

Edinburgh Research Explorer

Coalgebraic Semantics for Timed Processes

Citation for published version:
Kick, M, Power, J & Simpson, A 2006, 'Coalgebraic Semantics for Timed Processes' Information and
Computation, vol 204, no. 4, pp. 588-609., 10.1016/j.ic.2005.11.003

Digital Object Identifier (DOI):
10.1016/j.ic.2005.11.003

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Information and Computation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

http://dx.doi.org/10.1016/j.ic.2005.11.003
http://www.research.ed.ac.uk/portal/en/publications/coalgebraic-semantics-for-timed-processes(90e6c17a-14c6-425e-9624-d0636d51d906).html

Coalgebraic Semantics for Timed Processes

Marco Kick, John Power 1,∗, Alex Simpson 2

Laboratory for the Foundations of Computer Science,
University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JZ, Scotland.

Abstract

We give a coalgebraic formulation of timed processes and their operational seman-
tics. We model time by a monoid called a “time domain”, and we model processes
by “timed transition systems”, which amount to partial monoid actions of the time
domain or, equivalently, coalgebras for an “evolution comonad” generated by the
time domain. All our examples of time domains satisfy a partial closure property,
yielding a distributive law of a monad for total monoid actions over the evolu-
tion comonad, and hence a distributive law of the evolution comonad over a dual
comonad for total monoid actions. We show that the induced coalgebras are exactly
timed transition systems with delay operators. We then integrate our coalgebraic
formulation of time qua timed transition systems into Turi and Plotkin’s formula-
tion of structural operational semantics in terms of distributive laws. We combine
timing with action via the more general study of the combination of two arbitrary
sorts of behaviour whose operational semantics may interact. We give a modular
account of the operational semantics for a combination induced by that of each of
its components. Our study necessitates the investigation of products of comonads.
In particular, we characterise when a monad lifts to the category of coalgebras for
a product comonad, providing constructions with which one can readily calculate.

Key words: time domains, timed transition systems, evolution comonads, delay
operators, structural operational semantics, modularity, distributive laws

1 Introduction

The goal of this paper is to analyse the timed behaviour of processes with an
eye towards integrating it into the study of coalgebra and its body of theory.

∗ Corresponding author.
1 Supported by EPSRC grant GR/586372/01: A Theory of Effects for Programming
Languages.
2 Supported by an EPSRC Advanced Research Fellowship.

Preprint submitted to Elsevier Science 15 February 2005

v1lfass
Typewritten Text
Kick, M., Power, J., & Simpson, A. (2006). Coalgebraic Semantics for Timed Processes. Information and Computation, 204(4), 588-609doi: 10.1016/j.ic.2005.11.003

Such a coalgebraic formulation would and does allow uniform treatments of
bisimulation [6], of operations on processes [21], and of operational seman-
tics [21].

We first consider the extent to which timed behaviour alone can be expressed
in coalgebraic terms. This involves a succession of concepts. First, a time
domain is a monoid (T ,+, 0) subject to two conditions (see Definition 2.1). A
motivating example is given by the set of natural numbers with addition. A
timed transition system is then a labelled transition system (P, T,;), where P
is a set of processes, T is a time domain, and;⊆ P×T×P is a time transition
relation, i.e., it satisfies axioms of determinacy, zero-delay, and continuity.
The concept of timed transition system was at the heart of the first author’s
thesis [11], was summarised in [10], and was synthesised from various accounts
of time in the literature, such as [7,17,22]. The central result of Section 2 is
that a timed transition system amounts exactly to a coalgebra for what we
call the evolution comonad ET on Set generated by the time domain T . The
evolution comonad has a natural and succinct description. When the time
domain is the set of natural numbers with addition, ET is the cofree comonad
on an endofunctor. In general, however, the evolution comonad is not cofreely
generated.

We then investigate, in coalgebraic terms, how time interacts with a concept
of delay. This involves the formulation of a notion of delay operator (see Def-
inition 3.5), reflecting the natural properties of delay in a timed setting. In
order to define the concept at all, we need to define closedness, more generally
partial closedness, for a time domain, and we need some analysis of partially
closed timed domains, as well as checking that our main examples of time
domains are partially closed.

These definitions in hand, in Section 4 we prove that timed transition systems
together with a delay operator amount to the bialgebras for a distributive law
of the monad for total left T -actions for a time domain T over the evolution
comonad ET . The category of T -actions is not only algebraic over Set but also
coalgebraic over Set, with comonad (−)T . A subtle use of Currying allows us
to reformulate the distributive law of the monad T × (−) over the comonad
ET as a distributive law of ET over the comonad (−)

T and then to see the
bialgebras as coalgebras for the induced composite comonad.

In Section 5, we incorporate time with action. To do so, we introduce and
study the notion of heterogeneous transition systems. Given a finite set A of
actions, a time domain T and a set P , an heterogeneous transition system
(P,A, T,→,;) on P is given by

• an image-finite transition system (P,A,→) and
• a timed transition system (P, T,;)

2

The first transition system is a coalgebra for an endofunctor B on Set [6].
Thus, by the above, if D is the cofree comonad on B, we have a pair of comon-
adsD andD′ on Set together with aD-coalgebra structure and aD′-coalgebra
structure on the same set. So we consider how to combine such comonads. If
the product D × D′ of comonads exists, it is the combined comonad we re-
quire. But products of comonads do not always exist, and when they do exist,
they are typically awkward to calculate. So we give simple general conditions
that imply existence, and we characterise the product in terms with which
one can readily calculate, providing that one of the comonads is cofree on
an endofunctor. There is an important special case, where D′ too is cofree
on an endofunctor B′, e.g., when the time domain is the set of natural num-
bers. When both comonads are cofree on endofunctors, life becomes simpler,
as the product of comonads is then the cofree comonad on the product of
endofunctors, which in turn is given pointwise.

In Section 6, following the work of Turi, Plotkin and later authors on distribu-
tive laws [14,15,18,19,21], we study the combination of operational semantics
generated by two sorts of behaviour, our leading class of examples having one
sort of behaviour generated by time with the other sort of behaviour gener-
ated by action. Time, as well as being of fundamental interest in its own right,
illustrates some, albeit not all, of the intricacies involved with combining op-
erational behaviours in general. An important delicacy that arises with time
is as follows [11]: it is not always the case that one has independent pairs of
behaviour, i.e., one might not have distributive laws

TD ⇒ DT

and

TD′ ⇒ D′T

that one seeks to combine into one of the form

T (D ×D′)⇒ (D ×D′)T

That simple situation sometimes does appear in practice, so we do address
it. But time behaviour typically interacts with action behaviour: one most
generally starts with data of the form

T (D ×D′)⇒ DT

and

T (D ×D′)⇒ D′T

rather than with a pair of distributive laws. So the bulk of Section 6, which
is devoted to the derivation of a combined operational semantics, gives nec-
essary and sufficient conditions for the combination, necessarily allowing for
the possibility of parametrised starting data.

3

Although the results in this paper give a fairly comprehensive account of
the most fundamental way of combining different forms of transition system,
namely taking products, there are situations in which it is appropriate to
consider more sophisticated methods of combination in which, for example,
non-trivial distributivity or commutativity relations between behviours are
incorporated. The investigation of such interactions is left as an interesting
task for future research.

We also do not explicitly consider bisimulation for time in this paper. For
this, the interested reader is referred to the first author’s thesis [11], where it
is seen to follow routinely from the analysis here. We also refer to the thesis
for combined rule formats in special cases. We regard the work of this paper
as a natural development of [18,15], which was a first attempt to take Turi
and Plotkin’s definition of a mathematical operational semantics and start
to develop a theory of mathematical operational semantics based on it. This
paper is an extended version of the CMCS 2004 workshop paper [12] by the
first two authors, extended primarily by incorporation of the work of the third
author in his invited talk at the same workshop.

2 Timed transition systems

In this section, we briefly develop an account of timed processes as explained
more fully in the first author’s thesis [11] and in a conference paper summaris-
ing part of the thesis [10]. Our analysis is consistent with and generalises much
of the literature on time, for instance [7,17,22].

The primary feature of a timed process is that it may evolve, under the passage
of time, to another process. We write such timed transitions

p
t

; p′,

where p, p′ are processes and t is the time taken by the evolution. To cater for
different possible notions of time, we shall ask for t to be an element of a time
domain, a notion which captures relevant abstract properties of time.

Definition 2.1 (Time domain) A time domain is a (not necessarily com-
mutative) monoid (T ,+, 0) satisfying axioms of irreversibility and left-cancellation
as follows:

(∀s, t, u ∈ T). s = s+ t+ u⇒ s = s+ t

(∀s, t, u ∈ T). s+ t = s+ u⇒ t = u.

Note that, in the presence of left-cancellation, the irreversibility axiom is equiv-

4

alent to

(∀t, u ∈ T). s+ t = 0⇒ s = t = 0

In the above definition, elements of T are to be understood as representing
durations of time. The monoid addition s+t represents the duration s followed
immediately by the duration t. Irreversibility states that if s is followed by t
to reach a new time s + t 6= s, then, whatever further time u is allowed to
pass, it always holds that s + t + u 6= s, i.e., it is impossible ever to return
to s. The left-cancellation property asserts that time is homogeneous in the
sense that the future {s+ t | t ∈ T } from s looks the same irrespective of s.

One expects any abstract notion of time to come with an associated temporal
order. The reason for not including such an order among the primitive data
of a time domain is that a natural order can be derived from the monoid
structure.

Definition 2.2 (Temporal order) For a monoid (T ,+, 0) define

s ≤ t ⇔ (∃u ∈ T). s+ u = t.

Proposition 2.3 For any monoid (T ,+, 0)

(1) ≤ is a preorder with minimum element 0, and
(2) for every s ∈ T , the function s+ (·) : T → T preserves the order.

Proposition 2.4 A monoid (T ,+, 0) is a time domain if and only if

(1) ≤ is a partial order, and
(2) for every s ∈ T the function s+ (·) : T → T reflects the order.

As well as directly expressing intuitive general properties of time, as discussed
thoroughly in [10,11], the definition of time domain is further motivated by
the existence of naturally occurring examples.

Example 2.5 (Discrete time) T = N. Here 0, + and ≤ are all as expected.

Example 2.6 (Real time) T = R≥0, the set of non-negative reals. Again 0,
+ and ≤ are as expected.

Example 2.7 (Qualitative/branching time) T = C∗, the free monoid
over a set C. Think of C as a set of independent global clocks, and a word
α ∈ C∗ as representing a sequence of ticks from the clocks in the order in which
they occur. In the free monoid, 0 is the empty word ε and + is concatenation
of words, corresponding to the natural composition of time durations in this
context. The derived order is the prefix ordering: α ≤ β if and only if α is a
prefix of β. When |C| = 1, i.e., for a single clock, qualitative time is equivalent

5

to discrete time. When |C| ≥ 2, in contrast to the previous examples, C∗ is
not a commutative monoid and ≤ is not a total order.

Example 2.8 (Product/local time) If {Ti}i∈I is a family of time domains,
then

∏

i∈I Ti is a time domain under the pointwise monoid structure. The
derived order is also pointwise. Product time domains naturally model local
time, where each i ∈ I models a clock corresponding to the time domain Ti,
local in the sense that the actions of different clocks do not interfere with each
other, e.g., with each clock influencing a distinct component of the system
being modelled. When |I| ≥ 2 and the time domains are non-trivial, the
temporal order is not total.

We now introduce the notion of timed transition system, which captures intu-
itive properties of the evolution of processes under time.

Definition 2.9 (Timed transition system) A timed transition system over
a time domain T is a labelled transition system (P,;) where P is a set of
processes, and ;⊆ P × T × P is called the time transition relation, satisfy-
ing axioms of determinacy, zero-delay and continuity, which, respectively, are
given by

p
t

; p′ ∧ p
t

; p′′ ⇒ p′ = p′′

p
0
; p

p
t+u
; p′ ⇔ (∃p′′). p

t
; p′′

u
; p′

The key point to observe here is that this is only about time: it does not involve
any other possible behaviour. Rather, our strategy is first to study properties
of timed behaviour in isolation, and then to consider how timed behaviour
interacts with other forms of behaviour such as nondeterministic behaviour.
This approach motivates, in particular, the determinacy axiom. The idea is
that nondeterminism in computation needs to be specifically triggered and
should not merely be a by-product of the evolution of a process under time.
Later, we shall model nondeterministic timed processes by combining deter-
ministic timed behaviour as above with explicit nondeterministic behaviour.
Such an approach to nondeterminism is standard in the literature on timed
processes. For further discussion, see [10,11].

One of the basic observations of [10,11] is that timed transition systems over
T are equivalent to partial actions of the monoid T . To see this, with more
elegant proofs, we proceed as follows. We denote a partial function from X to
Y by X ⇀ Y , and we denote Kleene equality of terms t and t′, i.e., t being
defined if and only if t′ is, and in that case their being equal, by t ' t′.

Definition 2.10 Given a monoid (M,+, 0) and a setX, a partial right monoid
action of M on X is a partial function ∗ : X ×M ⇀ X such that for all x in

6

X and m,n in M ,

x ∗ 0 = x

x ∗ (m+ n) ' x ∗m ∗ n .

Proposition 2.11 To give a timed transition system (P,;) over T is to give
a partial right T -action ∗ on P , with the equivalence given by

p
t

; p′ ⇔ p′ ' p ∗ t

In view of this result, we henceforth consider timed transition systems and
partial right actions as being interchangeable.

There are several possible ways to make partial M -actions into a category
pActM , but the one that proves most useful in this setting is by defining a
map from (X, ∗) to (X ′, ∗′) to be a total function f : X → X ′ such that for
all x in X and m in M

f(x ∗m) ' f(x) ∗′ m

The central result of [11] is Theorem 4.1, which asserts that for a time domain
T , the category pActT , which, by Proposition 2.11, amounts to a category
of timed transition systems, is comonadic over Set with comonad given as
follows.

Definition 2.12 (Evolution comonad) Given a time domain (T ,+, 0) and
a set X, a T -evolution is partial function e : T ⇀ X satisfying the following
two axioms:

e(0) ↓

(∀t, u ∈ T). e(t+ u) ↓⇒ e(t)↓

We denote the set of all T -evolutions on X by ETX, omitting the subscript
T when no confusion can arise. This extends to a functor on Set sending
f : X → X ′ to Ef : EX → EX ′ defined by

E(f)(e)(t) ' f(e(t)) .

The functor extends to a comonad with counit ε : E ⇒ Id and comultiplication
δ : E ⇒ E2 defined as follows:

ε(e) = e(0)

δ(e)(s)↓ whenever e(s)↓

δ(e)(s)(t) ' e(s+ t) .

Theorem 2.13 ([11, Theorem 4.1]) For any time domain (T ,+, 0), the
forgetful functor pActT → Set is comonadic, with comonad given by ET .

7

Given an endofunctor B on a category C, if the forgetful functor U : B-
Coalg −→ C has a right adjoint, we call the induced comonad the cofree
comonad on B. In general, for example in the case of real time T = R≥0, the
comonad ET does not appear to be cofreely generated by an endofunctor. But
for discrete and qualitative time, i.e., for Examples 2.5 and 2.7, it is cofreely
generated:

Theorem 2.14 (cf. [11, Theorem 4.2],[4]) The comonad EC∗ is cofreely
generated by the endofunctor on Set given by 1 + (C ×−). In particular, EN

is the cofree comonad on the endofunctor 1 +− on Set.

We shall need one more basic result about the comonad ET .

Proposition 2.15 (cf. [11, Propositions 4.7 & 4.8]) For any time domain
T , the functor ET preserves pullbacks and is accessible.

PROOF. The preservation of pullbacks is straightforward (see [11, Proposi-
tion 4.7]). For accessibility, first observe that the functor T ⇀ (−) is accessible
as it is isomorphic to (1+ (−))T and accessible functors on Set are closed un-
der limits in general, hence products in particular (see, for instance, [1]). Next,
obtain ET as the equaliser of natural transformations ρ, ρ

′ : (T ⇀ (−)) ⇒
2× 2T ×T , where we write 2 for the set {true, false} of truth values, defined by

ρX(e) = (e(0)↓, λ(t, u). (e(t+ u)↓))

ρ′X(e) = (true, λ(t, u). (e(t+ u)↓ ∧ e(t)↓) .

This exhibits ET as a limit of accessible endofunctors, hence accessible. 2

We remark that it follows from the above, see e.g. [5], that pActT is a topos.
In fact it can be shown to be a presheaf topos.

3 Delay operators

In this paper, we use coalgebra to provide a principled treatment of operations
on timed processes. Most interesting operations concern the interaction of time
with other types of behaviour, for example, nondeterministic behaviour. We
consider such heterogeneous behaviour in Section 5. But first we address the
only natural example we know of an interesting operation on timed processes
whose behaviour concerns time alone: the delay operator. The delay operator
interacts with timed transition systems in a way that is quite different to that
of other operations, as we shall see later.

8

A delay operator on a timed transition system will be a binary operation,
mapping a time t and process p to a process t . p, the process that delays for
duration t and then proceeds as p. There are intuitive properties that a delay
operator should satisfy. First,

0 . p = p

(s+ t) . p = s . t . p

which together say that delay is a total left action of the time domain monoid
on processes. Second, one expects, as minimum, the following interaction with
process evolution,

(t . p) ∗ t = p

These equations, together with the monoid action laws for ∗, have the following
two natural consequences:

t ≤ s ⇒ (s . p) ∗ t = (s− t) . p

s ≤ t ⇒ (s . p) ∗ t ' p ∗ (t− s)

where, if s ≤ t, we write t− s for the unique u such that t = s + u. The last
two equations can equivalently be expressed as a single equation

(s . p) ∗ t ' (s−̇t) . (p ∗ (t−̇s)) (1)

by introducing the notation s−̇t for truncated subtraction, which satisfies the
following conditions:

t ≤ s ⇒ s−̇t = s− t ,

s ≤ t ⇒ s−̇t = 0 .

When the temporal order on T is total, the above properties completely deter-
mine the evolution of s . p to (s . p)∗t for any time t. However, for time domains
with a partial temporal order, the value of (s . p)∗ t is not yet specified when s
and t are incomparable. It turns out that there is an elegant general solution
to determining a natural value for (s . p) ∗ t based on taking equation (1) as
the defining property of delay operators, and identifying conditions on a time
domain under which there exists a uniquely determined truncated subtraction
operation s−̇t that is as well behaved as possible on incomparable values.

To define the general notion of truncated subtraction, we adapt the approach
of Lawvere, who observed that, by viewing the partial order (R≥0,≤) as a
category, truncated subtraction (·)−̇t is left adjoint to the functor t+ (·) [13].
Thus truncated subtraction shows that, when + is taken as the monoidal prod-
uct, the category (R≥0,≥) is monoidal closed: order inversion arises because
monoidal closure requires (·)−̇t to be a right adjoint; we shall ignore that
convention, using the standard order ≤ and accepting (·)−̇t as a left adjoint.
For a general time domain T , monoidal closure is not the correct abstraction

9

because + is not generally monoidal: the function (·) + t need not preserve
the order, e.g., consider C∗ for |C| ≥ 2. Nevertheless, as observed in Propo-
sition 2.3(2), the function t + (·) does always preserve the order. Thus, one
can ask whether the functor t + (·) has a left adjoint. That gives rise to the
following definition.

Definition 3.1 (Closed time domain) A time domain T is closed if there
exists a function −̇ : T × T → T satisfying

(∀s, t, u ∈ T). s−̇t ≤ u ⇔ s ≤ t+ u .

We shall show in Proposition 3.4 that this definition captures intuitive prop-
erties of truncated subtraction. But it is not as general as we should like,
excluding time domains for qualitative time (Example 2.7). So, for a more
general notion, we allow truncated subtraction to be a partial function.

Definition 3.2 (Partially closed time domain) A time domain T is par-
tially closed if there exists a partial function −̇ : T × T ⇀ T satisfying

(∀s, t, u ∈ T). ((s−̇t)↓ and s−̇t ≤ u) ⇔ s ≤ t+ u .

This definition can be formulated in category-theoretic terms by introducing
a notion of partial left adjoint for the functor t+(−). But we shall not develop
that idea here as it distracts from our main line of argument.

A fortiori, every closed time domain is partially closed. It is also easy to see
that the value s−̇t is uniquely determined in a (partially) closed time domain
as the least u such that s ≤ t + u. That observation motivates the following
simple characterization of (partially) closed time domains in alternative order-
theoretic terms.

A subset of a partial order is bounded if it has an upper bound. A partial order
has finite bounded joins if every bounded finite subset has a least upper bound
(lub). A partial order with least element has finite bounded joins if and only
if, for every s, t with {s, t} bounded (denoted s ↑ t), a least upper bound s∨ t
exists.

Proposition 3.3 The following are equivalent for a time domain T :

(1) T is closed (resp. partially closed)
(2) ≤ has finite joins (resp. finite bounded joins).

PROOF. To show that 1 implies 2, suppose T is partially closed. For finite
bounded joins, suppose s ↑ t. Then there exists u with s ≤ t + u, so (s−̇t)↓.

10

We show that t + (s−̇t) is the lub of {s, t}. Trivially, t ≤ t + (s−̇t). That
s ≤ t + (s−̇t) holds follows from Definition 3.2, because (s−̇t) ↓ and s−̇t ≤
s−̇t. Thus t + (s−̇t) is an upper bound for {s, t}. For minimality, suppose
s ≤ u ≥ t. Then s ≤ t + (u − t). So, by Definition 3.2, s−̇t ≤ u − t. So
t+ (s−̇t) ≤ t+ (u− t) = u as required.

For the converse, suppose that T has finite bounded joins. Define

s−̇t '

(s ∨ t)− t if s ↑ t

undefined otherwise

To verify Definition 3.2, suppose s ≤ t + u, then s ↑ t, so (s−̇t) ↓. Then
t+ (s−̇t) = t+ ((s ∨ t)− t) = s ∨ t ≤ t+ u, because t+ u is an upper bound
for {s, t}. So, by order reflection, (s−̇t) ≤ u. Conversely, suppose (s−̇t)↓ and
(s−̇t) ≤ u, i.e. s ↑ t and ((s∨t)−t) ≤ u. Then s ≤ s∨t = t+((s∨t)−t) ≤ t+u,
as required. 2

It follows routinely from the proposition that all our main examples of time
domains are partially closed. In the case of discrete time and real time, i.e.,
Examples 2.5 and 2.6, the time domains are closed, as are all time domains
for which ≤ is a total order. In the case of qualitative time, i.e., Example 2.7,
when |C| ≥ 2, the time domain C∗ is partially closed but not closed. In that
case, (s−̇t)↓ if and only if either s ≤ t or t ≤ s. For products, Proposition 3.3
yields a simple proof that if all Ti are (partially) closed then so is

∏

i∈I Ti.

The proposition below summarises the main properties of partially closed time
domains. The properties concern the interaction between −̇ and the temporal
order, properties arising from the relationship between −̇ and bounded lubs,
and the interaction between −̇ and the monoid structure.

Proposition 3.4 If T is a partially closed time domain, then

(1) s ≤ t implies s−̇t = 0.
(2) t ≤ s implies s−̇t = s− t.
(3) (s−̇t)↓ if and only if s ↑ t if and only if (t−̇s)↓.
(4) s+ (t−̇s) ' s ∨ t ' t+ (s−̇t).
(5) s−̇0 = s.
(6) s−̇(t+ u) ' (s−̇t)−̇u.
(7) 0−̇s = 0.
(8) (s+ t)−̇u ' (s−̇u) + (t−̇(u−̇s)).

PROOF. Properties (1) and (2) are easy, and (5) and (7) follow immediately.

11

Properties (3) and (4) are direct consequences of the proof of Proposition 3.3.

For property (6), suppose (s−̇(t + u)) ↓. Then s−̇(t + u) ≤ s−̇(t + u). So,
repeatedly applying Definition 3.2, first s ≤ t+u+(s−̇(t+u)), then (s−̇t)↓ and
s−̇t ≤ u+ (s−̇(t+ u)), whence finally ((s−̇t)−̇u)↓ and (s−̇t)−̇u ≤ s−̇(t+ u).
A similar argument establishes that if ((s−̇t)−̇u) ↓, then both (s−̇(t + u)) ↓
and s−̇(t+ u) ≤ (s−̇t)−̇u.

Finally, for (8), the desired equation follows by left cancellation from:

u+((s+ t)−̇u)

' s+ t+ (u−̇(s+ t)) by (4)

' s+ t+ ((u−̇s)−̇t) by (6)

' s+ (u−̇s) + (t−̇(u−̇s)) by (4)

' u+ (s−̇u) + (t−̇(u−̇s)) by (4).

2

Definition 3.5 (Delay operator) A delay operator on a time transition
system (P,;) over T , where T is a partially closed time domain, is a to-
tal left T -action “ . ” on P satisfying equation (1) above.

4 Delay operators and coalgebra

In this section, we describe a distributive law of the monad for total left T -
actions over the evolution comonad ET , then make subtle use of Currying,
in order to incorporate delay operators into our coalgebraic analysis of timed
transition systems. First we deal with the total-left-action aspect of delay
operators.

Proposition 4.1 The functor ST = T × (−) carries a monad structure with
unit η : Id⇒ S and multiplication µ : S2 ⇒ S defined as follows:

η(x) = (0, x)

µ(s, (t, x)) = ((s+ t), x).

Also, the functor (−)T carries a dual comonad structure. And ST -Alg, equally
(−)T -Coalg, is the category of total left T -actions (.) : T ×X → X.

Recall that a distributive law of a monad (T, η, µ) over a comonad (D, ε, δ) is
a natural transformation

λ : TD ⇒ DT

12

subject to commutativity of four diagrams expressing coherence with respect
to each of η, µ, ε and δ. A λ-bialgebra is a pair of maps h : TX - X and
k : X - DX such that (X, h) is a T -algebra, (X, k) is a D-coalgebra, and
the diagram below commutes.

TX
h - X

k - DX

TDX

Tk

?

λX

- DTX

Dh

6

(2)

One may similarly define a distributive law of a comonad D over a comonad
D′ and bicoalgebras for such.

Theorem 4.2 If T is a partially closed time domain, the following is a dis-
tributive law λ : STE ⇒ EST of the monad ST = T × (−) over the comonad
E:

λX(s, e)(t) ' (s−̇t, e(t−̇s)).

Moreover, λ-bialgebras are exactly pairs

(∗ : X × T ⇀ X, (.) : T ×X → X)

consisting of a timed transition system together with a delay operator.

PROOF. We give a sketch of the proof in order to show how the result
follows from Proposition 3.4. First, in order to see that λ is a distributive law,
we check the equation

Eµ ◦ λ ◦ ST λ = λ ◦ µE : S
2
TE ⇒ ES ,

which follows by:

EµX(λX(SλX(s, (t, e))))(u)

' EµX(λX(s, (v 7→ (t−̇v, e(v−̇t)))))(u) (def. of λ)

' EµX(w 7→ (s−̇w, (t−̇(w−̇s), e((w−̇s)−̇t))))(u) (def. of λ)

' (w 7→ ((s−̇w) + (t−̇(w−̇s)), e((w−̇s)−̇t)))(u) (def. of µ)

' ((s−̇u) + (t−̇(u−̇s)), e((u−̇s)−̇t)))

' ((s+ t)−̇u, e(u−̇(s+ t))) (by Prop. 3.4)

' (w 7→ ((s+ t)−̇w, e(w−̇(s+ t))))(u)

' λX(s+ t, e)(u) (def. of λ)

' λX(µEX(s, (t, e)))(u) (def. of µ) .

13

For the bialgebra claim, we know that E-coalgebras are precisely timed tran-
sition systems, and S-algebras are precisely total left actions. Thus it just
remains to verify that diagram (2) corresponds to equation (1). Suppose then
that we have a coalgebra k : X - EX, which we shall write as the partial
right action “∗”, and an algebra h : SX - X, which we shall write as the
total left action “ . ”. Then, the composite k ◦h : SX - EX is by definition

(k(h(s, x)))(t) ' (s . x) ∗ t .

Moreover, we have

(Eh(λX(Sk(s, x))))(t)

' (Eh(λX(s, (u 7→ x ∗ u))))(t)

' (Eh(v 7→ (s−̇v, x ∗ (v−̇s))))(t) (def. of λ)

' (v 7→ (s−̇v) . (x ∗ (v−̇s)))(t)

' (s−̇t) . (x ∗ (t−̇s)) .

Thus diagram (2) commutes if and only if equation (1) holds. 2

The relationship between the monad ST = T × (−) and the comonad (−)
T as

explained in Proposition 4.1 allows us to reformulate this result, by making
two uses of Currying, in terms of comonads alone. Recall the following result,
explored for instance in [19]:

Proposition 4.3 The following are equivalent:

(1) a distributive law λ : TD ⇒ DT of a monad T over a comonad D
(2) a lifting of the comonad D to a comonad DT on T -Alg.
(3) a lifting of the monad T to a monad TD on D-Coalg

Moreover, given any of the above, the following are isomorphic:

(1) the category of bialgebras for the distributive law λ

(2) the category of coalgebras for the comonad DT on T -Alg.
(3) the category of algebras for the monad TD on D-Coalg

Now recall the corresponding situation for coalgebras (see [2] for the dual):

Proposition 4.4 The following are equivalent:

(1) a distributive law of a comonad D over a comonad D′

(2) a lifting of the comonad D to a comonad DD′ on D′-Coalg.

Given these equivalent conditions, the composite of functors DD′ possesses
a canonical comonad structure. Further, the category of D,D′-bicoalgebras is
isomorphic to DD′-Coalg and to DD′-Coalg.

14

Combining Propsitions 4.1, 4.3, and 4.4, we have the following result:

Proposition 4.5 To give a distributive law λ of the monad ST = T × (−)
over an arbitrary comonad D is equivalent to giving a distributive law of D
over the comonad (−)T . Moreover, the category of λ-bialgebras is isomorphic
to the category D(−)T -Coalg.

Applying this result to Theorem 4.2 yields the characterisation we seek, as
follows:

Corollary 4.6 If T is partially closed, the formula

λX(s, e)(t) ' (s−̇t, e(t−̇s)).

corresponds to a distributive law of the comonad E over the comonad (−)T .
Moreover, E(−)T -Coalg is isomorphic to the category of pairs

(∗ : X × T ⇀ X, (.) : T ×X → X)

consisting of a timed transition system together with a delay operator.

5 Heterogeneous transition systems and product comonads

In this section, we consider the combination of timed behaviour with behaviour
relative to actions as studied extensively in the coalgebra literature [6]. This
allows us, in the succeeding section, to study operational semantics for the
combination. For both generality and elegance, we make our theoretical anal-
ysis in terms of an arbitrary pair of comonads, sometimes specializing to the
case in which one or both are cofree on endofunctors. As a leading example, for
simplicity of exposition, we restrict our attention to timed transition systems
as in Section 2 rather than the combination of timed transition systems with
delay operators of Sections 3 and 4, but the generalities apply equally.

Definition 5.1 [11, Definition 7.1] Let A be a finite set of actions, let T be a
time domain, and let P be a set. An heterogeneous transition system (P,→,;)
over T and A consists of

• an image-finite labelled transition system (P, {
a
→}a∈A) and

• a timed transition system (P,;) over T

We saw in Section 2 that a timed transition system amounts to an ET -
coalgebra for the evolution comonad ET . We have long known that an image-
finite labelled transition system is given by a B-coalgebra for an endofunctor
B, and, moreover, we may regard it as a D-coalgebra for the cofree comonad

15

D on B, (which exists for all other leading examples of behaviour functors
too [6]). So an heterogeneous transition system amounts to a set together
with a pair of coalgebra structures for comonads D and D′, the former given
by the cofree comonad on an endofunctor B. So, given comonads D and D′,
we seek to exhibit an heterogeneous transition system as a coalgebra for a
comonad derived from D and D′. In fact, if it exists, the combined comonad
must be the product D×D′ of comonads (see Theorem 5.7 below). Such prod-
uct comonads are somewhat subtle. In general they need not exist, and when
they do they are typically not given pointwise. (Note that, for a category C
with finite products, there need not be any naturally induced comonad struc-
ture on the pointwise product of two comonads D and D′ on C. Also, the
product comonad D × D′ may exist even when C itself does not have finite
products.) The next few results are working towards Theorem 5.7 and Corol-
lary 5.8, which give general conditions under which the product comonad does
exist.

Definition 5.2 Given comonads D and D′ on a category C, define the cate-
gory (D,D′)-Coalg to be the pullback in the large category of categories given
by

(D,D′)− Coalg - D′ − Coalg

D − Coalg
?

UD

- C

UD′

?

where UD and UD′ are the forgetful functors.

Proposition 5.3 If the forgetful functor U : (D,D′)-Coalg −→ C has a right
adjoint G, then (D,D′)-Coalg is comonadic over C with comonad given by
G.

PROOF. By the dual of Beck’s monadicity theorem [2], it suffices to prove
that U reflects isomorphisms and that (D,D′)-Coalg has and U preserves the
equalisers of U -split equaliser pairs. Reflection of isomorphisms is trivial: a
map in (D,D′)-Coalg is simply a map in C that preserves both coalgebra
structures, and if that map in C is an isomorphism, its inverse must preserve
both coalgebra structures. And for the second condition, any U -split equaliser
pair is sent to a UD-split equaliser pair in D-Coalg and a UD′-split equaliser
pair in D′-Coalg. So the split equaliser in C must lift, by the converse (easy)
part of Beck’s theorem to an equaliser in both D-Coalg and D′-Coalg, and so
the equalising map in C is a map in (D,D′)-Coalg and satisfies the equalising
property there. The functor U preserves it by construction. 2

16

It is not easy to give a direct proof of the existence of a right adjoint to the
forgetful functor U : (D,D′)-Coalg −→ C, thus yielding comonadicity by the
proposition, under general conditions. But an indirect route is readily available
to us via a subtle use of results about accessible categories [16], cf [5].

Theorem 5.4 If C is a locally presentable category and D and D′ are accessi-
ble, the category (D,D′)-Coalg is locally presentable and the forgetful functor
to C has a right adjoint.

PROOF. First observe that coalgebra structure transports along isomor-
phism, i.e., given a D-coalgebra (X, d) and an isomorphism f : X −→ X ′

in C, it follows that X ′ possesses a (unique) D-structure making f an isomor-
phism in D-Coalg. It follows that the category (D,D′)-Coalg is equivalent
to the following category: an object consists of a D-coalgebra (X, d), a D′-
coalgebra (X ′, d′), and an isomorphism in C between X and X ′. This latter
category is an iso-comma object

P - D′ − Coalg

∼=

D − Coalg
?

UD

- C

UD′

?

in the large category of categories. But the large category of accessible cat-
egories is closed under taking the category of coalgebras for an accessible
comonad (see [5]), and under iso-comma objects [16], and under equivalence
of categories. So (D,D′)-Coalg is an accessible category. Moreover, since D
andD′ are both accessible,D-Coalg andD′-Coalg are cocomplete and UD and
UD′ preserve colimits. So (D,D′)-Coalg is also cocomplete and the forgetful
functor to C preserves colimits. Thus (D,D′)-Coalg is a locally presentable
category and the forgetful functor to C preserves colimits; so the latter has a
right adjoint. 2

Thus, for all examples of primary interest to us, e.g. for C = Set and D and
D′ being any of our leading examples, we do have a comonad. More analysis
of the significance of accessibility and the fact that it includes all examples of
substantial interest to us appears in [5]. Unusually, but fortunately, the fact
that we know we have a comonad allows us to characterise it as the product
of D and D′.

Assume we have an arbitrary category C with small copowers. (This assump-
tion specialises the V-tensors required in the V-enriched context of [9].) Given
an object X of C, consider the functor

∐

C(X,−)X : C −→ C. It sends an

17

object Y to the coproduct of C(X,Y) copies of X. For an arbitrary endofunc-
tor H : C −→ C, it follows from the Yoneda lemma that to give a natural
transformation

χ :
∐

C(X,−)

X ⇒ H

is equivalent to giving a map x : X −→ HX. One can readily prove that
the functor

∐

C(X,−)X possesses a natural comonad structure, and one has
the following equivalence, as used extensively for instance in the dual setting
in [9].

Proposition 5.5 For a comonad D on C, to give a map of comonads

χ :
∐

C(X,−)

X ⇒ D

is equivalent to giving a D-coalgebra structure (X, x) on the object X.

Using that proposition, one can immediately prove the following.

Proposition 5.6 For comonads D and D′ on C, if the product of comon-
ads D × D′ exists, the category of coalgebras (D × D′)-Coalg is canonically
isomorphic to the pullback

(D,D′)− Coalg - D − Coalg

D − Coalg
?

UD

- C

UD′

?

PROOF. To give a D×D′-coalgebra is equivalent to giving a map of comon-
ads of the form

χ :
∐

C(X,−)

X ⇒ D ×D′

but that, by definition of product, is equivalent to giving a pair of maps

χ :
∐

C(X,−)

X ⇒ D χ′ :
∐

C(X,−)

X ⇒ D′

which in turn is equivalent to giving an object of (D,D′)-Coalg. All these
equivalences are natural, yielding the result. 2

Comonads are characterised by their categories of coalgebras, and the canoni-
cal isomorphism of the proposition commutes with the underlying functors to
C. So the proposition has a converse as follows.

18

Theorem 5.7 If the forgetful functor from (D,D′)-Coalg to C is comonadic
with comonad G, then the product of comonads D×D′ exists and is given by
G.

PROOF. The canonical functor

(D,D′)− Coalg −→ D − Coalg

commutes with the forgetful functors to C. So, if (D,D′)-Coalg is of the form
G-Coalg, the functor must be of the form

δ − Coalg : G− Coalg −→ D − Coalg

for a map of comonads δ : G ⇒ D (see [2] for the dual result). Thus we
have projections δ and δ′. Now, given a comonad W , to give a comonad map
ω : W ⇒ D is equivalent to giving a functor from W -Coalg to D-Coalg that
commutes with the forgetful functors. Using the definition of (D,D′)-Coalg
as a pullback, we obtain a unique functor from S-Coalg to G-Coalg that
commutes with the forgetful functors and with δ-Coalg and δ ′-Coalg, and
hence the desired unique map of comonads. 2

Combining Proposition 5.3, Theorem 5.4, and Theorem 5.7, we can now deduce
the result we seek.

Corollary 5.8 If C is a locally presentable category and D and D′ are acces-
sible comonads on C, the product D×D′ exists and is given by the right adjoint
to the forgetful functor from (D,D′)-Coalg to C, exhibiting (D,D′)-Coalg as
(D ×D′)-Coalg.

This corollary includes all examples that are likely to be of much interest to
us. But it does not give us a construction of the product D ×D′ that we can
readily calculate. However, in the cases of primary interest to us, one of the
comonads, that given by the action behaviour, is the cofree comonad on an
endofunctor. And in that case, the dual of a result for monads in [3] does give
us a reasonable construction as follows.

Theorem 5.9 For any category C and any endofunctor B and comonad D for
which the cofree comonads B∞ and (BD)∞ on B and BD exist, the product
B∞ × D also exists and is given by the functor D(BD)∞ with a canonical
comonad structure.

The dual of this theorem appears in [3], and this theorem directly appears
in [11, Theorem 7.1]. We shall not include the detailed derivation here, al-
though it does contain results of independent interest. Instead, we refer to
the development of Chapter 7 of the first author’s thesis [11]. Constructions

19

of cofree comonads on endofunctors abound in the coalgebraic literature, for
instance in [23] but see also [8,18]. In particular, if C is locally presentable
and B and D are accessible, the cofree comonads B∞ and (BD)∞ exist [5],
and so the theorem holds.

More specifically still, recall that in the cases of discrete and qualitative time
(Examples 2.5 and 2.7), the comonad ET is itself the cofree comonad on an
endofunctor. So there is some interest in the situation in which both D and D′

are cofree comonads on endofunctors B and B ′. That is a particularly simple
case, because then, the category B-Coalg of coalgebras for the endofunctor B
is isomorphic to the category D-Coalg of coalgebras for the comonad D, and
so, by a variant of the above analysis, we have the following result.

Corollary 5.10 Given endofunctors B and B ′ on a category C with finite
products such that the cofree comonads B∞ and B′∞ exist, the product of
comonads B∞ × B′∞ exists and is given by (B × B ′)∞, where B × B′ is the
pointwise product of endofunctors, providing the cofree comonad on B × B ′

exists. Moreover, whether or not the cofree comonad on B × B ′ exists, the
category (B∞, B′∞)-Coalg is equivalent to the category (B × B ′)-Coalg of
coalgebras for the endofunctor B ×B ′.

6 Structural operational semantics for a combination of behaviours

In this section, we incorporate time into Turi and Plotkin’s coalgebraic for-
mulation of structural operational semantics [21] as expressed in terms of
distributive laws [14,15,18]. They considered a category C with finite prod-
ucts, a “syntax” endofunctor Σ on C, and a “behaviour” endofunctor B on
C, and they modelled a GSOS rule by an abstract operational rule, which
they defined to be a natural transformation Σ(B× Id)⇒ BT , where T is the
free monad on Σ. It was shown in [14] and further explained and exploited
in [18,15] that to give an abstract operational rule is equivalent to giving a
distributive law of the monad T over the cofree copointed endofunctor on B,
from which one can deduce a distributive law of T over D.

Here, extending the work of Section 5, we combine the operational semantics
generated by two sorts of behaviour, i.e., start with endofunctors B and B ′

or more generally with comonads D and D′ and try, using more primitive
data, to induce a distributive law of T over the cofree copointed endofunctor
on B × B′ or more generally over the comonad D × D′ if the latter exists.
We shall not develop the example of time in detail in this section, as we have
explained its role in detail in previous sections. We refer to the thesis [11] for
explanation of exactly how operational semantics works in the case of time,
with examples of combined rule formats.

20

For a simple first result, consider the following:

Theorem 6.1 Given a monad T , comonads D and D′, and distributive laws
λ : TD ⇒ DT and λ′ : T ′D ⇒ DT ′, there is a canonical distributive law of T
over D ×D′ if the product of comonads D ×D′ exists.

PROOF. This follows from [19] together with Proposition 5.6. By the for-
mer, the two distributive laws give liftings of T to D-Coalg and D′-Coalg
respectively. By the latter, these liftings yield a monad on (D × D′)-Coalg,
as it is the pullback category P . So by the converse part of [19], we have the
distributive law of T over D ×D′ that we seek. 2

This result is less general than one would like because one does not always start
with distributive laws λ : TD ⇒ DT and λ′ : T ′D ⇒ DT ′ or with anything
that induces them [11]. The reason is that, in the leading examples, the time
information and the action information typically interact with each other [11,
Section 7.3.2]. So we consider the following question: given a monad T and
comonads D and D′, what are necessary and sufficient data that separate D
and D′ to some extent yet yield a lifting of the monad T to the category
(D,D′)-Coalg?

The following result was not explicitly stated in [19], but does follow from the
analysis therein, which in turn was based on the characterisation of D-Coalg
as a limit in [20].

Proposition 6.2 Given comonads (D, δD, εD) and (E, δE, εE) on a category
C and a functor H : C −→ C, to give a lifting of H to a functor from E-Coalg
to D-Coalg is equivalent to giving a natural transformation

α : HE ⇒ DH

subject to commutativity of the following two diagrams:

HE
α - DH HE

α - DH

@
@

@
@

@
HεE

R

HEE

HδE

?

αE
- DHE

Dα
- DDH

δDH

?
H

εDH

?

Using two copies of this proposition and our characterisation of (D×D′)-Coalg
as (D,D′)-Coalg in Proposition 5.6, we can readily deduce the following.

21

Proposition 6.3 Given comonads D and D′ on a category C such that the
product comonad D × D′ exists, and given a functor T : C −→ C, to give
a lifting of T to an endofunctor on (D × D′)-Coalg is equivalent to giving
natural transformations

λ : T (D ×D′)⇒ DT λ′ : T (D ×D′)⇒ D′T

subject to the following four axioms:

T (D ×D′)
λ - DT T (D ×D′)

λ - DT

@
@

@
@

@
Tε(D×D′)

R

T (D ×D′)(D ×D′)

Tδ(D×D′)

?

λ(D ×D′)
- DT (D ×D′)

Dλ
- DDT

δDT

?
T

εDT

?

T (D ×D′)
λ′ - D′T T (D ×D′)

λ′ - D′T

@
@

@
@

@
Tε(D×D′)

R

T (D ×D′)(D ×D′)

Tδ(D×D′)

?

λ′(D ×D′)
- D′T (D ×D′)

D′λ′
- D′D′T

δD′T

?
T

ε′DT

?

Now suppose one has not just an endofunctor T but a pointed endofunctor
(T, η) that one wants to lift.

Proposition 6.4 Given comonads D and D′ on a category C such that the
product D × D′ exists, and given a pointed endofunctor (T, η) on C together
with a lifting of the endofunctor T to (D×D′)-Coalg (or equivalently with the
data of Proposition 6.3 subject to the axioms of the proposition), the unit η of
T lifts if and only if the following two diagrams commute:

D ×D′ - D D ×D′ - D′

T (D ×D′)

η(D ×D′)

?

λ
- DT

Dη

?
T (D ×D′)

η(D ×D′)

?

λ′
- D′T

D′η

?

PROOF. We already have the data for the unit, and the naturality condition
is trivial. The only question is of finding necessary and sufficient conditions for
each component of the natural transformation to be a map in (D,D′)-Coalg;
but we know that the maps in (D,D′)-Coalg are given by maps in C that

22

respect both coalgebra structures. That the necessary and sufficient condition
is as stated appears in [19] (essentially gleaned from [20]), but it is also easy
to check directly. 2

Finally, given a monad (T, µ, η), we seek necessary and sufficient conditions for
the multiplication to lift. This is the one point that is not so easy: the lifting of
the functor part of the monad, as in Proposition 6.3, yields a distributive law
τ : T (D×D′)⇒ (D×D′)T . And one needs to use that induced distributive law
in the diagrams required to commute in order to make the multiplication lift.
The conditions are easy to write if one is willing to use that distributive law,
but it does make for potentially tricky calculation in verifying that examples
satisfy the condition, as that distributive law is induced by more primitive
data. Fortunately, in particular cases, commutativity of the diagrams is fairly
routine to verify.

Proposition 6.5 Given comonads D and D′ on a category C such that the
product D×D′ exists, and given a monad (T, µ, η) on C together with a lifting
of the pointed endofunctor (T, η) to (D ×D′)-Coalg (or equivalently with the
data of Propositions 6.3 and 6.4 subject to the axioms of the propositions), the
multiplication µ of T lifts if and only if the following two diagrams commute:

TT (D ×D′)
Tτ- T (D ×D′)T

λT- DTT

T (D ×D′)

µ(D ×D′)

?

λ
- DT

Dµ

?

TT (D ×D′)
Tτ- T (D ×D′)T

λ′T- D′TT

T (D ×D′)

µ(D ×D′)

?

λ′
- D′T

D′µ

?

PROOF. The proof is similar to that for Proposition 6.4, using the universal
property of the pullback (D,D′)-Coalg and giving a necessary and sufficient
condition for the components of a natural transformation to lift from C to
each of D-Coalg and D′-Coalg. The above diagrams emerge fairly routinely,
but one does need to think directly in terms of liftings, as the use of τ in both
diagrams implies. 2

23

The presence of τ in Proposition 6.5 but not in Proposition 6.4 means that
the lifting of multiplication, as opposed to the lifting of the unit of a monad,
depends upon both λ and λ′ for each lifting, i.e., for lifting to each of D-Coalg
and D′-Coalg.

Evidently, Propositions 6.3, 6.4 and 6.5 can be combined to yield:

Corollary 6.6 Given comonads D and D′ on a category C such that the prod-
uct D × D′ exists, and given a monad (T, µ, η) on C, to give a lifting of the
monad (T, µ, η) to (D×D′)-Coalg is equivalent to giving natural transforma-
tions

λ : T (D ×D′)⇒ DT λ′ : T (D ×D′)⇒ D′T

subject to the commutativity of the eight diagrams in Propositions 6.3, 6.4
and 6.5.

There are special cases of Corollary 6.6. It is common to start with a distribu-
tive law of the form

TD ⇒ DT

for the action behaviour while only having a natural transformation of the
form

T (D ×D′)⇒ D′T

for the time behaviour. That reduces the complexity of some of the diagrams
a little, with the distributive law above often coming via the well-trodden
paths of [21,14,18], but one still needs the second of our two diagrams in
Proposition 6.5 involving τ .

In a slightly different direction, one can consider cases in which one or both of
D and D′ is the cofree comonad on an endofunctor, say D cofree on B. Then
D-Coalg is determined by the simpler universal property that characterises
B-Coalg, and so one can avoid the coherence axioms required for the lifting
of a functor. Life is also simpler because one can use our characterisation of
the product of comonads. So, to lift a functor T to B-Coalg, one merely needs
any natural transformation, subject to no axioms at all, of the form

α : TD′(BD′)∞ ⇒ BT

and such can be readily constructed, for instance, from any natural transfor-
mation of the form

β : T (Id×B)D′ ⇒ BD′T

For applying D′ to the counit (BD′)∞ ⇒ Id yields a natural transformation
D′(BD′)∞ ⇒ D′. And one has the canonical composite

D′(BD′)∞ ⇒ (BD′)∞ ⇒ BD′

24

and thus a natural transformation of the form D′(BD′)∞ ⇒ (Id × B)D′,
as products of endofunctors are given pointwise (assuming of course that C
has products), and so applying T to this, and composing with β and with
another embedded counit yields a natural transformation of the form α as
above: TD′(BD′)∞ ⇒ T (Id×B)D′ ⇒ BD′T ⇒ BT .

Acknowledgements

The research in this paper extends that in the first author’s PhD thesis, su-
pervised by Gordon Plotkin and Daniele Turi, who are both thanked for their
contributions to the work.

References

[1] Adamek, J., and J. Rosicky, “Locally Presentable and Accessible
Categories,” Cambridge University Press, 1994.

[2] Barr, M., and C. Wells, “Toposes, Triples, and Theories,” Grundlehren
der math. Wissenschaften 278, 1985.

[3] Hyland, M., G.D. Plotkin, and A.J. Power, Combining effects: sum and
tensor, Theoretical Computer Science, to appear.

[4] Jacobs, B., Monocongruences and cofree coalgebras, “Proceedings AMAST
95,” Lecture Notes in Computer Science 936, 1995, 245–260.

[5] Johnstone, P., A.J. Power, T. Tsujishita, H. Watanabe, and J. Worrell,
The structure of categories of coalgebras, Theoretical Computer Science
260 (2001) 87–117.

[6] Jacobs, B., and J. Rutten. A tutorial on (co)algebras and (co)induction,
Bulletin of the European Association of Theoretical Computer Science 62

(1997), 222–259.

[7] Jeffrey, A.S.A., S.A. Schneider, and F.W. Vaandrager, “A comparison
of additivity axioms in timed transition systems,” CWI Technical Report
CS-R9366, 1993.

[8] Kelly, G.M., A unified treatment of transfinite constructions for free
algebras, free monoids, colimits, associated sheaves, and so on, Bulletin
Australian Mathematical Society 22 (1980), 1–83.

[9] Kelly, G.M., and A.J. Power, Adjunctions whose counits are coequalizers,
and presentations of finitary monads, Journal of Pure and Applied Algebra
89 (1993), 163–179.

25

[10] Kick, M., Bialgebraic modelling of timed processes, “Proceedings of ICALP
2002,” Lecture Notes in Computer Science 2380, 2002, 525–536.

[11] Kick, M., “A Mathematical Model of Timed Processes” Ph.D. dissertation,
University of Edinburgh, 2003.

[12] Kick, M., and A.J. Power, Modularity of behaviours for mathematical
operational semantics, Electronic Notes in Theoretical Computer Science
(2004).

[13] Lawvere, F.W., Metric spaces, generalized logic, and closed categories,
Rend. del Sem. Mat. e Fis. di Milano 43 (1973), 135–166.

[14] Lenisa, M., A.J. Power, and H. Watanabe, Distributivity for endofunctors,
pointed and co-pointed endofunctors, monads and comonads, Electronic
Notes in Theoretical Computer Science 33 (2000).

[15] Lenisa, M., A.J. Power, and H. Watanabe, Category theory for operational
semantics, Theoretical Computer Science (to appear).

[16] Makkai, M., and R. Pare, “Accessible categories: the foundations of
categorical model theory,” Contemporary Mathematics 104, 1989.

[17] Nicollin, X., and J. Sifakis, An overview and synthesis of timed process
algebras, “Proceedings CAV 1991”, Lecture Notes in Computer Science
575, 1991, 376–398.

[18] Power, A.J., Towards a theory of mathematical operational semantics,
Electronic Notes in Theoretical Computer Science 82.1 (2003).

[19] Power, A.J., and H. Watanabe, Combining a monad and a comonad,
Theoretical Computer Science 280 (2002), 137–162.

[20] Street, R., The formal theory of monads, Journal of Pure and Applied
Algebra 2 (1972), 149–168.

[21] Turi, D., and G.D. Plotkin, Towards a mathematical operational semantics,
“Proceedings of 12th Symposium on Logic in Computer Science,” IEEE
Computer Science Press, 1997, 280–291.

[22] Wang, Y., Real-time behaviour of asynchronous agents, “Proceedings of
CONCUR 1990”, Lecture Notes in Computer Science 458, 1990, 502–520.

[23] Worell, James, Terminal sequences for accessible endofunctors, Electronic
Notes in Theoretical Computer Science 19 (1999).

26

