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Comparing Functional Paradigms
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1 IMFM, University of Ljubljana, Slovenia
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Abstract. We compare the definability of total functionals over the
reals in two functional-programming approaches to exact real-number
computation: the extensional approach, in which one has an abstract
datatype of real numbers; and the intensional approach, in which one
encodes real numbers using ordinary datatypes. We show that the type
hierarchies coincide up to second-order types, and we relate this fact to
an analogous comparison of type hierarchies over the external and inter-
nal real numbers in Dana Scott’s category of equilogical spaces. We do
not know whether similar coincidences hold at third-order types. How-
ever, we relate this question to a purely topological conjecture about
the Kleene-Kreisel continuous functionals over the natural numbers. Fi-
nally, although it is known that, in the extensional approach, parallel
primitives are necessary for programming total first-order functions, we
demonstrate that, in the intensional approach, such primitives are not
needed for second-order types and below.

1 Introduction

In functional programming, there are two main approaches to exact real-number
computation. One is to use a specialist functional programming language that
contains the real numbers as an abstract datatype. This approach is extensional
in the sense that the data structures representating real numbers are hidden
from view and one may only manipulate reals via representation-independent
operations upon them. A second approach is to use an ordinary functional lan-
guage, and to encode real numbers using standard infinite data structures, for
example, streams. This approach is intensional in the sense that one has di-
rect access to the encodings of reals, allowing the possibility of distinguishing
between different representations of the same real number. In recent years, the
extensional approach has been the subject of much theoretical investigation via
the study of specialist languages, such as Di Gianantonio’s RL [Di 93] and Es-
cardó’s RealPCF [Esc96]. On the other hand, the intensional approach is the
one that is actually used when exact real-number computation is implemented
in practice—see, for example, [GL01].
? Research supported by the Slovene Ministry of Science grant Z1-3138-0101-01
?? Research supported by an EPSRC Advanced Research Fellowship.
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This paper presents preliminary results in a general investigation relating the
two approaches. Specifically, we address the question of how the programmability
of higher-type total functionals over the real numbers compares between the two
approaches. To this end, we consider two type hierarchies built using function
space and product over a single base type, real. The first hierarchy is constructed
by interpreting each type σ as the set [σ]E of extensionally programmable total
functionals of that type, and the second by interpreting σ as the set [σ]I of in-
tensionally programmable total functionals. As our first main result, Theorem 1,
we prove that for all second-order (and below) types σ, the sets [σ]E and [σ]I
coincide, thus a second-order functional is extensionally programmable if and
only if it is intensionally programmable. This result thus applies at the type
level at which many interesting functionals, including definite integration

(f, a, b) 7→
∫ b

a

f(x) dx : (real→ real)× real× real → real ,

reside. See [EE00] and [Sim98] for accounts of integration within the extensional
and intensional approaches respectively.

We prove Theorem 1 by relating it to an analogous question of the coinci-
dence of type hierarchies in the setting of Dana Scott’s category of equilogical
spaces [Sco96,BBS02]. In that setting there is an external type hierarchy (σ)E ,
built over Euclidean space, and there is an internal hierarchy (σ)I , built over
the object of real numbers as defined in the internal logic of the category. Again,
we show that (σ)E and (σ)I coincide up to second-order types, Theorem 2.

It is of course natural to ask whether the above type hierarchies also coin-
cide for third-order σ and above. We do not know the answer to this question,
but a further contribution of this paper is to relate the agreement of the hierar-
chies at higher types to a purely topological conjecture about the Kleene-Kreisel
continuous functionals [Kle59,Kre59] of second-order type, see Sect. 5. However,
regarding the extension to third-order types, we remark that we lack examples of
genuinely interesting total functionals of type three to which such generalisations
of our results would apply.

Our methodology for studying the two approaches to exact real-number com-
putation is to consider a paradigmatic programming language for each. For the
extensional approach, we use Escardó’s RealPCF+, which is RealPCF [Esc96]
extended by a parallel existential operator—a language that enjoys the merit of
being universal with respect to its domain-theoretic semantics [ES99]. For the in-
tensional approach, we encode real numbers within Plotkin’s PCF++, which is
PCF extended by parallel-conditional and existential operators [Plo77]. Again,
PCF++ enjoys a universality property with respect to its denotational seman-
tics [Plo77].

Admittedly, both RealPCF+ and PCF++ are idealized languages, distant
from real-world functional languages such as Haskell [Has]. As such, they provide
the perfect vehicles for a theoretical investigation into programmability questions
such as ours. Nevertheless, it is our desire that our results should relate to the
practice of exact real-number computation. There is one main obstacle to such



a transference of the results: the parallel features of PCF++ do not appear in
Haskell and related languages. We address this issue in Sect. 7, where we show
that, again for second-order σ and below, the parallel features of PCF++ are
nowhere required to program functionals in [σ]I , Theorem 3. Thus a second-
order total functional over the reals is programmable in an ordinary sequential
functional language if and only if it is programmable in the idealized, specialist
and highly parallel language RealPCF+. Again, we do not know whether this
result extends to third-order types and above.

Although our investigation is one into questions of programmability (i.e. of
definability) within RealPCF+ and PCF++, we carry out the investigation
purely at the denotational level, relying on known universality results to infer
definability consequences from the semantic correspondences we establish. In do-
ing so, there is one major way in which the results presented in this paper depart
from the outline presented above. A full investigation would show that the com-
putable (and hence definable) total functionals coincide between the denotational
interpretations of the extensional and intensional approaches. Instead, we estab-
lish the coincidence for arbitrary continuous functionals, whether computable
or not. We remark that the results we prove, although computability free, do
nonetheless have definability consequences relative to functional languages with
programs given by infinite syntax trees, or, equivalently, relative to languages
extended with oracles for all set-theoretic functions from N to N.

Our reason for ignoring computability questions is that the results we es-
tablish already require significant technical machinery from domain theory and,
especially, topology. Although we believe that it should be possible to prove ef-
fective versions of the results by effectivizing the topological lemmas that we use,
it is certainly not a triviality to do so. We leave this as a task for future research.
Only once this task is completed will the original programming questions that
motivated the research in this paper be fully resolved. Nevertheless, the results
in this paper provide a strong indication of the outcome of these questions, and,
moreover, introduce techniques that are likely to be useful in addressing them.

For lack of space, proofs are only outlined in this conference version of the
paper. In this version, our main goal is to convey the flavour of how mathematical
tools from domain theory, topology and category theory may be combined to
attack seemingly innocuous questions that originate in functional programming.
In doing so, we assume some familiarity with these three subjects, for which our
basic references are [AJ94,Dug89,Mac71] respectively.

2 Domains for Real-number Computation

We first fix terminology—see [AJ94] for definitions. We write dcppo to mean
directed-complete pointed partial order, i.e. one with least element, and we typ-
ically use v for the partial order. We call a dcppo ω-continuous if it has a
countable basis. For us, a domain is an ω-continuous bounded-complete dcppo.
We write ωBC for the category of domains and (directed-)continuous functions,
and we write ωL for its full subcategory of ω-continuous lattices. Both categories



are cartesian closed with exponentials given by the dcppo of all continuous func-
tions.

Our main interest will be in two particular domains, one for each of the two
approaches to exact real-number computation mentioned in the introduction.
The interval domain I has underlying set {R} ∪ {[a, b] | a ≤ b ∈ R}, with its
order defined by δ v δ′ if and only if δ ⊇ δ′. This is indeed a domain.

The interval domain is intimately connected with the extensional approach
to exact real-number computation. Indeed, the abstract datatype of real num-
bers in RealPCF [Esc96] is specifically designed to have I as its denotational
interpretation. Furthermore, Escardó and Streicher [ES99] have established a
universality result with respect to the domain-theoretic semantics: every com-
putable element in the domain interpreting a RealPCF type is definable, by a
term of that type, in the language RealPCF+, which is RealPCF extended
with a parallel existential operator. In this paper, although we are motivated
by definability questions, we do not wish to entangle ourselves in computability
issues. Thus we remark on the following modified version of Escardó and Stre-
icher’s result. Every element (computable or not) in the domain interpreting a
RealPCF type is definable in the languageΩRealPCF+, which is RealPCF+
extended with an oracle for every set-theoretic function from N to N.

Under the intensional approach to exact real-number computation, one needs
to select a computationally admissible representation of real numbers [WK87].
There are many equivalent choices. For simplicity, we use a mantissa-exponent
representation, where the mantissa, a real number in the interval [−1, 1], is repre-
sented using signed-binary expansions. Specifically, a real number is represented
by a pair (n, α) where the mantissa α ∈ {−1, 0, 1}ω represents the number
0.α0α1α2 . . . , i.e.

∑∞
i=0 2−(i+1)αi, and the exponent n ∈ N gives a multiplier of

2n, thus the pair (n, α) represents the real number
∑∞
i=0 2n−(i+1)αi.

To implement the above representation in a functional programming lan-
guage, one would most conveniently encode a real number as a pair consist-
ing of a natural number followed by a stream. However, in order to fix on
as simple a language as possible, we use instead a direct implementation in
Plotkin’s PCF [Plo77] extended with product types. In PCF, the base type, nat,
is interpreted as the flat domain N⊥ = {⊥} ∪ N with least element ⊥. Function
space and product are interpreted using the cartesian-closed structure of ωBC.
As we are interested in definability, we mention Plotkin’s universality result:
every computable element in the domain interpreting a PCF type is definable
in the language PCF++, which is PCF extended with parallel-conditional and
existential operators. Again, there is a computability-free version of this result.
Every element (computable or not) in the domain interpreting a PCF type is
definable in the language ΩPCF++, which is PCF++ extended with an oracle
for every set-theoretic function from N to N.

We represent real numbers, in PCF, using the type nat→ nat whose denota-
tional interpretation is the function domain J = N⊥

N⊥ . We say that a function
f ∈ J is real representing if f(0) 6= ⊥ and if f(x) ∈ {0, 1, 2} when x > 0. Any
such real-representing f encodes the real number

∑∞
i=1 2f(0)−i(f(i)− 1).



3 Two Type Hierarchies of Assemblies

Our goal is to investigate the type hierarchies of total functionals on reals pro-
grammable in the two approaches to exact real-number computation. We con-
sider simple types over a base type of real numbers, with types given by:

σ ::= real | σ × σ′ | σ → σ′ .

The order of a type is: order(real) = 0; order(σ×σ′) = max(order(σ), order(σ′));
and order(σ → σ′) = max(1 + order(σ), order(σ′)).

For the extensional approach, we study the total functionals on reals pro-
grammable in the language ΩRealPCF+. Every such functionals is represented
by an element in the type hierarchy over I in ωBC. However, the type hierarchy
over I contains both superfluous elements and redundancies. For example, I
itself contains “partial” real numbers (proper intervals) in addition to “total”
reals (singleton intervals). At first-order types, such as II , there are elements
that do not represent total functions on reals because they fail to preserve total
reals. Furthermore, at the same type, it is possible to have two different functions
f, g : I → I that represent the same total function on reals, because, although
they behave identically on total reals, they differ in their behaviour on partial
reals.

For the intensional approach, we study the functionals programmable in
ΩPCF++, using the representation described in Sect. 2. This time, every such
functional is represented by an element in the type hierarchy over J in ωBC.
Again, there is superfluity and redundancy. Within J , we singled out the real-
representing elements in Sect. 2, and in fact each real number has infinitely many
different representations. Because of this, there are two ways that a function from
J to J may fail to represent a function on real numbers: either it may map some
real-representing element to a non-real-representing element; or it may map two
different representations of the same real number to representations of different
real numbers.

Assemblies offer a convenient way of identifying the elements of the hierar-
chies over I and J in ωBC that represent total functionals on reals. An assembly
is a triple A = (|A|, ‖A‖,A) where |A| is a set, ‖A‖ is a domain, and A is a bi-
nary relation between ‖A‖ and |A| such that, for all a ∈ |A|, there exists x ∈ ‖A‖
such that x A a. A morphism from one assembly A to another B is simply a
function f : |A| → |B| for which there exists a continuous g : ‖A‖ → ‖B‖ such
that x A a implies g(x) B f(a), in which case we say that g tracks f . We write
Asm(ωBC) for the category of assemblies over domains, and Asm(ωL) for the
full subcategory of assemblies over ω-continuous lattices. Again, both categories
are cartesian closed, with the exponential BA given by

|BA| = {f : |A| → |B|
∣∣ f is a morphism from A to B}

‖BA‖ = ‖B‖‖A‖ in ωBC

g BA f ⇐⇒ g tracks f .



We use Asm(ωBC) to define the two type hierarchies of total functionals
we are interested in. For the extensional approach, we define an assembly [[σ]]E
for each type σ. For the base type, real, this is given by:

|[[real]]E | = R ‖[[real]]E‖ = I δ [[real]]E x ⇐⇒ δ = {x}

from which [[σ]]E is defined using the cartesian-closed structure of Asm(ωBC).
The hierarchy of extensional functionals over R is given by the sets |[[σ]]E |,

for which we henceforth use the less cluttered [σ]E . We have that [real]E = R;
[σ× σ′]E = [σ]E × [σ′]E ; and [σ → σ′]E is a set of (total) functions from [σ]E to
[σ′]E . In fact, by [Nor00b], [σ → σ′]E is exactly the set of continuous functions
with respect to the interpretation of the σ type hierarchy over R in the cartesian-
closed category of sequential topological spaces (see Sect. 5). For each type σ,
the set |[[σ]]E |, for which we henceforth use the less cluttered notation [σ]E , is a
set of total functionals over the reals. By the universality of ΩRealPCF+, the
functionals f ∈ [σ]E are exactly those for which there exists an ΩRealPCF+
program P of type σ such that P computes f , as witnessed by the relation
[[P ]] [[σ]]E f , where [[P ]] is the denotational interpretation of P .

Similarly, for the intensional approach, the assembly [[real]]I is defined by:

|[[real]]I |=R ‖[[real]]I‖=J f [[real]]I x ⇐⇒ f is real representing and
x =

∑∞
i=1 2f(0)−i · (f(i)− 1)

and again [[σ]]I is induced for arbitrary σ using the cartesian-closed structure of
Asm(ωBC). This time the set |[[σ]]I |, for which we henceforth write [σ]I , is the
set of those total functionals f for which there exists an ΩPCF++ program P
of type σ∗ (where real∗ = nat→ nat and (·)∗ commutes with function space and
product) such that P computes f , as witnessed by the relation [[P ]] [[σ]]I f .

Theorem 1. For any type σ with order(σ) ≤ 2, it holds that [σ]E = [σ]I .

By the coincidence of the [σ]E hierarchy with the hierarchy in the cartesian-
closed category of sequential topological spaces [Nor00b], one can charcterise the
sets [σ]E , for σ with order(σ) ≤ 2, as the continuous functionals with respect
to the compact-open topology on function spaces. Thus, as a consequence of
Theorem 1, we obtain a purely topological description of the [σ]I hierarchy for
σ with order(σ) ≤ 2.

4 Two Type Hierarchies of Equilogical Spaces

We prove Theorem 1 by relating it to another situation in which there are com-
peting hierarchies of total functionals over the reals, but in which the problem
of comparing the two hierarchies is more tractable. This second pair of hier-
archies arises in Dana Scott’s category of equilogical spaces [Sco96,BBS02], a
cartesian-closed extension of the category of topological spaces.

In the present paper we only consider countably-based equilogical spaces,
and we do not impose Scott’s T0 condition. For our purposes then, an equilogical



space is a triple X = (|X|, ‖X‖, qX) where |X| is a set, ‖X‖ is a countably-based
topological space and qX : ‖X‖ → |X| is a surjective function. A morphism from
one equilogical space X to another Y is simply a function f : |X| → |Y | for
which there exists a continuous g : ‖X‖ → ‖Y ‖ such that qY ◦ g = f ◦ qX . Again
we say that g tracks f . We write ωEqu for the category of equilogical spaces.

We write ωTop for the category of countably-based topological spaces. There
is a full and faithful functor from ωTop to ωEqu, mapping a countably-based
space S to (S, S, idS). A remarkable fact is that is ωEqu is equivalent to the
category Asm(ωL) [BBS02]. Thus ωEqu is cartesian closed.

There are two non-isomorphic equilogical spaces, each with good claims to
be the equilogical space of real numbers. The external reals, RE, is the inclusion
of the topological Euclidean reals as the object (R,R, idR). The internal reals,
RI, is the object (R,N× 3ω, r), where 3 = {−1, 0, 1} with the discrete topology,
both 3ω and N× 3ω are given the product topologies, and r is:

r(n, α) =
∑∞
i=0 2n−(i+1)αi . (1)

Thus, the internal reals are again based on the intensional signed-digit notation.
The reason for the terminology is that the internal reals are given as the object
of Cauchy reals as defined in the internal logic of Asm(ωL).

We use the cartesian-closed structure to determine two type hierarchies, the
external ([σ])E , and the internal ([σ])I in ωEqu, defined at base type by:

([real])E = RE ([real])I = RI .

We write (σ)E as an abbreviation for |([σ])E |, and (σ)I for |([σ])I |.

Theorem 2. For any type σ with order(σ) ≤ 2, it holds that (σ)E = (σ)I .

5 Proofs of Theorems 1 and 2

In this section, we outline the proof of Theorem 2 and the derivation of Theo-
rem 1 from Theorem 2.

We shall need to consider various types of topological spaces. A space is
said to be zero-dimensional if every neighbourhood of a point has a clopen
subneighbourhood, where a clopen set is one that is both open and closed.

In a topological space T , an infinite sequence (xi)i≥0 converges to a point
x, notation (xi) → x, if, for all neighbourhoods U 3 x, the sequence (xi) is
eventually in U (i.e., there exists l ≥ 0 such that xj ∈ U for all j ≥ l). A
subset X ⊆ T is sequentially open if, whenever (xi) → x ∈ X, it holds that
(xi) is eventually in X. Every open set is sequentially open. A space T is said
to be sequential if every sequentially open subset is open. We write Seq for the
category of sequential spaces. This category is known to be cartesian closed.
If S and T are sequential then the exponential TS is given by the set of all
continuous functions endowed with the unique sequential topology that induces
the convergence relation (fi)→ f if and only if, whenever (xi)→ x in S, it holds
that (fi(xi))→ f(x) in T .



We write ωqTop for the category of all quotient spaces of countably-based
spaces, i.e. a topological space T is an object of ωqTop if and only if there ex-
ists a countably-based space S with a topological quotient q : S -- T . There
are subcategory inclusions ωTop ⊂ - ωqTop ⊂ - Seq. Importantly, the cate-
gory ωqTop is cartesian closed with its cartesian-closed structure inherited from
Seq [MS02].

A topological space is said to be hereditarily Lindelöf if, for every family
{Ui}i∈I of open sets, there is a countable subfamily {Uj}j∈J (i.e. where J ⊆ I
is countable) such that

⋃
j∈J Uj =

⋃
i∈I Ui. It is easily shown that every space

in ωqTop is hereditarily Lindelöf.
The next proposition relates the above notions to an important property of

the function r : N × 3ω → R, defined in (1), which is a topological quotient.
We first introduce terminology that makes sense in an arbitrary category. Given
an object Z and a morphism g : X - Y we say that Z is g-projective, or
equivalently that g projects Z, if, for every f : Z - Y , there exists f : Z → X
such that the left-hand diagram below commutes. Dually, we say that Z is g-
injective, or equivalently that g injects Z, if, for every f : X - Z, there exists
f : Y → Z such that the right-hand diagram commutes.

Z
f - X Y

f - Z

@
@
@
@

f
R �

�
�
�

f

�

Y

g

?
X

g

6

Proposition 1. Zero-dimensional hereditarily-Lindelöf spaces are r-projective.

Consider the full subcategory ω0Equ of ωEqu consisting of those equilogical
spaces that are isomorphic to one X for which ‖X‖ is zero-dimensional. Easily,
ω0Equ is closed under finite products, and it contains every countably-based
zero-dimensional space under the inclusion of ωTop in ωEqu. Moreover, using
Proposition 1, ω0Equ contains the objects ([σ])I for σ with order(σ) ≤ 1.

We say that a morphism e : X → Y in ωEqu is tight if it is mono and it
projects every space in ω0Equ. Every tight morphism is also epi. We say that an
equilogical space is tight-injective if it is injective with respect to every tight map.
It can be proved that the full subcategory ωEquti of tight-injective objects in
ωEqu is cartesian closed and contains every countably-based space. Thus every
object ([σ])E is tight-injective.

We prove Theorem 2 by constructing tight morphisms ([σ])I → ([σ])E when
order(σ) ≤ 2. The first lemma gives the crucial construction for function types.

Lemma 1. Given tight maps e : X → Z and f : Y →W , where Y is in ω0Equ
and Z,W are in ωEquti, then the function fe

−1
: |Y ||X| → |W ||Z| restricts to a

function g : |Y X | → |WZ | giving a tight morphism g : Y X →WZ .

Lemma 2. If order(σ) ≤ 2 then (σ)I = (σ)E and the identity function gives a
tight morphism ([σ])I → ([σ])E.



Theorem 2 is an immediate consequence.
We next consider how Theorem 2 might be extended to higher types. Cer-

tainly, the proof above does not extend directly, because one can show that
([(real→ real)→ real])I is not in ω0Equ. However, this leaves open the possibil-
ity of replacing the use of ω0Equ with that of another category.

Proposition 2. Suppose there exists a full subcategory of ωEqu satisfying four
conditions: (i) it is closed under finite products; (ii) it contains the 1-point com-
pactification of N; (iii) it contains every object ([σ])I ; (iv) every object in the sub-
category is projective with respect to the “identity” RI → RE. Then (σ)E = (σ)I
for all types σ.

We do not know whether such a subcategory exists. The difficult conditions
to reconcile are (iii) and (iv). Let us pinpoint our ignorance more exactly by
considering the “pure” second- and third-order types:

real2 ≡ (real→ real)→ real real3 ≡ real2 → real

Proposition 3.

1. (real3)E ⊇ (real3)I .
2. (real3)E = (real3)I if and only if the object ([real2])I is projective with respect

to the identity RI → RE (tracked by r).

We have not succeeded in establishing whether ([real2])I is projective with respect
to the identity RI → RE. However, we have managed to reduce this condition
to a conjecture concerning the topology of the Kleene-Kreisel continuous func-
tionals over N [Kle59,Kre59]. Many presentations of the continuous functionals
are known, but, for our conjecture, the simplest description is as the hierarchy
of simple types over N in the cartesian-closed category ωqTop, or equivalently
in Seq, or equivalently in the cartesian-closed category of compactly-generated
Hausdorff spaces, see [Nor80].

Conjecture 1. The sequential space NB, where B = N
N, is zero dimensional.

Proposition 4. If Conjecture 1 holds then ([real2])I is projective with respect to
the identity RI → RE and hence (real3)E = (real3)I .

We prove Theorem 1 by reducing it to Theorem 2. This requires some
work. Although we have stated that ωEqu is equivalent to the full subcate-
gory Asm(ωL) of Asm(ωBC), this is of no immediate help because neither
[[real]]E nor [[real]]I resides in this subcategory. However, following [Bau00], there
is a second way of viewing Asm(ωL), and hence ωEqu, as (equivalent to) a full
subcategory of Asm(ωBC), under which [[real]]E and [[real]]I are included.

We say that an assembly A in Asm(ωBC) is dense if supp(A) is dense in
‖A‖ under the Scott topology, where:

supp(A) = {x ∈ ‖A‖
∣∣ there exists a ∈ |A| such that x  a} .

An assembly is essentially dense if it is isomorphic to a dense assembly. It holds
that Asmed(ωBC) ' ωEqu, where Asmed(ωBC) is the full subcategory of
essentially dense assemblies in Asm(ωBC) [BBS02,Bau00].



Proposition 5. For any type σ,

1. [[σ]]E is a dense assembly, and
2. if order(σ) ≤ 1 then [[σ]]I is an essentially dense assembly.

Statement 1 follows from Normann’s density theorem for an ω-algebraic variant
of the interval domain [Nor00b]. Statement 2 will be addressed in Sect. 6.

Lemma 3. For any type σ,

1. [σ]E = (σ)E, and
2. if order(σ) ≤ 2 then [σ]I = (σ)I .

Theorem 1 follows immediately from Lemma 3 and Theorem 2.

6 Extensionalization

In this section, we prove Proposition 5.2. Our proof establishes a property of the
domains underlying [[σ]]I , for first-order σ, that we call extensionalization. This
property is of interest independent of its application to Proposition 5.2.

Following [Ber93], we define the set of total elements Tτ ⊆ ‖τ‖, where ‖τ‖ is
the domain interpreting a PCF type τ . This is by:

Tnat = N ⊆ N⊥
Tτ1×τ2 = Tτ1 × Tτ2
Tτ1→τ2 = {f ∈ ‖τ1 → τ2‖ | for all x ∈ Tτ1 , f(x) ∈ Tτ2}

Recall also that, for a type σ over real, ‖[[σ]]I‖ = ‖σ∗‖, where (·)∗ is the transla-
tion to PCF types from Sect. 3. The proof of the next proposition uses Berger’s
generalization of the “KLS Theorem” [Ber93] together with a purely topological
lemma.

Lemma 4. If S is a nonempty closed subspace of a countably-based zero-dimen-
sional space T then S is a retract of T .

Proposition 6 (Extensionalization). For any σ with order(σ) ≤ 1, the iden-
tity function on [[σ]]I is tracked by a function i : ‖[[σ]]I‖ → ‖[[σ]]I‖ with the
property that, for all x ∈ Tσ∗ , i(x) ∈ Tσ∗ ∩ supp([[σ]]I).

We call this result extensionalization for the following reason. As in Sect. 3, in
order for an element f ∈ ‖[[real → real]]I‖ to track a morphism from [[real]]I to
[[real]]I it must both preserve real-representing elements (i.e. it must preserve
supp([[real]]I)) and it must also preserve the equivalence between such represen-
tations; thus one might say that it must behave “extensionally”. The proposition
relates such “extensional” elements of ‖[[real→ real]]I‖ to total ones. Firstly, be-
cause i tracks the identity, it maps every extensional element f to an equivalent
total extensional one. Secondly, every non-extensional but total f is mapped
to an arbitrary extensional and still total element. Thus the total elements of
‖[[real → real]]I‖ are all “extensionalized” by i. Again we do not know whether
such a process of extensionalization is also available for second-order σ and above.



Corollary 1. If order(σ) ≤ 1 then the identity on [[σ]]I is tracked by a function
i such that, for all x ∈ ‖[[σ]]I‖, i(x) is in the Scott-closure of supp([[σ]]I).

Proposition 5.2 follows, as the property stated in the corollary is easily seen to
be sufficient to establish that [[σ]]I is essentially dense.

7 Eliminating Parallelism

To conclude the paper, we return to our original motivation for studying the
[[σ]]E and [[σ]]I hierarchies, namely that they correspond to the total functionals
on reals definable in the two approaches to exact real-number computation. As
discussed in Sect. 3, the [[σ]]E functionals are exactly those programmable in
ΩRealPCF+, and the [[σ]]I functionals are those programmable in ΩPCF++.
Both these languages contain parallel primitives.

In the context of PCF, Normann has proved that the type hierarchies of
total functionals over N programmable in PCF and PCF++ are identical for
arbitrary types [Nor00a]. By the same proof, the hierarchies of N-functionals
programmable in ΩPCF and ΩPCF++ are identical. In other words, parallel
primitives are unnecessary as far as programming total functionals over N is
concerned. It is natural to ask whether a similar phenomenon of elimination of
parallelism occurs also for total functionals over R.

For the extensional approach, the situation is unsatisfactory. In [EHS99], it
is proved that there is no sequential way of implementing even the first-order
function of binary addition. For this reason, core RealPCF contains a primi-
tive parallel-conditional operation. However, one may still question whether the
parallel existential of RealPCF+ is required for programming total function-
als. The only known result is that all second-order functionals can be defined in
languages strictly weaker than RealPCF+ [Nor02].

Our final result is that, in the intensional approach, parallelism is eliminable
up to type two. Recall, from Sect. 3, our notation for PCF and its semantics.

Theorem 3. If order(σ) ≤ 2 then, for any f ∈ [σ]I , there exists an ΩPCF
program P of type σ∗ such that [[P ]] [[σ]]I f .

The proof uses extensionalization, Proposition 6, to reduce the result to Nor-
mann’s result for third-order PCF types. The type restriction on Proposition 6
is the only obstacle to extending Theorem 3 to higher-order types.

To ease comparison with the results for the extensional case discussed above,
we remark that we have also proved a version of Theorem 3 for the standard
(oracle free) versions of PCF and PCF++. Specifically, a total functional on R
is definable in PCF if and only if it is definable in PCF++. The proof involves
writing PCF programs for the extensionalization functions i of Proposition 6.
The coding details of these functions are interesting, and may appear elsewhere.
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