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We propose compactly generated monotone convergence spaces as a well-behaved

topological generalisation of directed-complete partial orders (dcpos). The category of such

spaces enjoys the usual properties of categories of ‘predomains’ in denotational semantics.

Moreover, such properties are retained if one restricts to spaces with a countable pseudobase

in the sense of E. Michael, a fact that permits connections to be made with computability

theory, realizability semantics and recent work on the closure properties of topological

quotients of countably based spaces (qcb spaces). We compare the standard

domain-theoretic constructions of products and function spaces on dcpos with their

compactly generated counterparts, showing that these agree in important cases, though not

in general.

1. Introduction

Domain theory was originally developed by Dana Scott in order to build mathematical

models of recursion, datatypes and other programming language features. It has since

blossomed into a rich mathematical theory, centred around the study of directed-complete

partial orders (dcpos), and their Scott topologies, see, for example, Abramsky and

Jung (1994) and Gierz et al. (2003) for overviews.

One would like domain theory to provide a flexible toolkit for modelling different

aspects of computation. However, in spite of its many achievements, traditional dcpo-

based domain theory has limitations in this regard. For example, Gordon Plotkin has

pointed out that, although traditional domain theory can be used to model higher-

order types (using cartesian-closed categories), computability for non-discrete datatypes

(using ω-continuous dcpos), and computational effects (as free algebras for inequational

theories), it is not capable of modelling all three in combination. Similarly, although

one can build domain-theoretic models of the Girard–Reynolds’ polymorphic lambda-

calculus, it is not known how to combine such models with computational effects, or how

to build models satisfying the parametricity properties that are vital for proving program

equivalences.

† Research supported by an EPSRC research grant, ‘Topological Models of Computational Metalanguages’,

and an EPSRC Advanced Research Fellowship (Simpson).
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In order to address these weaknesses, it seems necessary to leave the familiar dcpo-based

world of traditional domain theory. One possible alternative is to identify subcategor-

ies of domain-like structures within suitable ‘realizability’ categories, see, for example,

Phoa (1990), Longley and Simpson (1997) and Reus and Streicher (1999). However, while

such categories do indeed resolve the problems identified above (though no comprehensive

account of this has ever been published), important properties of traditional domain

theory, such as the connections with topology (Gierz et al. 2003), are generally lost.

Fortunately, the situation is not always so bad. In Simpson (2003), the third author

observed that, in one particular realizability category built over Scott’s combinatory

algebra Pω (Scott 1976), a natural category of ‘predomains’ (the complete extensional

objects) can equivalently be presented as a category of topological spaces, called to-

pological predomains in op. cit. The importance of this coincidence, a proof of which

appears in the first author’s Diploma thesis (Battenfeld 2004), is that it opens up the

possibility of obtaining the benefits of realizability-based notions of domain within an

orthodox topological framework. Furthermore, topological predomains extend the scope

of traditional domain theory by including familiar topological spaces such as the Euclidean

reals and Cantor space, which make sense as datatypes, but whose topology is not the

Scott topology on any underlying partial order.

The objective of the present paper is to provide a self-contained introduction to

topological predomains aimed specifically at readers familiar with traditional domain

theory and its topological connections. We thus ignore the realizability side of topological

predomains entirely, for which the interested reader is referred to Simpson (2003) and

Battenfeld (2004). Instead, we derive topological predomains from first principles, taking

cartesian closedness as our starting point.

For dcpos, cartesian closedness is a consequence of the order-theoretic setting. Once

more general topological spaces are allowed as predomains, more inclusive cartesian-closed

categories of topological spaces are required. There is thus a natural connection with the

realm of so-called ‘convenient topology’, introduced by Ronnie Brown in Brown (1963;

1964) and popularised by Norman Steenrod (Steenrod 1967). Convenient topology is

the study of categories of spaces enjoying additional useful properties, in particular,

cartesian closedness, that are not possessed by the category Top of all topological

spaces. In Brown (1963; 1964) and Steenrod (1967), the category of compactly generated

Hausdorff spaces is shown to be one such cartesian-closed category. Many other cartesian-

closed subcategories (and supercategories) of Top, have since been studied for similar

reasons: see Preuss (2002) and Escardó et al. (2004) for recent overviews. The idea behind

the present paper is to take such a cartesian-closed category of topological spaces as the

basis for developing a generalised domain theory.

In Section 3 we develop notions of predomain and domain within the cartesian-closed

category of compactly generated spaces (of course we do not restrict to Hausdorff spaces,

because interesting domains are never Hausdorff). Compactly generated predomains are

simply the compactly generated ‘monotone convergence spaces’ in the sense of Gierz

et al. (2003), and domains are predomains with least element in the specialisation

order. The main results of the section establish the fact that the compactly generated

and monotone convergence space properties combine nicely with each other. Indeed,
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we obtain cartesian-closed categories of predomains and domains that are exponential

ideals of the category of compactly generated spaces, with the former subcategory being

reflective.

In Section 4, we show that the good properties of compactly generated (pre)domains

are retained under the imposition of a smallness condition on the topology. Here, the

appropriate condition is to require a countable pseudobase in the sense of Michael (1966),

which generalises the standard notion of base for a topology. In fact, the countably

pseudobased compactly generated spaces have a simple characterisation as the topological

quotients of countably-based spaces (qcb spaces), which themselves form a cartesian-closed

category of topological spaces (Schröder 2003; Menni and Simpson 2002). In Section 4,

we study the subcategory of monotone convergence qcb spaces, which coincides with the

category of topological predomains introduced in Simpson (2003), as discussed above. We

show that this category is a full reflective exponential ideal of the category of qcb spaces

(this result was stated but not proved in op. cit.), hence it too is cartesian closed with

countable limits and colimits.

One advantage of considering the larger category of all compactly generated predo-

mains is that, by a result due to Jimmie Lawson (Escardó et al. 2004, Theorem 4.7), it

contains the category of dcpos as a subcategory. Thus, compactly generated predomains

extend the world of traditional domain theory. In Section 5, we address the question of

whether the traditional domain-theoretic constructions on dcpos, such as products and

function spaces, agree with their compactly generated counterparts. Although products

of domains always agree, function spaces differ in general. Nevertheless, in important

cases where the domain-theoretic construction is known to be well behaved, we show that

function spaces do coincide. In other cases, we suggest that it is the compactly generated

topology that is the more reasonable choice.

The topic of this paper lies on the boundary between domain theory and general

topology, two subjects that have enjoyed an extremely rich interaction ever since the

inception of domain theory: see Gierz et al. (2003) for a survey. It is a pleasure to

dedicate this paper to Klaus Keimel, who has been one of the main contributors to the

development of this interaction.

2. Preliminaries

Our notation and terminology is mainly standard. For a topological space X, we write

O(X) for the family of open sets of X. For arbitrary (possibly non-Hausdorff) spaces

we use compact to mean the Heine–Borel property. We write � for the Sierpinski space,

which has underlying set {⊥,�} with {�} open but {⊥} not.

In domain theory, we consider directed-complete partial orders (dcpos) and directed-

complete pointed partial orders (dcppos), that is, dcpos with least element. We use � for

the partial order structure in dcpos,
⊔

for suprema,
�

for infima, and ↓X and ↑X for

the down- and up-closure, respectively, of a subset in the order. For continuous dcpos,

we write � for the way-below relation, and use ↓↓x and ↑↑x, respectively, for the sets of

elements way-below and way-above an element x.
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3. Compactly generated predomains

We begin with an overview of compactly generated spaces, cf. Brown (1963; 1964) and

Steenrod (1967) (but without the Hausdorff restriction). We give full definitions, but

state many standard properties without proof. For a recent comprehensive treatment, see

Escardó et al. (2004).

Definition 3.1 (Compactly generated topology). A subset V of a topological space X is

open in the compactly generated topology on X if, for every compact Hausdorff space K

and continuous p : K → X, the preimage p−1V is open in K . We write k (X) for X with

the compactly generated topology, and we say that X is compactly generated if X = k (X).

Compactly generated spaces include all locally compact Hausdorff spaces. They also

include a rich collection of non-Hausdorff spaces. For example, every sequential space

is compactly generated. Hence, as special cases, all first-countable spaces are compactly

generated, and so are ω-cpos with the ω-Scott topology. A far less straightforward fact,

due to Jimmie Lawson, is that compactly generated spaces also include all dcpos (with

Scott topology). This result is pivotal to the development of this paper, so we state it as

a proposition.

Proposition 3.2. Every dcpo with its Scott topology is compactly generated.

For a proof, see Escardó et al. (2004, Theorem 4.7).

We write kTop for the category of compactly generated spaces and continuous functions.

As is well known (and easily seen), kTop is a coreflective subcategory of Top, where the

coreflection functor maps X to k (X). It follows that kTop is cocomplete with colimits

calculated as in Top, and complete with limits obtained by coreflecting limits in Top. In

particular, the cartesian product in kTop of a family {Xi}i∈I of compactly generated spaces

is given by k (
∏

i∈I Xi), where
∏

i∈I Xi is the topological product. We write
∏k

i∈I Xi and

X×k Y for the products k (
∏

i∈I Xi) and k (X×Y ) in kTop. In certain cases, this description

of X ×k Y can be simplified. For example, if X and Y are countably based, then so is

X × Y , and hence X ×k Y = X × Y . The proposition below gives another important

case in which the topologies coincide. A topological space X is said to be core compact

if its open sets form a continuous lattice under inclusion. Core compactness is a mild

generalisation of local compactness: every locally compact space is core compact, and

every core compact sober space is locally compact. Core compact spaces arise naturally

as the exponentiable objects in Top.

Proposition 3.3. If X,Y are compactly generated spaces and X is core compact, then

X ×k Y = X × Y .

For a proof, see Escardó et al. (2004, Theorem 5.4).

For topological spaces X,Y , we write C(X,Y ) for the set of continuous functions from

X to Y .
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Definition 3.4 (Compact open topology). For topological spaces X,Y , the compact open

topology on C(X,Y ) is generated by the subbasic opens

〈K,V 〉 = {f | f(K) ⊆ V } ,

where K ⊆ X is compact and V ⊆ Y is open. We write Cco(X,Y ) for C(X,Y ) with the

compact open topology.

It is well known that every locally compact space X is exponentiable in Top, with the

exponential Y X given by Cco(X,Y ).

Proposition 3.5. The category kTop is cartesian closed with exponential X ⇒k Y given by

k (Cco(X,Y )).

This is a standard result, see Escardó et al. (2004) for references and for a recent exposition

of the general machinery underlying the construction of exponentials in cartesian-closed

subcategories of Top. (Although it does not appear explicitly in Escardó et al. (2004), the

coincidence of X ⇒k Y and k (Cco(X,Y )) follows easily from Theorem 5.15 and Remark

5.20 of op. cit., using the fact that the Isbell topology refines the compact open topology.)

The next two results give special cases in which the exponential in kTop is easily

calculated.

Proposition 3.6. If X,Y are countably based and X is locally compact, then Cco(X,Y ) is

countably based, and hence X ⇒k Y = Cco(X,Y ).

Proposition 3.7. If X is compactly generated, X ⇒k � has the Scott topology.

A proof of the first proposition can be found in Lambrinos and Papadopoulos (1985).

The second, which appears as Escardó et al. (2004, Corollary 5.16), is again due to Jimmie

Lawson.

In traditional domain theory, the Scott topology is derived from the partial order. To

define our notion of a predomain, we also work with order-theoretic properties, but we

take the topology as primary and the order as derived. Recall that the specialisation order

on a topological space is defined as follows.

Definition 3.8 (Specialisation order). The specialisation order � on a topological space X

is defined by x � y if, for all open U ⊆ X, x ∈ U implies y ∈ U.

Trivially, every open set U ⊆ X is upper-closed in the specialisation order, which is, in

general, a preorder on X. The space X is said to be T0 if � is a partial order.

Definition 3.9 (Monotone convergence space). A topological space X is a monotone

convergence space if the specialisation order on X is a dcpo (in particular, X is T0),

and every open subset of X is Scott-open with respect to the order.

Monotone convergence spaces include all T1 spaces, all sober spaces, and all dcpos with

the Scott topology. Monotone convergence spaces were introduced in Wyler (1981), where

they were called d-spaces. We take our terminology from Gierz et al. (2003).

We now come to the central definition in this paper.
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Definition 3.10 (Compactly generated predomain). A compactly generated predomain is a

topological space X that is both compactly generated and a monotone convergence space.

We write kP for the category of compactly generated predomains and continuous

functions. By combining previous remarks, one sees that compactly generated predomains

include all locally compact Hausdorff spaces and all dcpos with the Scott topology.

In order to state the main theorem of this section, we recall that a full subcategory C′

of a cartesian-closed category C is said to be an exponential ideal if it is closed under

finite products and isomorphisms in C and, for all objects X of C and Y of C′, the C-

exponential Y X is an object of C′. Obviously, exponential ideals are themselves cartesian

closed.

Theorem 3.11. The category kP is a full reflective exponential ideal of kTop.

It follows that kP is complete and cocomplete. Limits are calculated as in kTop. Colimits

are calculated by reflecting colimits from kTop. Thus, in kP, neither limits nor colimits

are, in general, calculated as in Top (though it is easy to see that coproducts in kP are

calculated as in Top).

We prove the theorem in stages. First, we observe that the coreflection from Top to

kTop cuts down to monotone convergence spaces.

Proposition 3.12. If X is a monotone convergence space, then so is k (X).

Proof. Since Sierpinski space � is compactly generated, C(�, k (X)) = C(�, X), thus

k (X) and X have the same specialisation order, which is a dcpo. It is easy to see that k (X)

is the coarsest compactly generated topology on the set X that refines the topology on X.

Since X is a monotone convergence space, the Scott topology on the specialisation order

refines the topology on X. By Proposition 3.2, the Scott topology is compactly generated.

Hence every open in k (X) is Scott open.

Lemma 3.13. If X is a topological space and Y is a monotone convergence space, then

the pointwise order on C(X,Y ) is a dcpo with directed suprema constructed pointwise.

For the straightforward proof see Gierz et al. (2003, Lemma II.3.14).

Proposition 3.14. The category kP is an exponential ideal of kTop.

Proof. For closure under finite products, it is easy to show that topological products

preserve monotone convergence spaces, from which the result follows by Proposition 3.12.

For the exponential property, suppose X is compactly generated and Y is a compactly

generated predomain. By Propositions 3.5 and 3.12, it suffices to show that Cco(X,Y ) is a

monotone convergence space. It is easy to check that the specialisation order on Cco(X,Y )

is pointwise, and this is a dcpo by Lemma 3.13. It remains to show that every subbasic

open 〈K,V 〉 of Cco(X,Y ) is Scott open. But suppose (
⊔
i∈I fi) ∈ 〈K,V 〉, where {fi}i∈I

is directed. Because V is Scott open, {f−1
i V }i∈I is an open cover of K . By directedness,

there exists j ∈ I such that fj is an upper bound for finitely many fi determining a finite

subcover. Then fj ∈ 〈K,V 〉. Thus 〈K,V 〉 is indeed Scott open.
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One way of obtaining the reflection functor from kTop to kP would be to apply

the Special Adjoint Functor Theorem. Instead, we provide a more informative direct

construction. We show that the reflection from Top to the category of monotone

convergence spaces, as described in Wyler (1981), cuts down to a reflection from kTop

to kP. This nicely mirrors the symmetric property established in Proposition 3.12 for the

corefelection k .

First, we present the reflection from Top to the category of monotone convergence

spaces, cf. Wyler (1981). Recall that a filter F ⊆ O(X) is said to be completely prime if

whenever (
⋃
i∈I Ui) ∈ F we have Ui ∈ F for some i ∈ I . (This implies that � /∈ F.) For

any point x ∈ X, the filter η(x) of open neighbourhoods of x is always completely prime.

A topological space is said to be sober if every completely prime filter is the filter of open

neighbourhoods of a unique point. The sobrification S(X) of a topological space X has

the set of completely prime filters of O(X) as its underlying set with open sets

{F ∈ S(X) |U ∈ F} ,

where U ∈ O(X). It is easy to see that the specialisation order on S(X) is inclusion,

with least upper bounds of directed subsets D ⊆ S(X) given by
⋃
D, which is indeed a

completely prime filter. Define M(X) to be the smallest subspace of S(X) that contains

all neighbourhood filters and is closed under directed lubs in the specialisation order. It

will be useful to have an explicit description of the topology on M(X).

Lemma 3.15. The following are equivalent for a subset V ⊆ M(X):

1 V is open.

2 η−1V is an open subset of X and V = ↑ (V ∩ η(X)) in the specialisation order on M(X).

3 η−1V is an open subset of X and V is Scott-open in the specialisation order on M(X).

Proof.

2 ⇒ 1 : Suppose that η−1V is open in X and V = ↑ (V ∩ η(X)). We show that V = {F ∈
M(X) | (η−1V ) ∈ F}, and hence V is open by the definition of the topology on S(X).

If F ⊇ η(x) for x ∈ η−1V , then, trivially, (η−1V ) ∈ F. Thus {F ∈ M(X) | (η−1V ) ∈
F} ⊇ ↑ (V ∩ η(X)) = V . Conversely, suppose that (η−1V ) ∈ F ∈ M(X). For any

x ∈ η−1V for which η(x) �⊆ F, there exists open Ux � x in X such that Ux �∈ F.

Suppose, to show a contradiction, that such Ux exists for every x ∈ η−1V . Then⋃
x∈η−1V Ux ⊇ η−1V , so

⋃
x∈η−1V Ux ∈ F. Hence, because F is completely prime,

Ux ∈ F for some x ∈ η−1V , which is a contradiction. Thus there exists x ∈ η−1V with

η(x) ⊆ F. So, indeed, {F ∈ M(X) | (η−1V ) ∈ F} ⊆ ↑ (V ∩ η(X)) = V .

1 ⇒ 3 : Suppose V ⊆ M(X) is open, that is, there exists open U ⊆ X such that

V = {F ∈ M(X) |U ∈ F}. Then η−1V = U, so η−1V is indeed an open subset of

X. Also, V is obviously upwards closed in the specialisation order. To show that V is

inaccessible by directed suprema, suppose that D ⊆ M(X) is directed with
⊔
D ∈ V ,

that is,
⋃
D ∈ V . Then U ∈

⋃
D, so there exists F ∈ D with U ∈ F, and thus F ∈ V ,

as required.

3 ⇒ 2 : Suppose that η−1V is open in X and V is Scott-open in M(X). It is obvious

that V ⊇ ↑ (V ∩ η(X)), because Scott-open sets are upper closed. It remains to show
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that V ⊆ ↑ (V ∩ η(X)). Because V is Scott-open, it is contained in the Scott-interior of

M(X)\η(X\η−1V ). It is enough to show that the Scott-interior of M(X)\η(X\η−1V ) is

↑ (V ∩ η(X)). We prove the equivalent statement that the Scott-closure of η(X\η−1V )

is M(X)\↑ (V ∩ η(X)). Let S be the Scott-closure of η(X\η−1V ). Then

S ∪ ↑ (V ∩ η(X)) = M(X) , (1)

because the left-hand side contains η(X) and is closed under suprema of directed sets.

Also, S ∩ V = � because η(X\η−1V ) ∩ V = � and V is Scott-open. Hence

S ∩ ↑ (V ∩ η(X)) = � , (2)

because ↑ (V ∩ η(X)) ⊆ V . Thus, by (1) and (2), S = M(X)\↑ (V ∩ η(X)), as requi-

red.

Note that the equivalence of 1 and 2 above is inherited by M(X) from an analogous

characterisation of open sets in S(X). That Property 3 characterises open sets is, however,

a feature specific to M(X).

It follows from Lemma 3.15 that M(X) is a monotone convergence space. In fact it is

the free monotone convergence space over X.

Proposition 3.16. For any topological space X, the space M(X) is a monotone convergence

space. Moreover, for any monotone convergence space Y and continuous function f : X →
Y there exists a unique continuous g : M(X) → Y such that g ◦ η = f.

Proof. This is Wyler (1981, Theorem 2.7).

Proposition 3.17. If X is compactly generated, so is M(X).

Proof. Suppose V ⊆ M(X) is such that for every compact Hausdorff K and continuous

p : K → M(X) we have that p−1V is open in K . We use Lemma 3.15 to show that V is

open in M(X), establishing Condition 3. To show that η−1V is open in X, suppose that

K is compact Hausdorff and q : K → X is continuous. Then q−1(η−1V ) = (η ◦ q)−1V , and

thus q−1(η−1V ) is open in K . Thus η−1V is indeed open in X, because X is compactly

generated. It remains to show that V is Scott-open in M(X). By assumption, V is

open in k (M(X)), which has the same specialisation order as M(X), and is a monotone

convergence space by Proposition 3.12. Thus V is indeed Scott-open in M(X).

In combination, Propositions 3.14, 3.16 and 3.17 prove Theorem 3.11.

In domain theory, one is often interested in domains (that is, dcppos) as opposed to

predomains (that is, dcpos). We make the analogous definition for compactly generated

spaces.

Definition 3.18 (Compactly generated domain). A compactly generated domain is a com-

pactly generated predomain with a least element in the specialisation order.

We write kD for the category of compactly generated domains and continuous functions.
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Proposition 3.19. The category kD is an exponential ideal of kTop that is closed under

arbitrary products.

Proof. Given Theorem 3.11, all that remains to check is that the required constructions

preserve the property of having a least element. This is straightforward.

The category of compactly generated domains is a category that properly extends the

category of dcppos and enjoys all the usual properties of a category of domains. Indeed,

one can show that the category kD enjoys the usual interrelationship with its subcategory

of strict (that is, bottom-preserving) maps, that the expected strict type constructors (smash

product, strict function space and coalesced sum) are available, that recursive domain

equations have solutions, and so on. The constructions, which are routine modifications

of the familiar domain-theoretic ones, are omitted from the current paper.

4. Countably pseudobased spaces

In traditional domain theory, countable (domain-theoretic) bases allow a theory of

computability for domains to be developed. Such bases exist for all ω-continuous dcpos.

Although the categories of ω-continuous dcpos and dcppos are not cartesian closed,

they have cartesian-closed subcategories that, for many purposes (modulo the limitations

discussed in Section 1), do provide workable categories of (pre)domains.

In our more general topological setting, a natural first attempt at doing something

similar is to restrict to compactly generated spaces with countable (topological) bases. As

with the category of ω-continuous dcpos, this category is not cartesian closed. In this case,

it seems that the most natural remedy is to enlarge the category rather than to shrink it.

This is done by weakening the requirement of a countable base to a countable pseudobase

in the sense of E. Michael (Michael 1966).

Definition 4.1 (Pseudobase). A pseudobase for a topological space X is a family B of

(not necessarily open) subsets of X satisfying, whenever K ⊆ U with K compact and U

open subsets of X, there exist finitely many B1, . . . , Bk ∈ B such that K ⊆
⋃k
i=1 Bk ⊆ U.

A pseudosubbase is a family of subsets whose closure under finite intersection forms a

pseudobase.

Obviously, any (sub)base for the topology on X is also a pseudo(sub)base. Conversely,

whenever a pseudo(sub)base B consists of open sets, it is itself a (sub)base.

The requirements on a pseudobase are weak enough that it need have very little to do

with the topology. For example, the powerset of X is always a pseudobase for X. However,

as the results below demonstrate, pseudobases do become interesting when cardinality

restrictions are placed upon them.

We say that a topological space X is a qcb (quotient of countably based) space, if it can

be exhibited as a topological quotient q : A −→→ X, where A is a countably based space.

We write QCB for the full subcategory of Top consisting of such spaces. In his Ph.D.

thesis, the second author established that qcb spaces are exactly the sequential spaces

with countable pseudobase (Schröder 2003). The proposition below, which follows from

Escardó et al. (2004, Theorem 6.10), generalises this result to compactly generated spaces.
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I. Battenfeld, M. Schröder and A. Simpson 150

Proposition 4.2. The following are equivalent for a topological space X:

1 X is compactly generated and has a countable pseudobase.

2 X is a qcb space.

(To obtain this result as consequence of Escardó et al. (2004, Theorem 6.10), let C be

the category of compact Hausdorff spaces. Then, every �-pseudobase in the sense of

loc. cit. is a pseudobase as defined above, and every pseudobase as defined above is a

�C-pseudosubbase in the sense of loc. cit.)

Trivially, every countably based space is itself a qcb space. However, not every qcb

space is countably based. The next result gives a useful sufficient condition under which

qcb spaces are countably based.

Proposition 4.3. If a locally compact space has a countable pseudobase, it has a countable

base.

Proof. The interiors of pseudobase sets form a base when the topology is locally

compact, cf. Escardó et al. (2004, Corollary 6.11).

The next proposition reviews some of the useful properties of countably based spaces

that are shared by the more general class of qcb spaces.

Proposition 4.4. If X is a qcb space, then:

1 X is a sequential space.

2 X is hereditarily Lindelöf (that is, for every family of opens {Ui}i∈I there exists countable

J ⊆ I such that
⋃
i∈I Ui =

⋃
j∈J Uj).

3 X is hereditarily separable (that is, for any Y ⊆ X there exists a countable Y ′ ⊆ Y such

that Y ′ is dense in the subspace topology on Y ).

Proof. Properties 1 and 2 hold for countably based spaces and are preserved under

quotienting. For 3, every space with countable pseudobase is separable, and pseudobases

restrict to subspaces. (Note that the subspace topology on Y need not itself be compactly

generated.)

Quite unexpectedly, the category QCB has a very rich structure.

Proposition 4.5. The category QCB has all countable limits and colimits and is cartesian

closed. Moreover, this structure is preserved by the inclusion QCB ↪−→ kTop.

This result is a special case of Escardó et al. (2004, Corollary 7.3), where a full proof is

given. Earlier proofs of cartesian closedness appear in Schröder (2003) and Menni and

Simpson (2002). Here we simply state that if A and B are countable pseudosubbases for

qcb spaces X and Y , respectively, then the family of all sets of the form

{f ∈ C(X,Y ) | f(
⋂

A′) ⊆
⋃

B′} ,

where A′ is a finite subset of A and B′ is a finite subset of B, form a countable

pseudosubbase for X ⇒k Y .

The goal of this section is to show that countably pseudobased compactly generated

spaces (that is, qcb spaces) form a good environment for restricting the notions of
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predomain and domain from the previous sections. We write ωP and ωD for the full

subcategories of kP and kD, respectively, whose objects are qcb spaces. Clearly, ωP

contains every ω-continuous dcpo and ωD contains every ω-continuous dcppo.

As is well known, ω-continuous dcpos can be equivalently defined using ω-completeness

rather than directed-completeness. The proposition below shows that countable pseudo-

bases permit an analogous flexibility in the definition of a compactly generated predomain.

As is standard, we call an ascending sequence x0 � x1 � x2 � . . . in a partial order an

ω-chain. An ω-complete partial order (ω-cpo) is a partial order in which every ω-chain

has a lub. A subset X of an ω-cpo D is said to be ω-Scott open if it is upper closed and,

whenever (
⊔
i xi) ∈ X, for an ω-chain (xi), we have xi ∈ X for some i.

Definition 4.6 (Monotone ω-convergence space). A topological space X is a monotone

ω-convergence space if the specialisation order on X is an ω-complete partial order, and

every open subset of X is ω-Scott-open with respect to the order.

Proposition 4.7. A qcb space is a monotone convergence space if and only if it is a

monotone ω-convergence space.

Proof. It is immediate that any space that is a monotone convergence space is a

monotone ω-convergence space. For the converse, suppose that X is a monotone ω-

convergence qcb space. To show that the specialisation order is a dcpo, suppose D ⊆ X is

directed. We must show that
⊔
D exists. By Proposition 4.4, X is hereditarily separable, so

D considered as a subspace of X has a countable dense subset {di | i ∈ �} ⊆ D. Because

D is directed, we can construct {ei | i ∈ �} ⊆ D such that each ei is an upper bound for

the finite set {di} ∪ {ej | j < i}. Obviously eo � e1 � e2 . . . is an ascending sequence. Define

e∞ =
⊔
i ei. We claim that e∞ =

⊔
D. To see it is an upper bound, suppose d ∈ D. To

show that d � e∞, suppose that d ∈ U ⊆ X where U is open. We must show that e∞ ∈ U.

Because {di | i ∈ �} ⊆ D is dense, there exists di ∈ U. Hence, indeed, e∞ ∈ U, because

di � ei � e∞. For leastness, suppose e is any upper bound for D. To show that e∞ � e,

suppose e∞ ∈ U ⊆ X where U is open. Because X is an ω-convergence space there exists

i such that ei ∈ U. But ei � e because ei ∈ D. So, indeed, e ∈ U.

It remains to show that every open is Scott-open. Suppose U ⊆ X is open D ⊆ X

is directed and
⊔
D ∈ U. We must show that d ∈ U for some d ∈ D. But, as above,⊔

D =
⊔
i ei, so ei ∈ U for some i. Thus d = ei is the required element of D.

Theorem 4.8. The category ωP is a full reflective exponential ideal of QCB.

It follows that ωP is cartesian closed with countable limits and colimits, where limits are

calculated as in QCB.

The proof of Theorem 4.8 follows similar lines to that of the analogous Theorem 3.11.

Proposition 4.9. The category ωP is an exponential ideal of QCB.

Proof. This is immediate from Propositions 3.14 and 4.5.

To establish the reflection part of Theorem 4.8, we show that the reflection M of

monotone convergence spaces in Top cuts down to QCB.
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Proposition 4.10. If X is a qcb space, so is M(X).

Proof. We first make the following observations. If Y is compactly generated, then,

by the cartesian closedness of kTop, the function i : Y → ((Y ⇒k �) ⇒k �), defined by

i(y) = λU.U(y), is continuous. Also by cartesian closedness, for any open U ⊆ Y , the

function pU : ((Y ⇒k �) ⇒k �) → � defined by pU(F) = F(U) (here we are identifying

U with its characteristic function in Y ⇒k �) is continuous. An easy calculation shows

that, for any y ∈ Y and open U ⊆ Y , we have i(y) ∈ pU
−1{�} iff y ∈ U. Thus

i : Y → ((Y ⇒k �) ⇒k �) is a topological pre-embedding. Furthermore, if Y is T0, then i

is an injective function, and hence an embedding.

To prove the proposition, suppose that X is a qcb space. By Proposition 3.17, M(X)

is compactly generated. We must show that it also has a countable pseudobase. By the

observations above, there is a topological embedding of M(X) in (M(X) ⇒k �) ⇒k �. By

Lemma 3.15, the function mapping V ∈ O(M(X)) to η−1V gives a lattice isomorphism

O(M(X)) ∼= O(X), and thus, by Proposition 3.7, there is an induced homeomorphism

(M(X) ⇒k �) ∼= (X ⇒k �), and hence ((M(X) ⇒k �) ⇒k �) ∼= ((X ⇒k �) ⇒k �). Thus

there is a topological embedding of M(X) in (X ⇒k �) ⇒k �. However, (X ⇒k �) ⇒k �
is a qcb space because, by Theorem 4.8, qcb spaces are closed under function spaces in

kTop. Thus (X ⇒k �) ⇒k � has a countable pseudobase, and thus M(X) does too, since

pseudobases restrict to subspaces.

Theorem 4.8 now follows from Propositions 4.9, 3.16 and 4.10.

Proposition 4.11. The category ωD is an exponential ideal of QCB, closed under countable

products.

Proof. This is immediate from Propositions 3.19, 4.5 and Theorem 4.8.

The categories ωP and ωD were introduced in Simpson (2003), where their objects

were called topological predomains and topological domains, respectively. The countable

pseudobase requirement is sufficient for the development of a computability theory, due to

the connections, established in the second author’s Ph.D. thesis (Schröder 2003), between

qcb spaces and Klaus Weihrauch’s theory of type two effectivity (Weihrauch 2000). As

outlined in Simpson (2003), the categories of topological predomains and domains support

the usual constructions of traditional domain theory, and also overcome the limitations

discussed in Section 1. The details of this will appear elsewhere.

5. Comparison with traditional domain theory

Traditional domain theory is concerned with the categories dcpo and dcppo of continuous

functions between dcpos and dcppos, and subcategories of them. By Proposition 3.2, dcpo

and dcppo are full subcategories of kP and kD, respectively. As is well known, dcpo and

dcppo are themselves cartesian closed. The products
∏s

i∈I Di and D ×s E of dc(p)pos are

given by the product partial order. The exponential D ⇒s E is given by the set of Scott

continuous functions ordered pointwise.
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In this section, we investigate the extent to which the cartesian-closed structures on

dcpo and kP agree. For finite products, there is no difference.

Proposition 5.1. For dcpos D,E, we have D ×s E = D ×k E.

Proof. Let D,E be dcpos. Then:

O(D ×s E) ∼= C(D ×s E, �)

∼= C(D, E ⇒s �) cartesian closedness of dcpo

∼= C(D, E ⇒k �) by Proposition 3.7

∼= C(D ×k E, �) cartesian closedness of kP

∼= O(D ×k E) .

So, D ×s E and D ×k E carry the same topology.

Note that Martı́n Escardó has independently obtained the same result (Escardó 2005).

The above proposition shows that the inclusion dcpo ↪−→ kP preserves finite products.

It does not preserve infinite products. For example, the countable power of the two point

discrete space is discrete in dcpo, but has the topology of Cantor space in kP. This

counterexample makes essential use of a non-pointed space.

Proposition 5.2. For any family {Di}i∈I of dcppos, the Scott product
∏s

i∈I Di and compactly

generated product
∏k

i∈I Di coincide.

Proof. It is obvious that
∏s

i∈I Di refines
∏k

i∈I Di, so we establish the converse. For any

finite J ⊆ I , consider the set-theoretic function ρJ :
∏

i∈I Di →
∏

i∈I Di defined by

(ρj(π))i =

{
πi if i ∈ J

⊥Dj otherwise.

Using the universal property of products in kTop and dcppo, respectively, the two functions

ρJ :
∏k

i∈I Di →
∏k

i∈I Di and ρJ :
∏s

i∈I Di →
∏s

i∈I Di are continuous idempotents, whose

splittings are the retracts
∏
i∈I

k
Di

rk−→
∏
j∈J

k
Dj

sk−→
∏
i∈I

k
Di

∏
i∈I

s
Di

rs−→
∏
j∈J

s
Dj

ss−→
∏
i∈I

s
Di.

By Proposition 5.1, the finite products
∏k

j∈J Dj and
∏s

j∈J Dj are homeomorphic. Thus the

function ρJ = ss ◦ rk :
∏k

i∈I Di →
∏s

i∈I Di is continuous. Hence, {ρJ}J forms a directed

family of continuous functions from
∏k

i∈I Di to
∏s

i∈I Di, indexed by finite subsets J ⊆ I .

Clearly, the pointwise supremum of this family is the identity function from
∏k

i∈I Di to∏s
i∈I Di. By Lemma 3.13, this is continuous, as required.

The above argument is adapted from Reinhold Heckmann’s proof of his analogous

Theorem 7.8 in Heckmann (2003).

The countable power of the two point discrete space again demonstrates a disagreement

between function spaces in dcpo and kP: the function space � ⇒s {0, 1} is discrete, whereas
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Fig. 1.

� ⇒k {0, 1} is Cantor space. However, traditional domain theory largely concerns pointed

dcpos. In the remainder of this section, we investigate the relationship between function

spaces in dcppo and kD. We shall see that the inclusion dcppo ↪−→ kD does not always

preserve function spaces, but it does preserve them in many interesting cases. In fact, our

claim is that the inclusion preserves function spaces in exactly those cases in which dcpo

function spaces are ‘well behaved’. In other cases, kD defines a more reasonable function

space than dcppo.

We begin with a counterexample to show that function spaces are not in general

preserved by the inclusion dcppo ↪−→ kD. Consider the two (ω-algebraic) dcppos L1 and

L2 presented in Figure 1.

Proposition 5.3. The function space L1 ⇒k L2 in kP does not have the Scott topology.

Proof. Both L1 and L2 are countably based spaces, hence L1 ⇒k L2 is a qcb space. The

Scott topology on the function space (that is, L1 ⇒s L2) has been calculated by Achim

Jung (Jung 1989). The resulting dcppo is algebraic, but not countably based (it has 2ℵ0

compact elements). Because it is algebraic, the topology on L1 ⇒s L2 is locally compact.

But then L1 ⇒s L2 cannot be a qcb space, since this would contradict Proposition 4.3.

An identical argument shows that the function space L1 ⇒k L1 in kP does not carry the

Scott topology. The reason for choosing L2 above was to give a counterexample with a

finite poset as codomain.

The dcppos L1 and L2 are both algebraic L-domains in the sense of Jung (1989) (that

is, algebraic dcppos in which every principal ideal is a complete lattice). It was shown in

op. cit. that the category of algebraic (respectively, continuous) L-domains forms one of

the two maximal cartesian-closed categories of algebraic (respectively, continuous) dcppos.

One might thus be tempted to think of L-domains as belonging to the ‘well-behaved’ part

of traditional domain theory. But this disregards the fact that the ω-algebraic and ω-

continuous L-domains do not form cartesian-closed categories, due to the loss of countable

base in the construction of function spaces. On the other hand, by Proposition 3.6, the

function space L1 ⇒k L2 in kD is Cco(L1, L2), which is countably based. In our view, it is

the compactly generated function space that is the better behaved of the two.

When D is a continuous dcpo, the compact open topology Cco(D, Y ) can be given a

simpler description.
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Definition 5.4 (Point open topology). For topological spaces X,Y , the point open topology

on C(X,Y ) is generated by the subbasic opens

〈x, V 〉 = {f | f(x) ⊆ V } ,

where x ∈ X and V ⊆ Y is open. We write Cpo(X,Y ) for C(X,Y ) with the compact open

topology.

The point open topology is equivalently characterised as the topology of pointwise

convergence, or as the relative topology on C(X,Y ) as a subspace of the product topology

on the power Y X . Trivially, the compact open topology Cco(X,Y ) always refines the point

open topology Cpo(X,Y ). When X is a continuous dcpo, the two agree.

Lemma 5.5. If D is a continuous dcpo and Y a topological space, then Cpo(D, Y ) and

Cco(D, Y ) coincide.

Proof. Suppose 〈K,V 〉 is a subbasic compact open neighbourhood of f. Then K ⊆
f−1(V ) and thus, as D is a continuous dcpo, K ⊆

⋃
x∈f−1(V ) ↑↑x. As K is compact, there

exists a finite F ⊆ f−1(V ) such that K ⊆
⋃
x∈F ↑↑x. But now we have

⋂
x∈F〈x, V 〉 ⊆ 〈K,V 〉,

and therefore f ∈
⋂
x∈F〈x, V 〉 ⊆ 〈K,V 〉, showing that 〈K,V 〉 is point open, as requi-

red.

Together with Proposition 3.6, the above lemma, which is part of domain-theoretic

folklore, implies that for ω-continuous dcpos D,E, we always have D ⇒k E = Cco(D,E) =

Cpo(D,E), and this is countably based.

We have seen that D ⇒k E does not always carry the Scott topology for ω-continuous

D,E, even when D,E are L-domains. We next switch attention to the other of the two

maximal cartesian-closed categories of continuous dcppos, the category of FS-domains,

introduced by Achim Jung (Jung 1990).

Definition 5.6 (FS-domain). An FS-domain is a dcpo D for which there exists a directed

family (fi)i∈I of continuous endofunctions on D, each strongly finitely separated from idD ,

that is, for each fi there exists a finite separating set Mfi such that for each x ∈ D there

exists m ∈ Mfi with fi(x) � m � x, and
⊔
i∈Ifi = idD .

This definition, which differs from the original Jung (1990) in the use of strong finite

separation, is nonetheless equivalent to it by Lemma 2 of op. cit. Also, as in Gierz et al.

(2003), we do not require FS-domains to be pointed. This allows Theorem 5.7 below to

be formulated as generally as possible.

Any FS-domain is automatically a continuous dcppo. If D and E are FS-domains,

then D ×s E and D ⇒s E are also FS-domains. Furthermore, if D and E are countably

based, then so are D ×s E and D ⇒s E. Thus the categories FS and ωFS of FS-domains

and countably based FS-domains are both cartesian closed subcategories of dcpo. These

results are proved in Jung (1990) and Gierz et al. (2003).
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In contrast to the situation for L-domains, compactly generated function spaces of

FS-domains do carry the Scott topology.

Theorem 5.7. If D and E are FS-domains, then D ⇒k E = D ⇒s E = Cco(D,E) =

Cpo(D,E).

In particular, the inclusions FS ↪−→ kP and ωFS ↪−→ ωP both preserve the cartesian-

closed structure.

The first lemma needed in the proof of the theorem is a mild generalisation (with an

identical proof) of Jung (1989, Corollary 1.36).

Lemma 5.8. If D is a dcpo and E a continuous dcpo such that D ⇒s E is a continuous

dcpo, then f � g implies f(x) � g(x) for all x ∈ D.

Proof. Suppose {ei}i∈I is a directed family of elements in E with
⊔
iei = g(x). We have

to show that there exists i0 ∈ I such that ei0 � f(x). It is easy to show that (↓ x) and

(↓g(x)) are continuous retracts of D and E, hence (↓x) ⇒s (↓g(x)) is a continuous retract

of D ⇒s E, and therefore a continuous dcpo. For each h : D → E, let h′ : (↓x) → (↓g(x))
denote the image of h under the retraction. Then f′ � g′, since if {ψj}j∈J is a directed

family of functions in (↓x) ⇒s (↓g(x)) with
⊔
jψj = g′, then {Ψj}j∈J , defined as

Ψj(y) =

{
ψj(y) if y � x

g(y) otherwise

is a directed family of functions in D ⇒s E with
⊔
jΨj = g. Thus there exists j0 ∈ J such

that Ψj0 � f, and hence ψj0 � f′.

Now for each i ∈ I , let cei : (↓x) → (↓g(x)) denote the constant function with value ei.

Then
⊔
icei � g′, so there exists i0 ∈ I such that cei0 � f′, giving

ei0 = cei0 (x) � f′(x) = f(x),

as desired.

Lemma 5.9. If D is an FS-domain and E a continuous dcpo such that D ⇒s E is a

continuous dcpo, then D ⇒s E carries the point open topology.

Proof. Since D is an FS-domain, there exists a directed set {fi}i∈I of endofunctions

that are each strongly finitely separated from idD , with finite separating sets Mfi , and⊔
ifi = idD . Furthermore, since D ⇒s E is a continuous dcpo, there exists a directed set

{ψj}j∈J of endofunctions such that each ψj � h and
⊔
j ψj = h. Then {ψj ◦ fi}i∈I,j∈J is

also a directed set with ψj ◦ fi � h and
⊔
j ψj ◦ fi = h. So {↑↑(ψj ◦ fi)}i∈I,j∈J is a Scott-open

neighbourhood basis for h : D → E. Thus, for each Scott-open neighbourhood U of h,

there exist i0 ∈ I and j0 ∈ J such that h ∈ ↑ (ψj0 ◦ fi0 ) ⊆ U. Set V =
⋂
m∈Mfi0

〈m, ↑↑ψj0 (m)〉,
and hence h ∈ V, by Lemma 5.8. We claim that V ⊆ U. To see this, let x ∈ D and
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h′ ∈ V. Then there exists m ∈ Mfi0
with fi0 (x) � m � x, so

(ψj0 ◦ fi0 )(x) � ψj0 (m) � h′(m) � h′(x) .

Thus V ⊆↑ (ψj0 ◦ fi0 ) ⊆ U, showing the claim.

Proof of Theorem 5.7. If D and E are FS-domains, then the conditions of Lemma 5.9

are satisfied, so D ⇒s E carries the point open topology, which, by Lemma 5.5, coincides

with the compact open topology. So Cco(D,E) carries the Scott topology, and is thus

compactly generated. Therefore, D ⇒k E = Cco(D,E) = D ⇒s E.

Theorem 5.7 requires both domain and codomain of the function space to be FS-

domains. In contrast, Proposition 3.7 asserts that the compactly generated exponential

X ⇒k � carries the Scott topology for every compactly generated space X. We conclude

the paper by considering to what extent this property generalises to continuous dcpos

other than Sierpinski space �. Clearly, it does not always hold since, by Proposition 5.3,

the property fails when � is replaced by the five element pointed poset L2 of Figure 1.

Theorem 5.10. If X is compactly generated and E is a continuous dcpo with binary

infima, then X ⇒k E = X ⇒s E.

For the proof, we need a lemma, which is part of the domain-theoretic folklore.

Lemma 5.11. If a continuous dcpo has binary infima, it has infima for all non-empty

compact subsets.

As we could only find an indirect proof in the literature (Schalk 1993, Lemma 7.14), it

seems worth giving a direct argument.

Proof. Suppose D has binary, and therefore non-empty, finite meets. Let K ⊆ D be non-

empty and compact. Then ↓↓K = {x ∈ D| ∀y ∈ K. x � y} is non-empty, as K ⊆
⋃
x∈D ↑↑x,

so there exists a non-empty finite F ⊆ D such that K ⊆
⋃
x∈F ↑↑x, hence

�
F � K . We

claim that ↓↓K is directed.

To see this, let a, b � K . Then for each x ∈ K , there exists cx ∈ D such that

a, b � cx � x. Thus K ⊆
⋃
x∈K ↑↑cx, so there exists a non-empty finite F ⊆ K such that

K ⊆
⋃
x∈F ↑↑cx. But then

�
x∈F cx fulfills a, b �

�
x∈F cx � K , showing the claim.

Now let x � K . Then x =
⊔

↓↓x =
⊔

(↓↓x∩ ↓↓K). Thus x �
⊔

↓↓K , so
⊔

↓↓K is the greatest

lower bound of K , as required.

Proof of Theorem 5.10. By Theorem 3.11, X ⇒k E is a monotone convergence space.

Thus we just need to verify that every Scott-open subset of X ⇒k E is indeed open.

Let W ⊆ X ⇒k E be Scott-open. Consider any continuous p : K → (X ⇒k E) with K

compact Hausdorff. We must show that p−1(W ) ⊆ K is open. Suppose we have k ∈ K

with p(k) ∈ W . We must find a neighbourhood of k contained in p−1(W ).

Let D be the set of compact neighbourhoods of k, ordered by reverse inclusion. K is

compact Hausdorff, and hence locally compact, so D is directed. For every L ∈ D, define
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hL : X → E, by

hL(x) =
�

z∈L
p(z)(x) .

Then hL is continuous because it arises as a composite of continuous functions

X
p̃

−→Cco(K,E) −→Cco(L,E)
ML−→E ,

the components of which we now describe. The map p̃ is obtained by the following

manipulations:

p : K −→(X ⇒k E)

K ×k X −→E exponential transpose in kTop

K ×X −→E by Proposition 3.3, using K core compact

p̃ : X −→Cco(K,E) exponential transpose in Top.

The map Cco(K,E) → Cco(L,E) is induced by the inclusion L ⊆ K . Finally, ML is the

function ML(f) =
�
z∈L f(z). This is continuous because if y � ML(f), there exists y′

with y � y′ � ML(f). Hence 〈L, ↑↑y′〉 is a neighbourhood of f in Cco(L,E) satisfying

y � ML(g) for all g ∈ 〈L, ↑↑y′〉.
It is easy to show that L′ ⊇ L ∈ D implies hL′ � hL ∈ X ⇒s E, so H = {hL | L ∈ D} is

a directed subset of X ⇒s E. We show that
⊔
H = p(k).

For every L ∈ D, we have k ∈ L, so hL(x) =
�
z∈L p(z)(x) � p(k)(x). Therefore⊔

H � p(k).

Conversely, we show that p(k) �
⊔
H , that is, p(k)(x) � (

⊔
H)(x), for all x ∈ X. Take

any x ∈ X and y � p(k)(x). By the continuity of p, the set U = {z | y � p(z)(x)} ⊆ K

is open. Also, k ∈ U. By local compactness, there exists a compact neighbourhood L � k

with L ⊆ U. Then hL(x) =
�
z∈L p(z)(x) � y. Thus, indeed, y �

⊔
(H(x)) = (

⊔
H)(x).

Summarising, we have directed H ⊆ X ⇒k E with
⊔
H = p(k) ∈ W . As W is Scott-

open, there exists L ∈ D such that hL ∈ W . Since L is a neighbourhood of k, we just need

to show that L ⊆ p−1W . So, consider any z ∈ L. Then we have p(z) � hL ∈ W . Thus,

indeed, p(z) ∈ W , since W is upper-closed.

Note that a special case of Theorem 5.10 follows more easily from existing results in the

domain-theoretic literature. It is known that if X is a locally compact topological space

and E is a bounded-complete continuous dcppo, then Cco(X,E) carries the Scott topology

and is itself a bounded-complete continuous dcppo, see Gierz et al. (2003, Proposition

II-4.6). So, in this case, the coincidence of the spaces X ⇒k E and X ⇒s E follows as a

consequence of Propositions 3.2 and 3.5. We do not know if, more generally, Cco(X,E)

carries the Scott topology, for locally compact X, when E merely has binary infima.

It is certainly not true in general that X ⇒s E is a continuous dcpo in this case. A

counterexample is the space Uω ⇒s Uω , where Uω is the well-known non-bifinite ω-

algebraic dcppo from Figure 2. Although Uω has binary infima, the dcppo Uω ⇒s Uω is

not continuous. Thus, from a traditional domain-theoretic viewpoint, the Scott topology

on the function space Uω ⇒s Uω is poorly behaved. In contrast, from a compactly

generated viewpoint, the Scott topology is well behaved in this case. By Theorem 5.10, the
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Fig. 2.

function spaces Uω ⇒k Uω and Uω ⇒s Uω coincide. Moreover, by Proposition 3.6 (and

Lemma 5.5), they have the compact open (equivalently point open) topology, and this is

countably based.

6. Discussion

In this paper we have demonstrated that the topological (pre)domains of Simpson (2003)

fit naturally into the world of convenient topology. As argued in op. cit., topological

predomains overcome the limitations, discussed in Section 1, of traditional domain theory.

Moreover, the larger collection of compactly generated (pre)domains investigated in the

present paper provides a natural topological generalisation of the dcpo-based world of

traditional domain theory.

It is appropriate to question the use of compactly generated spaces in this paper. Even

in algebraic topology, it is hard to give an a priori justification for taking the notion of

compactly generated space as basic. From a domain-theoretic perspective, the motivation

is even less clear. In particular, the choice of compact Hausdorff spaces as the generating

spaces in Definition 3.1 seems utterly arbitrary.

In fact, compactly generated spaces form just one of many cartesian-closed subcategories

of Top. Arguably, a more natural subcategory is the category of core compactly generated

spaces introduced in Day (1972), which is the largest cartesian-closed subcategory of Top

obtainable using the general theory of Day (1972) and Escardó et al. (2004). This category

properly includes the category of compactly generated spaces (Isbell 1987). It seems likely

that the results of the present paper should generalise to taking core compactly generated

monotone convergence space as a notion of predomain, and other variants should be

possible too.

Alternatively, some might prefer to carry out an analogous generalisation of domain

theory within a cartesian-closed supercategory of Top, such as Scott’s category of
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equilogical spaces (Bauer et al. 2004), or one of the categories of ‘convergence’ or ‘filter’

spaces, see, for example, Wyler (1974) and Hyland (1979). In fact, to some extent, Reinhold

Heckmann has already embarked upon such a programme. In Heckmann (2003), he

develops a convergence space variant of the notion of monotone convergence space, and

establishes results analogous to our Propositions 3.14, 5.1 and 5.2 for that notion.

It is a pleasing fact that apparent differences between the subcategory and supercategory

approaches disappear if attention is restricted to qcb spaces. As shown in Menni and

Simpson (2002) and Escardó et al. (2004), the category QCB lives, via structure-preserving

embeddings, in all the principal cartesian-closed subcategories of Top, and also in Scott’s

category of equilogical spaces. (It is the latter embedding that forms the basis of the

connections with realizability semantics mentioned in Section 1.) Analogous embeddings

of QCB in categories of convergence spaces have not been established, but are expected.

Seemingly, QCB is an inevitable category, ocurring within any sufficiently general

approach to combining cartesian closedness and topology. In the authors’ view, it is the

category of paramount interest for the semantics of computation. For example, the size

restriction naturally expresses the requirement that data should be representable by a

sequence of discrete approximations (Weihrauch 2000; Schröder 2003).

Each of the larger categories embedding QCB offers its own valuable perspective on

qcb spaces. In particular, as demonstrated in this paper, the approach via compactly

generated spaces provides a good framework for relating topological (pre)domains and

traditional domain theory. Thus, even though the notion of a compactly generated space

seems to lack intrinsic motivation, such spaces do, nonetheless, provide a useful bridge

between traditional topological domain theory and its topological generalisations.
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