

Edinburgh Research Explorer

Verifying temporal properties using explicit approximants:
completeness for context-free processes

Citation for published version:
Schöpp, U & Simpson, A 2002, Verifying temporal properties using explicit approximants: completeness for
context-free processes. in Foundations of Software Science and Computation Structures. Lecture Notes in
Computer Science, vol. 2303, Springer-Verlag GmbH, pp. 372-386. DOI: 10.1007/3-540-45931-6_26

Digital Object Identifier (DOI):
10.1007/3-540-45931-6_26

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Foundations of Software Science and Computation Structures

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28965116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/3-540-45931-6_26
https://www.research.ed.ac.uk/portal/en/publications/verifying-temporal-properties-using-explicit-approximants-completeness-for-contextfree-processes(270a578b-0af7-41b4-9f8f-24b85dacb086).html

Verifying Temporal Properties using Explicit Approximants:

Completeness for Context-free Processes

Ulrich Schöpp

Ulrich.Schoepp@ed.ac.uk

Alex Simpson

Alex.Simpson@dcs.ed.ac.uk

LFCS, Division of Informatics, University of Edinburgh
JCMB, King’s Buildings, Edinburgh, EH9 3JZ

Abstract

We present a sequent calculus for formally verifying modal µ-calculus properties of concurrent

processes. Building on work by Dam and Gurov, the proof system contains rules for the

explicit manipulation of fixed-point approximants. We develop a new syntax for approximants,

incorporating, in particular, a mechanism for approximant modification. We make essential

use of this feature to prove our main result: the sequent calculus is complete for establishing

arbitrary µ-calculus properties of context-free processes.

1 Introduction

Concurrent processes lie at the heart of many critical applications in computer science, and often
have a rich and complex behaviour. So it is very desirable to ensure that such systems work
correctly. Moreover, many correctness requirements are conveniently expressed using temporal
logic. Thus one seeks methods of establishing relations of the form p |= ϕ, stating that process p
satisfies temporal property ϕ.

For finite state systems, this problem can be addressed automatically by model checking.
However, many concurrent processes are infinite state (at least potentially), and for such systems
the verification problem is, in general, undecidable. In the face of undecidability, one has to
settle for finding sound but necessarily incomplete methods for establishing correctness assertions.
Because of incompleteness in general, the best one can hope for is to obtain partial completeness
results for such methods, e.g. completeness with respect to restricted classes of processes.

In this paper, we provide a proof system for establishing correctness assertions p |= ϕ, where
ϕ is a formula in the modal µ-calculus [13]. We prove the soundness of the system, Theorem 1,
and illustrate its workings with an example derivation of a µ-calculus property with non-trivial
fixed-point alternation. Following [16], the proof system can be adapted to processes in any
process algebra with a GSOS-specified operational semantics [1]. Our main result, Theorem 2, is
a restricted completeness result: the proof system is complete for establishing arbitrary µ-calculus
properties of context-free processes, see e.g. [2]. As far as we know, this is the first completeness
result for a general purpose proof system (i.e. one not tailored in advance to any one specific class
of processes) with respect to a significant class of infinite state processes.

Motivation and previous work

The proof system we introduce is a sequent calculus in which sequents have the form Γ ⊢ ∆,
where Γ and ∆ are sets of assertions. As usual, a derivation of Γ ⊢ ∆ will establish that if all
the assertions in Γ hold then so does at least one assertion in ∆. The principal assertion form is
p :ϕ, which is the syntactic expression of the relation p |= ϕ. The sequent-based formalism has a
number of virtues:

1

v1lfass
Typewritten Text
Schöpp, U., & Simpson, A. (2002). Verifying temporal properties using explicit approximants: completeness for context-free processes. In Foundations of Software Science and Computation Structures. (pp. 372-386). (Lecture Notes in Computer Science). Springer Berlin / Heidelberg. doi: 10.1007/3-540-45931-6_26

1. Ordinary verification goals are expressed by sequents of the form ⊢ p :ϕ.

2. More generally, by allowing process variables, modular verification goals can be expressed
by sequents of the form

x1 :ψ1, . . . , xn :ψn ⊢ p(x1, . . . , xn) :ϕ. (1)

Such a sequent states that the process p satisfies ϕ whenever its parameters x1, . . . , xn are
instantiated with processes satisfying ψ1, . . . , ψn respectively.

3. Such modularity goals can be used to support compositional reasoning. Using the familiar
cut and substitution rules from sequent calculus, one obtains a derived rule:1

⊢ p(q1, . . . , qn) :ϕ

⊢ q1 :ψ1 . . . ⊢ qn :ψn x1 :ψ1, . . . , xn :ψn ⊢ p(x1, . . . , xn) :ϕ

This rule reduces the goal of establishing a property ϕ of a compound process p(q1, . . . , qn)
to the subgoals of establishing properties of its components q1, . . . , qn together with a further
modularity subgoal justifying the decomposition.

4. The proof system also supports a direct structural form of reasoning. The main inference
rules decompose logical connectives on the left and right of sequents in the familiar Gentzen
style, allowing the construction of a derivation to be guided by the form of the goal sequent.

Such a sequent-based approach to process verification was proposed independently by Dam [4]
and the second author [16], as a way of uniformly accounting for many specialist techniques for
compositional reasoning that had appeared in the earlier literature, especially [17]. The approach
has since been further developed in a series of papers by Dam and his co-workers [5]–[10]. We now
discuss this previous research in more detail.

In [16], the second author introduced a sequent calculus for establishing properties expressed
in Hennessy-Milner logic [11] (which is the recursion-free fragment of the modal µ-calculus). The

main idea was to introduce a second form of assertion into sequents: transition assertions p
a
→ q

expressing that process p evolves to process q under action a. Such assertions yield natural proof
rules for modalities, and allow process operators f(x1, . . . , xn) to be incorporated into the proof
system using proof rules reflecting their operational semantics. The approach is very general,
and applies to any process calculus with an operational semantics in the GSOS format [1]. The
main results of [16] were strong completeness results for the system. The proofs simultaneously
established the admissibility of cut and hence the completeness of structural reasoning.

In [4]–[10], Dam and his co-workers have addressed the interesting question of how best to
incorporate fixed-point reasoning into such sequent-based proof systems. The main difficulty is to
provide methods that correctly interact with the cut rule, which, as described above, is essential
for compositional reasoning. The difficulty it causes is due to the way cut requires the same for-
mula to appear both on the left and right of sequents in separate branches of the proof, see [5]. In
their more recent research, see, in particular, [9], Dam and Gurov have proposed dealing with this
difficulty by extending the µ-calculus with a syntax for so-called explicit approximants. Specifi-
cally, the syntax is extended by including ordinal variables κ, which are semantically interpreted
as ordinals, and by introducing formulae µκX.ϕ and ν κX.ϕ standing for the κ-th iterations in
the chain of approximations to the fixed-points µX.ϕ and νX.ϕ respectively. This machinery
allows a sound notion of proof to be defined, by identifying certain repeats (up to substitution)
of sequents in a derivation tree and by imposing a global “discharge” condition on a derivation
tree, formulated in terms of ordinal variables. Over the course of their research, Dam, Gurov et
al have: proved the completeness of their techniques for establishing properties of finite-state pro-
cesses [5]; established completeness for sequents of the form ⊢ x :ϕ, i.e. completeness with respect
to µ-calculus validity [9]; and applied their techniques to such diverse languages as CCS [5, 8], the
π-calculus [6] and Erlang [7, 10].

1In this paper, we write all inference rules and derivations in tableau form, i.e. with the goal (conclusion) on top
and the subgoals (premises) underneath.

2

Overview

As the first contribution of the present paper, we provide a new proof system for incorporating
fixed-point reasoning into the sequent-calculus approach. Our system is strongly based on Dam
and Gurov’s idea of using explicit fixed-point approximants. However, we provide an alternative
formulation of these, not requiring ordinal variables. Instead, we use ordinary propositional vari-
ables X to range over approximants. To properly deal with these, we include an extra component
on the left of sequents, a context D of approximant declarations. Such declarations have one of
two forms: X6ϕ, which declares X to be an approximant of µX.ϕ; and X>ϕ, which declares X
to be an approximant of νX.ϕ, see Section 2. Thus far, our approach can be seen as merely a (less
expressive) reformulation of Dam and Gurov’s syntax. However, we also extend the syntax of the
µ-calculus in two significant ways. First, we allow explicit approximant declarations in formulae,
introducing two new formula constructions: 〈X 6ϕ〉ψ, which says that there exists an approxi-
mant X of µX.ϕ such that ψ; and [X>ϕ]ψ, which says that ψ holds for all approximants X of
νX.ϕ. In terms of expressivity, this is a harmless extension of the µ-calculus, as one can equiva-
lently read the above as “letrec” expressions. For example, 〈X6ϕ〉ψ can be understood as “letrec
X=µϕ in ψ” or, in other words, as ψ[µX.ϕ /X]. Nonetheless, explicit approximant declarations
are useful for reasoning. Second, we incorporate a mechanism for approximant “modification” in
formulae. If X is an approximant for µX.ϕ then the formula 〈−X〉ψ expresses that there exists
another approximant X ′ of µX.ϕ with X ′ ⊂ X (proper inclusion) such that ψ[X ′ /X]. Dually, if
X is an approximant for νX.ϕ then [+X]ψ expresses that, for all approximants X ′ of µX.ϕ with
X ′ ⊃ X (proper containment), it holds that ψ[X ′ /X].

The full proof system is presented in Section 3. The use of approximant variables and modifiers
allows a straightforward definition of a global combinatorial condition for a derivation tree being
a proof. The soundness of the proof system is then established as Theorem 1.

As already stated, one cannot hope for a general completeness result for the proof system.
Indeed, if the proof system is complete for a class of processes then the property-checking problem
is necessarily decidable for that class of processes, as one can use the proof system to recursively
enumerate both the relation p |= ϕ and its complement p |= ¬ϕ. Thus the best one can hope for
is to establish restricted completeness results for classes of processes whose verification problem
is decidable. One such widely considered class of processes is that of context-free processes, see
e.g. [2]. The decidability of the property-checking problem for context-free processes is a direct
consequence of the work of Muller and Schupp, who established the more general result that
full monadic second-order logic (MSOL) is decidable over the wider class of pushdown transi-
tion graphs [14]. The decision problem for MSOL is known to be of non-elementary complexity.
However, for the special case of µ-calculus properties, it is possible to obtain elementary decision
algorithms [19, 3]. Also, Hungar and Steffen showed how alternation-free µ-calculus properties
of context-free processes can be established by a tableau-style proof system embodying a form of
compositional reasoning [12].

As the main contribution of this paper, we prove, in Section 4, that our general purpose
proof system is complete for establishing arbitrary µ-calculus properties of context-free processes
(Theorem 2). The proof builds on the techniques of Hungar and Steffen [12], but adapts them
to the full µ-calculus, making essential use of explicit ν-approximant declarations, [X>ϕ]ψ, and
modifiers, [+X]ϕ.

2 Modal µ-calculus and explicit approximants

Our treatment of the µ-calculus will be brief. The reader is referred to [18] for further details. We
consider the µ-calculus in positive normal form, with formulae defined by the grammar:

ϕ ::= X | ff | tt | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX.ϕ.

Here a ranges over a given set A of action symbols. Free and bound variables are defined as usual,
and we identify formulae up to renaming of bound variables. We write FV (ϕ) for the set of free

3

variables of ϕ, and we say that ϕ is closed if FV (ϕ) = ∅. The negation of a closed formula can be
defined by induction on its structure using De Morgan duals.

Formulae are interpreted relative to a transition system (T, {
a
→}a∈A) (here T is a set of states

and each
a
→ is a binary relation on T). A formula ϕ is interpreted relative to an environment V

mapping FV (ϕ) to subsets of T , with its interpretation ||ϕ ||V ⊆ T defined as in [18].
Next we introduce approximants. Often this is done using ordinal indices. However, it is not

strictly necessary to invoke such set-theoretic machinery. To emphasise this, we give a direct
definition, which is interpretable in monadic third-order logic.

Definition 2.1 (µ-approximants). For any least-fixed-point formula µX.ϕ, its family of ap-

proximants AµX. ϕ
V , relative to an environment V defined on FV (µX.ϕ), is the smallest family of

subsets of T satisfying:

1. if A′ ⊆ AµX. ϕ
V then

⋃

A′ ∈ AµX. ϕ
V , and

2. if S ∈ AµX. ϕ
V then ||ϕ ||V [S / X] ∈ AµX. ϕ

V .

Definition 2.2 (ν-approximants). For any greatest-fixed-point formula νX.ϕ, its family of ap-

proximants AνX. ϕ
V relative to V is the smallest family of subsets of T satisfying:

1. if A′ ⊆ AνX. ϕ
V then

⋂

A′ ∈ AνX. ϕ
V , and

2. if S ∈ AνX. ϕ
V then ||ϕ ||V [S / X] ∈ AνX. ϕ

V .

Note that, by taking A′ = ∅ we have that ∅ ∈ AµX. ϕ
V , and T ∈ AνX. ϕ

V (because T =
⋂

∅ when ∅
is considered as the empty family of subsets of T).

Proposition 2.3.

1. ||µX.ϕ ||V =
⋃

AµX. ϕ
V ∈ AµX. ϕ

V .

2. If S ∈ AµX. ϕ
V then S ⊆ ||ϕ ||V [S / X].

3. If S ∈ AµX. ϕ
V then S =

⋃

{||ϕ ||X[S′ / X] | S
′ ⊂ S and S′ ∈ AµX. ϕ

V }.

4. There is no sequence (Si) of elements of AµX. ϕ
V such that S0 ⊃ S1 ⊃ S2 ⊃

Proposition 2.4.

1. || νX.ϕ ||V =
⋂

AνX. ϕ
V ∈ AνX. ϕ

V .

2. If S ∈ AνX. ϕ
V then S ⊇ ||ϕ ||V [S / X].

3. If S ∈ AνX. ϕ
V then S =

⋂

{||ϕ ||X[S′ / X] | S
′ ⊃ S and S′ ∈ AνX. ϕ

V }.

4. There is no sequence (Si) of elements of AνX. ϕ
V such that S0 ⊂ S1 ⊂ S2 ⊂

As discussed in the introduction, the proof system will use a class of extended formulae con-
taining declarations and modifiers for approximant variables:

Φ ::= ϕ | 〈X6ϕ〉Φ | [X>ϕ] Φ | 〈−X〉Φ | [+X] Φ

In this definition, and henceforth, we use lower case Greek letters ϕ, ψ, . . . to range over ordinary
µ-calculus formulae, and upper case letters Φ,Ψ, . . . to range over extended formulae.

The sets of free variables of extended formulae are defined by:

FV (〈X6ϕ〉Φ) = FV ([X>ϕ] Φ) = (FV (ϕ) ∪ FV (Φ))\{X}
FV (〈−X〉Φ) = FV ([+X] Φ) = FV (Φ) ∪ {X}

Extended formulae are again identified up to renaming of bound variables.

4

The semantic interpretation of extended formulae is given relative to a finite set, D, of approx-
imant declarations, each of the form X6ϕ or X>ϕ. The former is a µ-approximant declaration,
the latter a ν-approximant declaration, and in each case the declared variable is X . We write
DV (D) for the set of all variables declared in D.

The declaration contexts are produced as follows: (i) the empty set is a declaration context;
(ii) if D is a declaration context, X is a variable not declared in D, and ϕ is a µ-calculus formula
with FV (ϕ) ⊆ DV (D) ∪ {X} then D, X 6ϕ and D, X >ϕ are both declaration contexts (where
we write comma for union). The set of used variables in a declaration context is defined by:

UV (X6ϕ) = UV (X>ϕ) = FV (ϕ)\{X}
UV (D) =

⋃

{UV (δ) | δ ∈ D}

We next define the notion of an extended formula Φ being well-formed relative to a declaration
context D. First, any µ-calculus formula ϕ is well-formed relative to any declaration context D with
FV (ϕ) ⊆ DV (D). Second, the extended formula 〈X6ϕ〉Φ (respectively [X>ϕ] Φ) is well-formed
relative to D if D,X6ϕ (respectively D,X>ϕ) is a declaration context, where X 6∈ DV (D) (which
can be always assumed, by the identification of formulae up to renaming of bound variables), and
Φ is well-formed relative to it. Finally, the extended formula 〈−X〉Φ (respectively [+X] Φ) is well-
formed relative to D if D contains a declaration X6ϕ (respectively X>ϕ) and also X 6∈ UV (D).
By this definition, we have that FV (Φ) ⊆ DV (D) whenever Φ is well-formed relative to D.

Given a declaration context D, a D-environment is a function V mapping DV (D) to subsets

of T such that: for each declaration X 6 ϕ in D, it holds that V (X) ∈ AµX. ϕ
V , and, for each

declaration X>ϕ in D, it holds that V (X) ∈ AνX. ϕ
V . To give a semantics to extended formulae,

we define subsets ||Φ ||DV ⊆ T whenever D is a declaration context, Φ is well-formed relative to D,
and V is a D-environment.

||ϕ ||DV = ||ϕ ||V

|| 〈X6ϕ〉Φ ||DV =
⋃

{||Φ ||D,X6ϕ
V [S / X] | S ∈ AµX. ϕ

V } where X 6∈ DV (D)

|| [X>ϕ] Φ ||DV =
⋂

{||Φ ||D,X>ϕ
V [S / X] | S ∈ AνX. ϕ

V } where X 6∈ DV (D)

|| 〈−X〉Φ ||DV =
⋃

{||Φ ||DV [S / X] | S ⊂ V (X) and S ∈ AµX. ϕ
V where X6ϕ ∈ D}

|| [+X] Φ ||DV =
⋂

{||Φ ||DV [S / X] | S ⊃ V (X) and S ∈ AνX. ϕ
V where X>ϕ ∈ D}

Note that the requirement that X 6∈ UV (D) for 〈−X〉Φ to be well-formed relative to D ensures
that V [S /X] is indeed a D-context in the definition of || 〈−X〉Φ ||DV (and similarly for [+X] Φ).

Proposition 2.5. If V and V ′ are D-environments with V (X) ⊆ V ′(X) for all X ∈ DV (D) then
||Φ ||DV ⊆ ||Φ ||DV ′ .

Proposition 2.6.

1. || 〈X6ϕ〉Φ ||DV = ||Φ ||DV [||µX. ϕ ||V / X] = ||Φ[µX.ϕ /X] ||DV .

2. || [X>ϕ] Φ ||DV = ||Φ ||DV [|| νX. ϕ ||V / X] = ||Φ[νX.ϕ /X] ||DV .

3. If X6ϕ ∈ D then ||X ||DV = || 〈−X〉ϕ ||DV .

4. If X>ϕ ∈ D then ||X ||DV = || [+X]ϕ ||DV .

3 The proof system

The proof system we present is general purpose in the sense that, following the approach of [16],
it can be easily adapted to give a sound system for reasoning about any process algebra whose
operational semantics is given in the GSOS format [1]. However, for brevity of exposition, we
present proof rules for the special case of context-free processes only. We begin by reviewing the
definition of such processes.

5

Definition 3.1 (Context-free system). A context-free system is specified by a finite set of
nonterminals Σ = {P1, . . . ,Pk} together with a finite set P of productions, each of the form

Pi
a
→ p, where p ranges over Σ∗ (the set of finite words over Σ) and a ranges over a finite set of

action symbols A. The transition system (T, {
a
→T }a∈A) determined by the specification is defined

as follows.

T = Σ∗

s
a
→T t iff s = Pi q and t = p q for some production Pi

a
→ p ∈ P .

Here, as usual, a juxtaposition p q means the concatenation of words p and q.

Example 3.2. As a running example, consider the system with a single nonterminal P, set of

actions A = {a, b}, and with two productions: P
a
→ PP and P

b
→ ε, where ε is the empty word.

This has as its transition system:

ε �

b
P

a
-

�

b
P2

a
-

�

b
P3

a
-

�

b
. . .

This is an infinite-state process in which no two distinct states are bisimilar to each other.

Henceforth in this section we assume that we have a fixed specification of a context-free system,
as in Definition 3.1, and we write (T, {

a
→T }a∈A) for the transition system it determines.

The proof system uses process terms containing free process variables x, y,

Definition 3.3 (Process term). A process term is a word of one of the following two forms:
either px, where p ∈ Σ∗ and x is a process variable; or p where p ∈ Σ∗.

We use p, q, . . . to range over process terms. By a process substitution we shall mean a mapping θ
from process variables to process terms. The substituted term p [θ] is defined in the obvious way.
We write Γ [θ] for the set { p [θ] : Φ | p : Φ ∈ Γ}.

The restriction of process variables to the rightmost position in a process term may seem
unnatural. However, the above definition of process term is the one that derives from the simplest
formulation of context-free systems in GSOS format. Under this formulation, one has a unary
process operator for each nonterminal P1, . . . ,Pn, and also a single process constant, ε. The
productions of the system are then easily recast as GSOS operational rules.

Process terms are interpreted relative to process environments ρ mapping process variables to
states in the transition system T . We extend ρ to a function (also called ρ) from process terms to
T by: ρ(px) = p ρ(x) and ρ(p) = p.

Sequents will be built from two forms of assertion: verification assertions of the form p : Φ ,
where Φ is an extended formula, as in Section 2; and transition assertions of the form p

a
→ q. We

use J,K, . . . to range over assertions. Given a declaration context D, as in Section 2, an assertion
is a D-assertion if it is either a verification assertion p : Φ with Φ well-formed relative to D, or a
transition assertion.

Definition 3.4 (Sequent). Sequents have the form D ; Γ ⊢ ∆ where: D is a declaration context
and Γ and ∆ are finite sets of D-assertions.

Semantically, assertions and sequents will always be interpreted relative to the transition system
(T, {

a
→T }a∈A). Given a D-environment V and a process environment ρ, the relation |=V ρ J , for

D-assertions J , is defined by:

|=V ρ p : Φ iff ρ(p) ∈ ||Φ ||DV

|=V ρ p
a
→ q iff ρ(p)

a
→T ρ(q)

We write D ; Γ |=V ρ ∆ to mean that if |=V ρ J , for all J ∈ Γ , then there exists K ∈ ∆ such that
|=V ρ K. We write D ; Γ |= ∆ to mean that D ; Γ |=V ρ ∆ for all V and ρ.

6

The proof system will provide a sound means of establishing sequents D ; Γ ⊢ ∆ such that
D ; Γ |= ∆. The rules are presented in Figures 1 and 2. The rules in Figure 1 concern the modal
fragment of the logic, and are essentially from [16]. For example, the operational rules are exactly
the general GSOS rules of [16] when specialised to the case of context-free processes under their
GSOS formulation referred to earlier. Figure 2 presents the crucial rules for fixed points and
explicit approximations.

We emphasise again that we write the rules in tableau style with the goal sequent above the
line and its (possibly empty) set of subgoals below the line. As is standard, we formulate the rules
using comma for (not necessarily disjoint) union and omitting set delimiters from singleton sets.
Rules are applicable only in instances that the subgoals produced are indeed sequents according to
Definition 3.4. Certain rules have additional side conditions, written on the right. In particular,
the “freshness” side conditions require that the identified variable does not already appear free in
the goal above the line. In the rules (〈−X〉) and ([+X]), we use the abbreviations:

〈−X〉Γ = { p : 〈−X〉Φ | p : Φ ∈ Γ},

[+X] Γ = { p : [+X] Φ | p : Φ ∈ Γ}.

Next we formulate the condition for a derivation tree to be a proof. By a leaf in a derivation
tree, we mean a sequent occurrence in the tree such that no rule has been applied with that sequent
occurrence as goal (thus sequents to which a rule with an empty set of subgoals has been applied
do not count as leaves, even though they have no child sequents).

Definition 3.5 (Repeat). In a derivation tree, a leaf D ; Γ ⊢ ∆ is a repeat of another sequent
occurrence D′ ; Γ′ ⊢ ∆′ if D′ ⊆ D and there exists a process substitution θ such that Γ′ [θ] ⊆ Γ
and ∆′ [θ] ⊆ ∆.

Definition 3.6 (Pre-proof). A pre-proof is a derivation tree in which, to each leaf D ; Γ ⊢ ∆,
there is an assigned sequent occurrence D′ ; Γ′ ⊢ ∆′ (the companion of the leaf) such that
D ; Γ ⊢ ∆ is a repeat of D′ ; Γ′ ⊢ ∆′.

In the above definitions, it is worth noting that the companion is not required to appear on the
branch from the root sequent to the leaf.

We shall consider a pre-proof as a directed graph whose vertices are sequent occurrences in the
pre-proof, and with edges of two kinds: (i) edges from the goal of a rule application to each subgoal
(if any) of the goal; (ii) an edge from each leaf to its companion. By a (finite or infinite) path
through a pre-proof, we mean a sequence (Si)0≤i<n≤∞ of sequent occurrences forming a directed
path through the graph. We say that a rule is applied along a path (Si) if the path contains two
consecutive sequents Si and Si+1 with Si the goal of the rule and Si+1 one of its subgoals.

Definition 3.7 (Preservation). A path (Si) preserves an approximant variable X if, for every
sequent D ; Γ ⊢ ∆ occurring on the path, X ∈ DV (D).

Definition 3.8 (Progress). A µ-approximant variable X progresses on a path (Si) if it is pre-
served by the path and the rule (〈−X〉) is applied along the path. Similarly, a ν-approximant
variable X progresses if it is preserved and the rule ([+X]) is applied.

We say that X progresses infinitely often on an infinite path (Si)i≥0 if, for all n ∈ N, it holds that
X progresses on the tail path (Si)i≥n.

Definition 3.9 (Proof). A pre-proof is a proof if, for every infinite path (Si)i≥0 through it,
there exist an approximant variable X and a tail (Si)i≥n on which X progresses infinitely often.

We remark that this condition is necessarily global, in the sense that it cannot be reformulated
as a condition to be satisfied by each repeat individually. However, we do at least have the result
below, whose proof is given in Appendix A.

Proposition 3.10. It is decidable whether a pre-proof is a proof or not.

7

General rules

(Axiom)
D ; Γ ⊢ ∆

Γ ∩ ∆ 6= ∅ (Weak)
D ; Γ ⊢ ∆

D′ ⊆ D, Γ′ ⊆ Γ, ∆′ ⊆ ∆
D′ ; Γ′ ⊢ ∆′

(Cut)
D ; Γ ⊢ ∆

D ; Γ ⊢ ∆, J D ; Γ, J ⊢ ∆
(Sub)

D ; Γ [θ] ⊢ ∆[θ]

D ; Γ ⊢ ∆

Logical rules

(ffL)
D ; Γ, p : ff ⊢ ∆

(ttR)
D ; Γ ⊢ ∆, p :tt

(∨L)
D ; Γ, p :ϕ1 ∨ ϕ2 ⊢ ∆

D ; Γ, p :ϕ1 ⊢ ∆ D ; Γ, p :ϕ2 ⊢ ∆
(∨R)

D ; Γ ⊢ ∆, p :ϕ1 ∨ ϕ2

D ; Γ ⊢ ∆, p :ϕ1, p :ϕ2

(∧L)
D ; Γ, p :ϕ1 ∧ ϕ2 ⊢ ∆

D ; Γ, p :ϕ1, p :ϕ2 ⊢ ∆
(∧R)

D ; Γ ⊢ ∆, p :ϕ1 ∧ ϕ2

D ; Γ ⊢ ∆, p :ϕ1 D ; Γ ⊢ ∆, p :ϕ2

Modal rules

(〈a〉L)
D ; Γ, p : 〈a〉ϕ ⊢ ∆

x fresh
D ; Γ, p

a
→ x, x :ϕ ⊢ ∆

(〈a〉R)
D ; Γ ⊢ ∆, p : 〈a〉ϕ

D ; Γ ⊢ ∆, p
a
→ q D ; Γ ⊢ ∆, q :ϕ

([a]L)
D ; Γ, p : [a]ϕ ⊢ ∆

D ; Γ ⊢ ∆, p
a
→ q D ; Γ, q :ϕ ⊢ ∆

([a]R)
D ; Γ ⊢ ∆, p : [a]ϕ

x fresh
D ; Γ, p

a
→ x ⊢ ∆, x :ϕ

Operational rules

(PiL)
D ; Γ, Pi q

a
→ x ⊢ ∆

x 6∈ q
{D ; Γ[p q / x] ⊢ ∆[p q / x] }

Pi
a
→p∈P

(PiR)
D ; Γ ⊢ ∆, Pi q

a
→ p q

Pi
a
→ p ∈ P

(εL)
D ; Γ, ε

a
→ x ⊢ ∆

Figure 1: Basic rules

8

Fixed-point rules

(µL)
D ; Γ, p :µX.ϕ ⊢ ∆

D ; Γ, p : 〈X6ϕ〉ϕ ⊢ ∆
(µR)

D ; Γ ⊢ ∆, p :µX.ϕ

D ; Γ ⊢ ∆, p : 〈X6ϕ〉ϕ
(6-µL)

D ; Γ, p : 〈X6ϕ〉Φ ⊢ ∆

D ; Γ, p : Φ[µX.ϕ /X] ⊢ ∆
(6-µR)

D ; Γ ⊢ ∆, p : 〈X6ϕ〉Φ

D ; Γ ⊢ ∆, p : Φ[µX.ϕ /X]

(νL)
D ; Γ, p : νX.ϕ ⊢ ∆

D ; Γ, p : [X>ϕ]ϕ ⊢ ∆
(νR)

D ; Γ ⊢ ∆, p : νX.ϕ

D ; Γ ⊢ ∆, p : [X>ϕ]ϕ

(>-νL)
D ; Γ, p : [X>ϕ] Φ ⊢ ∆

D ; Γ, p : Φ[νX.ϕ /X] ⊢ ∆
(>-νR)

D ; Γ ⊢ ∆, p : [X>ϕ] Φ

D ; Γ ⊢ ∆, p : Φ[νX.ϕ /X]

Approximant rules

(6-XL)
D ; Γ, p : 〈X6ϕ〉Φ ⊢ ∆

X fresh
D, X6ϕ ; Γ, p : Φ ⊢ ∆

(6-XR)
D ; Γ ⊢ ∆, p : 〈X6ϕ〉Φ

X6ϕ ∈ D
D ; Γ ⊢ ∆, p : Φ

(XµL)
D ; Γ, p :X ⊢ ∆

X6ϕ ∈ D
D ; Γ, p : 〈−X〉ϕ ⊢ ∆

(XµR)
D ; Γ ⊢ ∆, p :X

X6ϕ ∈ D
D ; Γ ⊢ ∆, p : 〈−X〉ϕ

(〈−X〉)
D ; 〈−X〉Γ, Γ′ ⊢ 〈−X〉∆, ∆′

Γ 6= ∅, X 6∈ UV (D) ∪ FV (Γ′)
D ; Γ, Γ′ ⊢ ∆, ∆′

(>-XL)
D ; Γ, p : [X>ϕ] Φ ⊢ ∆

X>ϕ ∈ D
D ; Γ, p : Φ ⊢ ∆

(>-XR)
D ; Γ ⊢ ∆, p : [X>ϕ] Φ

X fresh
D, X>ϕ ; Γ ⊢ ∆, p : Φ

(XνL)
D ; Γ, p :X ⊢ ∆

X>ϕ ∈ D
D ; Γ, p : [+X]ϕ ⊢ ∆

(XνR)
D ; Γ ⊢ ∆, p :X

X>ϕ ∈ D
D ; Γ ⊢ ∆, p : [+X]ϕ

([+X])
D ; [+X] Γ, Γ′ ⊢ [+X] ∆, ∆′

∆ 6= ∅, X 6∈ UV (D) ∪ FV (∆′)
D ; Γ, Γ′ ⊢ ∆, ∆′

Figure 2: Fixed-point and approximant rules

9

Some words are in order about alternative choices that might be made in the definition of
proof. On the one hand, it would be possible to have a more liberal notion of repeat, by allowing
substitutions of approximant variables as well as of process terms. However, such a relaxation of
the definition of repeat both complicates the definition of proof and destroys our proof of Propo-
sition 3.10 (although we believe the result still holds). Also, we do not know of any application
of the more general notion of proof that arises. On the other hand, one could opt instead for a
more restrictive notion of proof, defined in terms of local conditions on the derivation tree. The
proposition below, whose proof is given in Appendix A, encapsulates one possible such definition.

Proposition 3.11. Suppose we have a pre-proof in which each sequent is of the form D ; Γ ⊢ ∆
with D a sequence rather than a set. Then the following conditions together suffice for the pre-proof
to be a proof.

1. Every edge in the pre-proof is from a sequent D ; Γ ⊢ ∆ to a sequent D′ ; Γ′ ⊢ ∆′ such that
one of D and D′ is a prefix of the other.

2. For every leaf, the companion appears along the unique path in the derivation tree from the
root sequent to the leaf.

3. For every leaf, there exists an approximant variable that progresses along the unique path in
the derivation tree from the companion to the leaf.

We shall use this proposition in our proof of Theorem 2 below. Thus, interestingly, the restricted
notion of proof implicit in the proposition is sufficient for context-free completeness to hold.
Nevertheless, the general notion of proof of Definition 3.9 seems essential in the general application
of the proof system towards establishing modularity goals of the form (1) of Section 1.

In Figure 3 we give an example proof in the system, showing that the process P, from Ex-
ample 3.2, satisfies the property νX. µY. [a]X ∧ [b]Y , stating that action a occurs infinitely often
along any infinite path of a and b actions. We include all rule applications, except for instances
of weakening (Weak). The identified repeats determine a pre-proof, which is easily seen to be a
proof using Proposition 3.11, as X progresses for each repeat.

Theorem 1 (Soundness). If the sequent D ; Γ ⊢ ∆ has a proof then D ; Γ |= ∆.

We end the section by outlining the soundness argument. We stress that the proof adapts easily
to arbitrary GSOS-defined process algebras, as in [16].

Lemma 3.12. Suppose that there is a pre-proof with S0 = D0 ; Γ0 ⊢ ∆0 as root sequent. Suppose
also that we have a D-environment V0, and process environment ρ0 with D0 ; Γ0 6|=V0ρ0

∆0. Then
there exist infinite sequences (Vi), (ρi) and (Si = Di ; Γi ⊢ ∆i), such that all the following hold.

1. (Si) is a path through the pre-proof.

2. For all i, Di ; Γi 6|=Viρi
∆i.

3. If a µ-approximant X is preserved by a subpath (Si)m≤i≤n then Vm(X) ⊇ Vn(X), and if X
progresses on the subpath then Vm(X) ⊃ Vn(X).

4. If a ν-approximant X is preserved by a subpath (Si)m≤i≤n then Vm(X) ⊆ Vn(X), and if X
progresses on the subpath then Vm(X) ⊂ Vn(X).

The proof is given in Appendix A.

Proof of Theorem 1. Suppose, for contradiction, that there is a proof with root sequent D ; Γ ⊢ ∆
but that D ; Γ 6|= ∆. Then there exist V and ρ such that D ; Γ 6|=V ρ ∆. Thus there is an infinite
path through the proof satisfying properties 1–4 of Lemma 3.12. By the definition of proof, there
is an approximant variable X that progresses infinitely often along some tail of this path. If X is a
µ-approximant, then, by property 3 of the lemma, there is an infinite sequence i0 < i1 < i2 < . . .
with Vi0(X) ⊃ Vi1(X) ⊃ Vi2 (X) ⊃ But this contradicts Proposition 2.3.4. Similarly, if
X is a ν-approximant, then there exists an infinite sequence Vi0(X) ⊂ Vi1(X) ⊂ Vi2 (X) ⊂ . . .
contradicting Proposition 2.4.4. So the assumption that D ; Γ 6|= ∆ must have been incorrect.

10

Abbreviations : V ≡ νX. µY. [a]X ∧ [b]Y,
U ≡ µY. [a]X ∧ [b]Y.

⊢ P :V

⊢ ε : [X>U]U

X>U ; ⊢ ε :U

X>U ; ⊢ ε : 〈Y 6 [a]X ∧ [b]Y 〉 [a]X ∧ [b]Y

X>U ; ⊢ ε : [a]X ∧ [b]U

X>U ; ⊢ ε : [a]X

X>U ; ε
a
→ x ⊢ x :X

X>U ; ⊢ ε : [b]U

X>U ; ε
b
→ x ⊢ x :U

ε : [X>U]U ⊢ P :V

x : [X>U]U ⊢ Px :V

x : [X>U]U ⊢ Px : [X>U]U

X>U ; x : [X>U]U ⊢ Px :U

...

(Sub)

We continue with the right-hand branch.

...

X>U ; x :U ⊢ Px :U (⋆)

X>U ; x :U ⊢ Px : 〈Y 6 [a]X ∧ [b]Y 〉 [a]X ∧ [b]Y

X>U ; x :U ⊢ Px : [a]X ∧ [b]U

X>U ; x :U ⊢ Px : [a]X

X>U ; x :U, Px
a
→ y ⊢ y :X

X>U ; x :U ⊢ PPx :X

X>U ; x :U ⊢ Px : [+X]U

X>U ; x :U ⊢ Px :U

X>U ; Px : [+X]U ⊢ PPx :X

X>U ; Px : [+X]U ⊢ PPx : [+X]U

X>U ; Px :U ⊢ PPx :U

X>U ; x :U ⊢ Px : [b]U

X>U ; x :U, Px
b
→ y ⊢ y :U

X>U ; x :U ⊢ x :U

Both leaves are repeats of the sequent (⋆).

Figure 3: Example Proof

4 Completeness for context-free processes

Again in this section, we assume a fixed specification of a context-free system, as in Definition 3.1.

Theorem 2 (Context-free completeness). For any p ∈ Σ∗ and closed µ-calculus formula ϕ,
if p ∈ ||ϕ || then the sequent ⊢ p :ϕ has a proof.

The proof of completeness uses a variant of the property-checking games described in [18]. In

a transition system (T, {
a
→T }a∈A), the property-checking game G(s, ϕ), where s ∈ T and ϕ is a

closed µ-calculus formula, is a game played by two players, Verifier and Refuter. Verifier aims
to show that s ∈ ||ϕ || whereas Refuter attempts to refute this. We use an asymmetric variant
of property-checking games, specifically designed to facilitate translating properties of games into
the sequent calculus.

In this section, we shall assume representations of formulae in which all bound variables have
different names, and that we only encounter fixed-point formulae µX.ϕ, νX.ϕ with X ∈ FV (ϕ).

For technical convenience, we use sequences, E, of greatest-fixed-point definitions called ν-
contexts, together with their sets of declared variables DV (E). These are defined by: (i) the
empty sequence () is a ν-context with the empty set of declared variables; (ii) if E is a ν-context,
X 6∈ DV (E) and FV (ϕ) ⊆ DV (E)∪{X} then E, X=ϕ is a ν-context with DV (E)∪{X} as its set

11

of declared variables. The equality X=ϕ in a ν-context declares X to be the greatest fixed-point
νX.ϕ. Part of the asymmetry in our games is that we do not use variables for µ-fixed-points.

Definition 4.1 (Position). A position is a triple (s,E, ϕ) where s ∈ T is any state, E is a
ν-context and ϕ is a formula such that FV (ϕ) ⊆ DV (E) but, for all proper prefixes E′ of E,
FV (ϕ) 6⊆ E′.

Definition 4.2 (Move). The legitimate moves from one position (s,E, ϕ) to another are:

• If ϕ is ff then it is Verifier’s move, but she is stuck.

• If ϕ is tt then it is Refuter’s move, but he is stuck.

• If ϕ is ψ1 ∨ ψ2 then Verifier chooses a disjunct ψj where j ∈ {1, 2}, and the next position is
(s,E′, ψj), where E′ is the smallest prefix of E with FV (ψj) ⊆ DV (E′).

• If ϕ is ψ1 ∧ ψ2 then Refuter chooses a conjunct ψj where j ∈ {1, 2}, and the next position
is (s,E′, ψj), where E′ is the smallest prefix of E with FV (ψj) ⊆ DV (E′).

• If ϕ is 〈a〉ψ then Verifier chooses a transition s
a
→ t, and the next position is (t,E, ψ).

• If ϕ is [a]ψ then Refuter chooses a transition s
a
→ t, and the next position is (t,E, ψ).

• If ϕ is µX.ψ then it is (arbitrarily) Verifier’s move and the next position is (s,E, ψ[µX.ψ /X]).

• If ϕ is νX.ψ then it is (arbitrarily) Refuter’s move and the next position is (s,E′, ψ) where
E′ is E, X=ψ.

• If ϕ is X where X =ψ ∈ E then it is (arbitrarily) Refuter’s move and the next position is
(s,E, ψ).

Definition 4.3 (Play). A play is a finite or infinite sequence (si,Ei, ϕi)i of positions where each
position (sk+1,Ek+1, ϕk+1) is produced from (sk,Ek, ϕk) by following one of the moves above.

The next three definitions should be compared to Definitions 3.7–3.9.

Definition 4.4 (Preservation). We say that a play (si,Ei, ϕi)i preserves a variable X if, for
each Ei in the play, X ∈ DV (Ei).

Definition 4.5 (Progress). We say that a fixed-point variable X progresses along a play if it is
preserved by the play and the play contains a move away from a position (s,E, X).

Definition 4.6 (Winning play). The Verifier wins a play either if the play is finite and its last
position is one at which it is Refuter’s move, or if the play is infinite and there exist a variable X
and a tail of the play such that X progresses infinitely often along the tail.

Definition 4.7 (The game G(s, ϕ)). The game G(s, ϕ), where ϕ is a closed formula, is played
on the set of all positions reachable from the initial position (s, (), ϕ). The game is a two player
game, played by Verifier and Refuter, with play starting from the initial position.

For ordinary property-checking games, the following result appears in [18, §6.3]. The adaptation
to our games is straightforward.

Proposition 4.8. If s ∈ ||ϕ || then Verifier has a history-free winning strategy for G(s, ϕ).

We now begin the proof of Theorem 2. Henceforth, suppose that p0 ∈ Σ∗ is such that p0 ∈
||ϕ0 ||. We use the game G(p0, ϕ0) to construct a proof of the sequent ⊢ p0 :ϕ0.

Henceforth, all plays will be of the game G(p0, ϕ0). By Proposition 4.8, Verifier has a history-
free winning strategy for this game. We henceforth fix on one such strategy, and we call a play a
V-play if all Verifier’s moves in the play follow the strategy. We write u0 for the initial position

12

(p0, (), ϕ0), From now on, we shall only consider those positions that arise in some V-play from
u0. We use u,v,w, . . . to range over such positions, and π, τ . . . to range over V-plays starting
from any such position. Note that Verifier wins any infinite V-play. We write uπ and πv to mean
that u and v are the first and last positions in π respectively. Given two V-plays π1v and vπ2,
we write π1π2 for the evident concatenation of the two plays.

To assist the reader, before plunging into details, we give a brief summary the proof structure.
We consider sequents of the restricted form:

D ; x : Ψ1, . . . , x : Ψk ⊢ Px :ϕ (2)

where P is any nonterminal. Each such sequent is constructed with reference to a position of
the form u = (P q,E, ϕ), with each assumption x : Ψi being determined by a V-play π from u to
some position v whose state is q. Importantly, the extended formula Ψi contains approximant
declarations and modifiers that reflect preservation and progress properties of the play π. We
use Verifier’s strategy to construct a derivation tree in which individual rule applications can be
combined into larger steps between sequents of the form (2). Crucially, only finitely many distinct
such sequents occur in the constructed derivation, enabling the derivation tree to terminate in
repeats. Moreover, the resulting pre-proof is a proof because the required preservation and progress
properties of paths through the proof follow from the analogous properties of winning V-plays.

Now, for the details. Given a play π ending in the position (s,E, ϕ), we define functions
regenπ(E′, Φ) and progπ(E′, Φ) for prefixes E′ of E and extended formulae Φ with FV (Φ) ⊆
DV (E′). These are defined by:

progπ(E′, Φ) =

{

regenπ(E′, [+X] Φ) if E′ is E′′, X=ϕ and X progresses on a tail of π
regenπ(E′, Φ) otherwise

regenπ(E′, Φ) =

{

progπ(E′′, [X>ϕ] Φ) if E′ is E′′, X=ϕ and π does not preserve X
Φ otherwise

Definition 4.9 (Characteristic Formula). For any play π ending in (s,E, ϕ), its characteristic
formula χ(π) is progπ(E, ϕ).

Definition 4.10 (Assumption set). For any position u = (p,E, ϕ), its assumption set relative
to q is the set:

AS (u, q) = {χ(π) | uπv is a V-play with v = (q,E′, ψ)}.

Definition 4.11 (Canonical sequent). For any position u = (p q,E, ϕ) the canonical sequent
relative to p is the sequent

S(u, p) = DE ; {x : Ψ | Ψ ∈ AS(u, q)} ⊢ px :ϕ, (3)

where DE = {X>ψ | X=ψ occurs in E}.

To justify this definition, we need to show that the set AS (u, q) is finite. This follows from:

Lemma 4.12 (Finiteness).

1. Only finitely many different formulae ϕ occur in positions in G(p0, ϕ0).

2. Only finitely many ν-contexts E occur in positions in G(p0, ϕ0).

3. The set {χ(π) | π is any play} is finite.

Lemma 4.13 (Main lemma). For any position u = (p q,E, ϕ) the canonical sequent S(u, p) has
a proof.

The proof combines a couple of sublemmas, whose proofs are deferred to Appendix B. Importantly,
all the derivation trees referred to conform to property 1 of Proposition 3.11, where the sequence
ordering on declaration contexts arises from their origin as ν-contexts.

13

Lemma 4.14. Given a position u = (Q1 . . .Qk r,E, ϕ), where Q1, . . . ,Qk are nonterminals, the
sequent S(u,Q1 . . .Qk) occurs as the root of a derivation tree in which each leaf has the form
Sπ = S(vπ ,Qi) where uπvπ is a V-play and vπ = (Qi . . .Qk r,Eπ, ψπ) for some i. Moreover, if the
play π preserves (respectively progresses on) X then so does the unique path from the root to Sπ.

Lemma 4.15. Given a position u = (Q r,E, ϕ), where Q is nonterminal, the sequent S(u,Q)
occurs as the root of a derivation tree in which each leaf has the form Sπ = S(vπ ,Qπ), where
Qπ is nonterminal, vπ = (Qπ qπ r,Eπ, ψπ) and uπvπ is a V-play containing at least one move.
Moreover, if the play π preserves (respectively progresses on) X then so does the unique path to
Sπ in the derivation tree.

Proof of Lemma 4.13. By Lemma 4.14, it suffices to build a proof for S(u,Q) where Q is a non-
terminal. We use Lemma 4.15 to construct a derivation tree in stages. At each stage, all leaves of
the derivation will have the form Sπ = S(vπ ,Qπ), where Qπ is nonterminal, vπ = (Qπ q,Eπ, ψπ)
and uπvπ is a V-play. In such a derivation tree, a leaf Sπ is marked as successful if π = π′τ where
there is a sequent Sπ′ in the derivation (necessarily on the branch from the root to Sπ) such that:
(i) Sπ is a repeat of Sπ′ ; and (ii) some fixed-point variable X progresses on the V-play τ . If a leaf
is unsuccessful then a new derivation tree is produced by applying Lemma 4.15 to the leaf (and
appending the V-plays produced in Lemma 4.15 onto π). We first prove that this construction
eventually produces a derivation tree in which every leaf is successful.

Suppose this is not the case. Then, by König’s lemma, there exists a sequence of V-plays
π0, π1, π2, . . . each with associated sequent Sπi

such that each πi is a proper prefix of πi+1 and
none of the sequent occurrences Sπi

is successful. Let π be the infinite V-play that the sequence
(πi) produces. Verifier wins this play, so π = π′τ where some fixed-point variable X progresses
infinitely often along τ . As there are only finitely many nonterminals, by Lemma 4.12, only
finitely many distinct sequents can occur as Sπi

. Take some such sequent that occurs infinitely
often. Then it must be the case that there exist i < j such that: π′ is a prefix of πi, the sequents
Sπi

and Sπj
are identical (thus the latter is a repeat of the former), and X progresses on τ ′j where

πj = πiτ
′
j . Then Sπj

is successful, contradicting the assumption.
As every leaf is successful, the derivation tree is a pre-proof. We use Proposition 3.11 to show

it is a proof. We have already mentioned that property 1 holds. Property 2 is immediate by (i)
for successful sequents. Property 3 follows from (ii) and the progress claim of Lemma 4.15.

Lemma 4.16. For any position u = (p,E, ϕ) and Ψ in the assumption set AS(u, ε) the sequent
⊢ ε : Ψ has a proof.

Again, see Appendix B for the proof.

Proof of Theorem 2. We must construct a proof for the sequent ⊢ p0 :ϕ0. We use (Cut) and
Lemma 4.16 to reduce this to the goal {ε :Ψ | Ψ ∈ AS (u0, ε)} ⊢ p :ϕ0. But this reduces by (Sub)
to the sequent S(u0, p), which has a proof, by Lemma 4.13.

5 Discussion and future work

Our proof of completeness for context-free processes makes essential use of approximant declara-
tions and modifiers. These features can be incorporated into Dam and Gurov’s proof system [9],
by extending their syntax with ordinal quantifiers ∀κ. ϕ and ∀κ′<κ.ϕ. Indeed, the completeness
proof for context-free processes was originally developed in this context by the first author [15]. We
do not know whether completeness holds for Dam and Gurov’s system without ordinal quantifiers.
Certainly, simple examples, such as that of Figure 3, are provable in their system, see [8].

It is natural to ask whether the approach in this paper might extend to obtain completeness
for richer classes of processes, such as pushdown processes [14, 19, 3]. However, even the basic
proof rules may have to be adapted for such processes, as they go beyond the process algebra
idiom of being generated by bisimulation-preserving operators.

In a different direction, it would be very interesting to ascertain to what extent one can obtain
completeness results for modularity goals of the form (1), see Section 1.

14

References

[1] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. J. Assoc. Comput. Mach.,
42:232–268, 1995.

[2] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification over infinite states. In Handbook
of Process Algebra, pages 545–623. Elsevier, 2001.

[3] O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite sequential
processes. Theoretical Computer Science, 221(1–2):251–270, 1999.

[4] M. Dam. Compositional proof systems for model checking infinite state processes. In Inter-
national Conference on Concurrency Theory, pages 12–26, 1995.

[5] M. Dam. Proving properties of dynamic process networks. Information and Computation,
140(2):95–114, 1998.

[6] M. Dam. Proof systems for π-calculus logics. In R. de Queiroz, editor, Logic for Concurrency
and Synchronisation. OUP, 2001.

[7] M. Dam, L. Fredlund, and D. Gurov. Toward parametric verification of open distributed
systems. In A. Pnueli H. Langmaack and W.-P. de Roever, editors, Compositionality: the
Significant Difference. Springer, 1998.

[8] M. Dam and D. Gurov. Compositional verification of CCS processes. In Proceedings of PSI’99,
1999.

[9] M. Dam and D. Gurov. µ-calculus with explicit points and approximations. Journal of Logic
and Computation, to appear, 2001. Abstract in Proceedings of FICS 2000.

[10] L. Fredlund. A framework for reasoning about Erlang code. PhD Thesis, Swedish Institute
of Computer Science, 2001.

[11] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. J. Assoc.
Comput. Mach., 32:137–161, 1985.

[12] H. Hungar and B. Steffen. Local model checking for context-free processes. Nordic Journal
of Computing, 1(3):364–385, Fall 1994.

[13] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27:333–354,
1983.

[14] D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-order
logic. Theoretical Computer Science, 37:51–75, 1985.

[15] U. Schöpp. Formal Verification of Processes. MSc Dissertation, Division of Informatics,
University of Edinburgh, 2001. Available as http://www.dcs.ed.ac.uk/home/us/th.ps.gz.

[16] A.K. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for an arbitrary
GSOS. In Logic in Computer Science, pages 420–430, 1995.

[17] C.P. Stirling. Modal logics for communicating systems. Theoretical Computer Science, 49:311–
347, 1987.

[18] C.P. Stirling. Modal and Temporal Properties of Processes. Texts in Computer Science.
Springer, 2001.

[19] I. Walukiewicz. Pushdown Processes: Games and Model-Checking. Information and Com-
putation, 164(2):234–263, January 2001.

15

Appendices

For refereeing purposes, we include appendices containing the proofs omitted from sections 3 and 4.

A Proofs from Section 3

Proof of Proposition 3.10. For each of the finitely many approximant variables X occurring in the
pre-proof, mark a sequent D ; Γ ⊢ ∆ (i.e. a vertex of the graph) as X-bad if X 6∈ DV (D) and as
X-good if it is the goal sequent of a (〈−X〉) or ([+X]) rule application. The property of being a
proof equivalently says that, for every infinite directed path through the pre-proof graph (starting,
without loss of generality, from the root sequent), there exists a process variable X such that the
path is X-bad finitely often and X-good infinitely often. This is explicitly asking for a Rabin
condition to hold along all infinite paths from the root, which is equivalent to the emptiness of
the complement Rabin automaton. Thus the property is decidable.

Rather than invoking such powerful machinery, it is, in fact, possible to give an explicit finitary
combinatorial condition for a pre-proof to be a proof, along the lines of the discharge conditions in
[9, 10, 15]. However, such conditions are necessarily phrased in terms of sets of leaves (and their
companions), so the exponential blow-up of complementing a Rabin automaton is not avoided.

Proof of Proposition 3.11. Consider any infinite path (Si) through the pre-proof. There are only
finitely many sequent occurrences in the pre-proof, so, for some tail (Si)i≥n, every sequent in
the tail occurs infinitely often in it. By property 1 of the proposition, there is some sequent
Sj = Dj ; Γj ⊢ ∆j in the tail such that Dj is a prefix of every declaration context appearing
in the tail. As Sj occurs infinitely often in the tail, there is, by property 2, a leaf Sk in the tail
and companion Sk+1 such that Sj appears on the unique path in the derivation tree from Sk+1

to Sk. Let X be the approximant variable that, by property 3, progresses on this path. Then X
is preserved by (Si)i≥n, because it is declared in Dj . Moreover, the rule by which X progresses is
applied along every path in the pre-proof from Sk+1 to Sk. So, as these sequents occur infinitely
often in the tail, X progresses infinitely often.

Proof of Lemma 3.12. Suppose, for k ≥ 0, we already have (Vi)i≤k, (ρi)i≤k and (Si)i≤k satisfying
properties 1–4 of the Lemma. We construct Vk+1, ρk+1 and Sk+1.

If Sk is a leaf sequent then: define Sk+1 (= Dk+1 ; Γk+1 ⊢ ∆k+1) to be the companion of the
leaf; define Vk+1 to be the restriction of Vk to DV (Dk+1); and define ρk+1 to be the function ρ◦ θ,
where θ is some process substitution justifying the repeat. It is easily verified that properties 1–4
hold for the sequences (Vi)i≤k+1, (ρi)i≤k+1 and (Si)i≤k+1.

Otherwise, Sk is the goal in some rule application. Because of 1 above, we have to define Sk+1

to be one of the subgoals of the rule. First, by 2, the rule cannot be an instance of (Axiom),
(ffL), (ttR), (PiR) or (εL), as the goals of these rules are easily shown to be valid sequents.
Thus the rule has at least one subgoal. To see which is selected and how Vk+1 and ρk+1 are
defined, we proceed by case analysis on the rule applied. For brevity, we omit consideration of
the rules in Figure 1, all of which are straightforward. Of the rules in Figure 2, we consider only
the cases involving µ-fixed-points and µ-approximants. Dual arguments apply to the ν-fixed-point
and ν-approximant rules.

In each case we show that property 2 holds for the selected Sk+1 and that properties 3–4 hold
of the sequences (Vi)i≤k+1 and (Si)i≤k+1.

(µL), (µR), (6-µL) or (6-µR) In each case define Sk+1 to be the unique subgoal, and take
Vk+1 = Vk and ρk+1 = ρk. Property 2 holds by Proposition 2.6.1 together with the fixed-
point identity ||µX.ϕ ||V = ||ϕ[µX.ϕ /X] ||V . Properties 3–4 hold trivially.

(6-XL) Again, Sk+1 is the unique subgoal and ρk+1 = ρk. To define Vk+1, note that, because
Dk ; Γk 6|=Vkρk

∆k, we have that ρk(p) ∈ || 〈X 6 ϕ〉Φ ||Dk

Vk
where p : 〈X 6 ϕ〉Φ ∈ Γk is the

“active” assertion of the rule. So, by the definition of || 〈X6ϕ〉Φ ||Dk

Vk
, there exists S ∈ AµX. ϕ

Vk

16

such that ρk(p) ∈ ||Φ ||Dk,X6ϕ
Vk[S / X]. So defining Vk+1 = Vk[S /X], and 2 holds because X is

fresh. Again 3–4 hold trivially.

(6-XR) Sk+1 is the unique subgoal, Vk+1 = Vk and ρk+1 = ρk. Because Dk ; Γk 6|=Vkρk
∆k,

we have that ρk(p) 6∈ || 〈X 6 ϕ〉Φ ||Dk

Vk
where p : 〈X 6 ϕ〉Φ ∈ ∆k is the active asser-

tion. So, by the definition of || 〈X 6 ϕ〉Φ ||Dk

Vk
, for any S ∈ AµX. ϕ

Vk
, it holds that ρk(p) 6∈

||Φ[Z /X] ||
Dk,Z6ϕ[Z/X]
Vk[S / Z] , where Z 6∈ DV (D). Thus, in particular, this holds for S = Vk(X).

But ||Φ[Z /X] ||
Dk,Z6ϕ[Z/X]
Vk[Vk(X) / Z] = ||Φ ||Dk

Vk
. So ρk(p) 6∈ ||Φ ||Dk

Vk
. Thus 2 holds. Again 3–4 hold

trivially.

(X�L) or (X�R) Sk+1 is the unique subgoal, Vk+1 = Vk and ρk+1 = ρk. Property 2 holds by
Proposition 2.6.3. Properties 3–4 hold trivially.

(〈−X〉) Again, Sk+1 is the unique subgoal and ρk+1 = ρk. We have that Γk = 〈−X〉Γ, Γ′

and ∆k = 〈−X〉∆, ∆′ where, by the side condition on the rule, Γ = {p1 : Φ1, . . . , pl : Φl}
is a non-empty set. Because Dk ; Γk 6|=Vkρk

∆k, we have that ρk(pj) ∈ || 〈−X〉Φj ||
Dk

Vk
, for

each pj : Φj in Γ. So, by the definition of || 〈−X〉Φj ||
Dk

Vk
, we have, for each pj : Φj , that there

exists Sj ⊂ V (X) with Sj ∈ AµX. ϕ
Vk

(where X6ϕ ∈ Dk) such that ρk(pj) ∈ ||Φj ||
Dk

Vk[Sj / X].

Define Vk+1 = Vk[S1 ∪ · · · ∪ Sl /X]. Then Vk+1 is indeed a Dk+1(= Dk)-context because
Vk+1 agrees with Vk on all approximant variables other than X 6∈ UV (Dk) and Vk+1(X) ∈

AµX. ϕ
Vk

= AµX. ϕ
Vk+1

. Also, Vk+1(X) ⊂ Vk(X), because Γ is non-empty. One now verifies: for

each pj : Φj ∈ Γ, it holds that ρk+1(pj) ∈ ||Φj ||
Dk+1

Vk+1
, because ||Φj ||

Dk

Vk[Sj / X] ⊆ ||Φj ||
Dk+1

Vk+1
by

Proposition 2.5; for all p : Φ ∈ Γ′, it holds that ρk+1(p) ∈ ||Φ ||
Dk+1

Vk+1
, because X 6∈ FV (Φ)

so ||Φ ||
Dk+1

Vk+1
= ||Φ ||Dk

Vk
; for all p : Φ ∈ ∆, it holds that ρk+1(p) 6∈ ||Φ ||

Dk+1

Vk+1
, because ρk(p) 6∈

|| 〈−X〉Φ ||Dk

Vk
and Vk+1(X) ⊂ Vk(X); and, for all p : Φ ∈ ∆′, it holds that ρk+1(p) 6∈ ||Φ ||

Dk+1

Vk+1
,

again by Proposition 2.5 because ||Φ ||
Dk+1

Vk+1
⊆ ||Φ ||Dk

Vk
. Thus property 2 holds. Property 3

holds because, Vk+1(X) ⊂ Vk(X). Property 4 holds trivially.

B Proofs from Section 4

We first state some facts about plays and characteristic formulae. The straightforward proofs are
omitted.

For technical convenience, we use sequences Π called prefix of an extended formula. These are
defined by (i) the empty sequence is a prefix of Φ; (ii) if Π is a prefix of Φ then [X >ϕ] Π is a
prefix of [X>ϕ] Φ; (iii) if Π is a prefix of Φ then [+X] Π is a prefix of [+X] Φ. We write ΠΦ to
mean the formula that results from ‘prefixing’ the formula Φ with Π.

Lemma B.1. For any position u = (s,E, ϕ) and any play πu there exist ν-contexts E1, E2 and
E3 such that E = E1E2E3 and E2 consists of at most one definition and the following conditions
hold: (i) E1E2 is a prefix of each context in π; (ii) any variable declared in E1 is preserved by π but
does not progress along π; (iii) any variable declared in E2 progresses along π; (iv) any variable
declared in E3 is not preserved by π.

Lemma B.2. If u = (s,E, ϕ) is a position in which E has the form E′, X=ϕ then X 6∈ DV (DE′)
and X 6∈ UV (DE).

Lemma B.3. For all plays πu and uτ , there exist prefixes Π and Π′ such that χ(πτ) = Πχ(τ)
and χ(π) = ΠΠ′ ϕ, where ϕ is the formula of u.

The next Lemma is used to obtain derivations in which each leaf is of the restricted form S(u, p).

17

Lemma B.4. Given positions u = (p r,Eu, ϕ) and v = (q r,Ev, ψ) and a V-play uπv, the following
rule is derivable.

DEu
; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ qx :χ(π)

DEv
; {x : Ψ | Ψ ∈ AS (v, r)} ⊢ qx :ψ

(A)

(B)

Note that (B) is S(v, q). Furthermore, if the play π preserves (respectively progresses on) X then
so does the unique path from (A) to (B) in the derivation tree.

Proof. By definition, χ(π) has the form Πψ, for some prefix Π. We will eliminate this prefix Π
simultaneously with the prefixes on the left-hand side of the sequent using the following rules:

DE ; Γ ⊢ [X>ϕX] Φ

DE,X=ϕX
; Γ ∪ {x : Ψ | x : [X>ϕX] Ψ ∈ Γ} ⊢ Φ

DE,X=ϕX
; Γ ⊢ [+X] Φ

DE,X=ϕX
; Γ ∪ {x : Ψ | x : [+X] Ψ ∈ Γ} ⊢ Φ

where E, X=ϕX is an arbitrary prefix of Ev. These two rules are derivable using (>-XR), (>-XL)
and ([+X]), where the side-conditions for (>-XR) and ([+X]) are justified by Lemma B.2.

We start the derivation with the following weakening:

DEu
; {x : Ψ | Ψ ∈ AS(u, r)} ⊢ qx :χ(π)

DE ; Γ ⊢ qx :χ(π)

where Γ = {x : Ψ | Ψ ∈ AS (u, r) and Ψ = χ(πτ) for some τ}, and E is the prefix of Eu and Ev

consisting of declarations for exactly those variables that are preserved by π, which exists by
Lemma B.1. The sequent in the subgoal is easily seen to be well formed.

We continue the derivation with the elimination of the prefix of χ(π) using the rules above.
Let Ev = E E′

v
. By construction of E, we know that χ(π) = progπ(Ev, ψ) is either progπ(E′

v
, ψ) or

[+X] progπ(E′
v
, ψ). Furthermore, if X=ϕX , E′′

v
is a tail of E′

v
then progπ(X=ϕX ,E

′′
v
, ψ) is either

[X > ϕX] progπ(E′′
v
, ψ) or [X > ϕX] [+X] progπ(E′′

v
, ψ), since π does not preserve any variable

in E′
v
. This shows that after any number of applications of the two rules above, the declaration

contexts have the form required in these rules. We can therefore apply these rules repeatedly to
arrive at the sequent DE E′

v

; Γ′ ⊢ qx :ψ, where

Γ′ = {x : Ψ | there exist prefixes Π and Π′ such that x : ΠΨ ∈ Γ and χ(π) = ΠΠ′ ψ}.

We now show {x : Ψ | Ψ ∈ AS(v, r)} ⊆ Γ′. Each formula Ψ ∈ AS(v, r) is χ(τ) for some play
vτw where the state of w is r. Then, by definition, χ(πτ) must be an element of AS (u, r), hence
x :χ(πτ) ∈ Γ. Lemma B.3 shows the existence of a prefixes Π and Π′ such that χ(πτ) = Πχ(τ)
and χ(π) = ΠΠ′ ϕ. This implies x :χ(τ) ∈ Γ′, which completes the argument.

We can therefore apply the weakening rule to arrive at DEv
; {x : Ψ | Ψ ∈ AS(v, r)} ⊢ qx :ψ,

which gives a derivation of the required form.
It remains to show the assertions about progress and preservation. In the construction above,

the definition context of each sequent on the unique path from (A) to (B) contains DE, which
consists of declarations for all variables preserved by π. The path therefore preserves all variables
preserved by π. If π progresses on X then χ(π) contains [+X] in its prefix. Since this modifier is
eliminated in the constructed derivation using the ([+X]) rule, the path must progress on X .

Proof of Lemma 4.14. The proof goes by induction on k. The base case, k = 1, holds trivially.
For the induction case, consider a process Q q where q is not ε. Using Γ = {x : Ψ | Ψ ∈ AS(u, r)},
we have

DE ; Γ ⊢ Q qx :ϕ

DE ; Γ ⊢ qx :
∧

{Ψ | Ψ ∈ AS (u, q r)}

{DE ; Γ ⊢ qx : Ψ}Ψ∈AS(u,q r)

...

DE ; qx :
∧

{Ψ | Ψ ∈ AS (u, q r)} ⊢ Q qx : ϕ

DE ; x :
∧

{Ψ | Ψ ∈ AS (u, q r)} ⊢ Qx : ϕ

DE ; {x : Ψ | Ψ ∈ AS (u, q r)} ⊢ Qx :ϕ

18

The leaf in the right-hand branch is S(u,Q) and thus already has the required form.
We continue with the left-hand branch. Since each Ψ ∈ AS (u, q r) is the characteristic formula

of a play uπvπ with vπ = (q r,Eπ, ψ), we can apply Lemma B.4 to continue the the derivation for
each such Ψ:

·
·
·

DE ; {x : Ψ | Ψ ∈ AS(u, r)} ⊢ qx : Ψ
(Lemma B.4)

DEπ
; {x : Ψ | Ψ ∈ AS (vπ , r)} ⊢ qx :ψ

This leaf is S(vπ , q), and we use the induction hypothesis on this sequent to obtain a derivation
tree having only leaves of the form S(vπτ ,Qτ) for some V-play τ extending π, thus completing
the construction.

It remains to show the assertion about progress and preservation. This is immediate for the
path from S(u,Q q) to S(u,Q). Any other path from the root to a leaf consists of two parts,
the path from S(u,Q q) to S(vπ , q) in the derivation tree above, and the path from S(vπ , q) to
S(vπτ ,Qτ), for some τ , in the derivation tree obtained by the induction hypothesis. We note that
the play πτ preserves X if, and only if, π and τ both preserve X ; and πτ progresses on X if, and
only if, π preserves X and at least one of π and τ progresses on X . Similarly, this property holds
for the two parts of the path. This allows us to establish the required property for πτ and the
composed path.

Proof of Lemma 4.15. We construct a derivation tree for the sequent S(u,Q) where u = (Q r,E, ϕ)
is a position in a V-play. The sequent rules are used to mimic the possible moves of any V-play
π = uvπ. We consider all possible cases for ϕ:

• ϕ is tt. Apply (ttR) to get a derivation without leaves.

• ϕ is ff. In this case Verifier is stuck. But u is a position in a play in which Verifier uses her
winning strategy, hence she can always make a move. Thus, ϕ cannot be ff.

• ϕ is ϕ1 ∧ ϕ2. Refuter chooses either of the conjuncts. For vπ = (Q r,Eπ, ϕ1) and vτ =
(Q r,Eτ , ϕ2), this gives two V-plays π = uvπ and τ = uvτ . Applying (∧R) and Lemma B.4
gives the desired derivation:

DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ Qx :ϕ1 ∧ ϕ2

DE ; {x : Ψ | Ψ ∈ AS(u, r)} ⊢ Qx :ϕ1
(Lemma B.4)

DEπ
; {x : Ψ | Ψ ∈ AS(vπ , r)} ⊢ Qx :ϕ1

(symmetric case)

• ϕ is ϕ1 ∨ ϕ2: Verifier uses her winning strategy to choose one of the disjuncts, say ϕ1. For
vπ = (Q r,Eπ, ϕ1) we get a V-play π = uvπ . We have the following derivation:

DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ Qx :ϕ1 ∨ ϕ2

DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ Qx :ϕ1 (Lemma B.4)
DEπ

; {x : Ψ | Ψ ∈ AS (vπ, r)} ⊢ Qx :ϕ1

• ϕ is [a]ϕ1. For each q with Q
a
→ q ∈ P , the position vq = (q r,Eq, ϕ1) induces a play

πq = uvq. We start the derivation using ([a]R) and (PiL):

DE ; {x : Ψ | Ψ ∈ AS(u, r)} ⊢ Qx : [a]ϕ1

DE ; {x : Ψ | Ψ ∈ AS(u, r)},Qx
a
→ y ⊢ y :ϕ1

{DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ qx :ϕ1}Q
a
→q∈P

We continue the derivation for each q. If q is ε then we apply the rule (Axiom). This rule
is applicable since, because of the form of πq, the characteristic formula of πq, which is ϕ1,

19

must be an element of AS (u, r). Otherwise, if q is not ε then q can be written as Qπ qπ. We
continue the derivation for each q in the following way:

DE ; {x : Ψ | Ψ ∈ AS(u, r)} ⊢ Qπ qπ x :ϕ1
(Lemma B.4)

DEq
; {x : Ψ | Ψ ∈ AS (vq, r)} ⊢ Qπ qπ x :ϕ1

In this derivation, q may be a sequence of more than one nonterminal. In this case, Lemma
4.14 is applied to complete the derivation.

• ϕ is 〈a〉ϕ1. Verifier uses her winning strategy to make a move from the position u to a

postition vπ = (q r,Eπ, ϕ1) for some q for which Q
a
→ q ∈ P . We let π = uvπ. The

derivation starts with (〈a〉R) and (PiR):

DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ Qx : 〈a〉ϕ1

DE ; {x : Ψ | Ψ ∈ AS(u, r)} ⊢ Qx
a
→ qx DE ; {x : Ψ | Ψ ∈ AS(u, r)} ⊢ qx :ϕ1

We continue with the right-hand branch in exactly the same way as in the case for [a]ϕ1.

• ϕ is µX.ϕX . Verifier uses her winning strategy to choose a move from u to a position vπ

of the form (Q r,Eπ, ϕ[µX.ϕX /X]). This gives a play π = uvπ, for which we have the
following derivation:

DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ Qx :µX.ϕX

DE ; {x : Ψ | Ψ ∈ AS(u, r)} ⊢ Qx : 〈X6ϕX〉ϕX

DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ Qx :ϕX [µX.ϕX /X]
(Lemma B.4)

DEπ
; {x : Ψ | Ψ ∈ AS (vπ, r)} ⊢ Qx :ϕX [µX.ϕX /X]

• ϕ is νX.ϕX . In this case, let π = uvπ for vπ = (Q r,E′, ϕX) where E′ is E, X =ϕX . This
play π does not preserve X , it preserves all other fixed-point variables, and does not progress
on any variable. The characteristic formula χ(π) is thus [X>ϕX]ϕX , and the following is
derivable:

DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ Qx : νX.ϕX

DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ Qx : [X>ϕX]ϕX (Lemma B.4)
DE,X=ϕX

; {x : Ψ | Ψ ∈ AS(vπ , r)} ⊢ Qx :ϕX

• ϕ is X . In this case, by definition of the position of a play, we know that the last definition in
E is X=ϕX . We use the play π = uvπ where vπ = (q r,E, ϕX). The characteristic formula
of π is [+X]ϕX , which justifies the following derivation:

DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ Qx :X

DE ; {x : Ψ | Ψ ∈ AS (u, r)} ⊢ Qx : [+X]ϕX (Lemma B.4)
DE ; {x : Ψ | Ψ ∈ AS(vπ , r)} ⊢ Qx :ϕX

The assertion about progress and preservation follows in the same way as in Lemma 4.14.

Proof of Lemma 4.16. (Sketch) Let u = (p,E, ϕ) and Ψ ∈ AS (u, ε), i.e. Ψ is the characteristic
formula of a play uπv where v has the state ε. We start the derivation of ⊢ ε : Ψ with the
elimination of the prefix of Ψ to arrive at a sequent of the form D ; ⊢ ε :ψ. Note that this is
a similar situation as in Lemma 4.15, but without the complication of process variables and the
assumption set. In fact, the proof of Lemma 4.15 can easily be adapted for sequents of this kind.
We can thus build a derivation-tree along V-plays for these epsilon-sequents. To this derivation,
we can then apply the argument of Lemma 4.13 to show that this derivation-tree is indeed a
proof.

20

