d2 + 3n− 4)l that

∣

∣2KFr + ∆
∣

∣ 6= ∅ ⇐⇒ 3d1 − 2d3 + 6d2 + 3n > 4,

which implies that Y is nonrational by Theorem 10.2 in [11] if 3d1 − 2d3 + 6d2 + 3n > 4.
The threefold Y is nonruled if and only if it is nonrational, because the threefold Y is rationally

connected. So, the threefold X is nonrational by Theorem 1.8.3 in §IV of the book [7] whenever

3d1 − 2d3 + 6d2 + 3n > 4,

which implies that 3d1 − 2d3 + 6d2 + 3n < 4, because we assume that X is rational.
We see that either d1 = 0 and n = 1 or d1 = 1 and d2 = n = 0 by Lemmas 2.2, 2.3 and 2.4, but

the threefold X is birational to a smooth cubic threefold in the case when d1 = 1 and d2 = n = 0,
which is nonrational by [5]. Then d1 = 0 and n = 1. The assertion of Theorem 1.4 is proved.
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