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There is increasing evidence for a role for epigenetic modifications in early life ‘programming’ effects.
Altered placental methyl donor transport may impact on the establishment of epigenetic marks in the
fetus. This study investigated the effects of prenatal glucocorticoid overexposure on placental methyl
donor transport. Glucocorticoids increased folate but decreased choline transport and reduced fetal
plasma methionine levels. There was no change in global DNA methylation in fetal liver. These data
suggest prenatal glucocorticoid overexposure causes complex alterations in the placental transport of
key methyl donors which may have important implications for maternal diet and nutrient supple-
mentation in pregnancy.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The association between exposure to an adverse early life envi-
ronment and increased cardiometabolic disease risk has led to the
development of the early life origins hypothesis [1]. Potential mech-
anisms include altered maternal/fetal nutrition [2,3] and prenatal
glucocorticoid overexposure [4]. We have developed a rat model of
‘programming’by fetalglucocorticoidoverexposure inwhichprenatal
exposure to a synthetic glucocorticoid, dexamethasone (Dex) reduces
birthweight and leads to insulin resistance and hypertension in
adulthood [4]. Maternal stress or inhibition of 11b-hydroxysteroid
dehydrogenase type 2 (11b-HSD2, the placental ‘barrier’ to maternal
physiological glucocorticoids) results in similar effects on offspring
phenotype [5]. Increased fetal glucocorticoid overexposure may also
be important in humans. The efficiency of placental 11b-HSD2 near
termvaries considerably in humans [6] and the lowest placental 11b-
HSD2 activity is seen in babies with the smallest birth weights, sug-
gesting increased fetal exposure to maternal glucocorticoids [6].
Additionally, exogenous glucocorticoids which readily cross the
placenta areused inobstetricpractice toaccelerate lungmaturation in
casesof threatenedpretermlabour [7] and inwomenat riskofbearing
fetusesat riskof congenital adrenalhyperplasia. Finally, placental11b-
HSD2 is not a complete barrier to glucocorticoids, so that increased
circulating levels in themothermay result in increased fetal exposure;
indeed maternal antenatal stress/anxiety has been associated with
programming effects in the offspring [8,9].

Recent evidence suggests early life programming effects may be
mediated by epigenetic modifications including DNA methylation
: þ44 131 2426779.
).

All rights reserved.
and histone marks [10,11]. The availability of methyl donors such as
choline, methionine and folic acid during fetal development can
influence the establishment of epigenetic modifications in the fetus
[11e14]. Alterations in placental nutrient transport have been
described in animal models of programming including prenatal
glucocorticoid overexposure [15,16]. The purpose of this study was
to explore the effects of prenatal glucocorticoid overexposure on
the placental transport of methyl donors. This was achieved via
characterization of placental methyl donor transport and gene
expression; plasma methionine levels and DNA methylation levels
in fetal liver.

2. Methods

2.1. Animals

Virgin female Wistar rats (200e250 g; Harlan UK) maintained under conditions
of controlled lighting and temperature (22 �C) were timed-mated and injected
subcutaneously with 100 mg/kg Dex or vehicle (Veh) from embryonic day (E) 15e19
as described [4]. Eight females per group were culled at E20. All studies were con-
ducted under licensed approval by the UK Home Office, under the Animals (Scien-
tific Procedures) Act, 1986, and with local ethical committee approval. Maternal and
fetal plasma (pooled for offspring from one litter) was stored at �20 �C. Placental
labyrinth was stored at �80 �C.

2.2. Placental transport of methyl donors at E20

Placental transport of choline, folic acid or methionine was measured using
modified methods [17]. 8e10 pregnant rats were anesthetized and 100 ml PBS
containing 3.5 mCi of 14C-choline chloride, 14C-methionine or 3H-folic acid (American
Radiolabelled Chemicals (UK) Ltd.) injected intravenously. Animals were killed and
fetuses and placentas weighed after 7 min (a timepoint found in preliminary
experiments to be on the linear scale of placental transfer). Fetuses were lysed
overnight at 55 �C in Biosol (National Diagnostics, UK). Radioactive counts (Tri-Carb
2100TR; Packard, UK) in each fetus were used to calculate the amount of radioiso-
tope transferred/g placenta (a measure of placental transfer), or per gram of fetus (a
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Fig. 1. Changes in placental transport of 14C-choline chloride (A), 3H-folic acid (B) and 14C-methionine (C) in vehicle and dexamethasone-treated rats at E20 expressed per gram of
placenta or per gram of fetus. N ¼ 8 females per group. Values are mean � SEM; *P < 0.05; **P < 0.01.
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measure of the amount of solute received by the fetus). Average values for fetuses
within a litter were used to calculate a mean for all litters.

2.3. Quantification of mRNA by real-time PCR

Total RNA was extracted from placental labyrinth, reverse transcribed and real-
time PCR performed as previously described [18] to analyse the expression of genes
involved in folate and choline transport using predesigned assays from Applied
Biosystems, UK (Folate receptor (FR): Rn00591759_m1; Reduced folate carrier (RFC):
Rn00446220_m1; Organic cation transporter 1 (OCT1): Rn00562250_m1; Organic
cation transporter 3 (OCT3): Rn00580082_m1). Results were corrected for the
expression of cyclophilin A (Rn00690933_m1).

2.4. Plasma methionine levels

Plasma methionine levels were measured by the Biochemistry Department,
Royal Hospital for Sick Children, Edinburgh, UK using a Biochrom 30 amino acid
analyser (Biochrom Ltd, Cambridge, UK).
2.5. Genome-wide DNA methylation

Our previous studies have shown altered expression and DNA methylation of
specific genes in fetal liver [19]. In order to determine whether these changes re-
flected global alterations in DNA methylation, DNA was prepared from fetal liver by
phenol-chloroform extraction and global cytosine methylation measured as previ-
ously described [20].

2.6. Statistical analysis

Data were analysed by independent Student t testing and are expressed as
mean þ/� SEM, with each litter representing n ¼ 1.

3. Results and discussion

Prenatal Dex reduced fetal weight at E20 (Dex 2.16 þ/� 0.03 vs
Veh 2.34þ/� 0.02 g p < 0.0001). We found opposite effects of
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glucocorticoid exposure on placental choline and folate transport.
The placental transport capacity of choline was reduced (39%;
P< 0.001) by Dex, such that the fetus received less choline per gram
fetal weight (55% less than Veh fetuses; P < 0.001; Fig. 1A). In
contrast, Dex increased placental folate transport by 2.5 times
(P < 0.05) such that the Dex-exposed fetuses received 2.3 times
more folate per gram fetal weight (P < 0.05; Fig. 1B). The reason for
these changes remain to be determined as we found no changes in
mRNA levels of the folate transporters RFC and FR or the choline
transporters OCT1 and OCT3 in the placental labyrinth (Fig. 2).

Placental methionine transport (Fig. 1C) and maternal plasma
methionine concentrations were unaffected by Dex (Dex 37.4 þ/�
1.9 vs Veh 41.5 þ/�1.8 mmol/l; p ¼ 0.18), however Dex exposure
reduced fetal plasma methionine levels (Dex 69.8 þ/� 7.1 mmol/l vs
Veh 99.8 þ/� 2.6 mmol/l; p < 0.01). There are complex interactions
between choline, folate and methionine [21e24] with the folate
and choline metabolic pathways meeting at the conversion of
homocysteine to methionine and because of this, altered metabo-
lism of one methyl donor can result in compensatory changes in
another [25]. For instance, administration of a choline deficient diet
is associated with reduced tissue concentrations of methionine in
non-pregnant rats [26] and folate deficiency in pregnant rats
increases choline availability in maternal liver [24]. Nevertheless,
although the observed increase in placental folate transport may be
a compensatory mechanism in the presence of reduced choline
transport, this was not complete since Dex exposurewas associated
with reduced fetal methionine levels.

Fetal methyl donor availability may play a key role in the
establishment of epigenetic marks in offspring [23]. Despite the
Dex-induced alterations in methyl donor transport and the reduced
fetal plasma methionine levels, we found no changes in global
hepatic DNAmethylation (Dex 3.52þ/� 0.25 vs Veh 3.31þ/� 0.41%;
p ¼ 0.67), in agreement with studies in animal models of gesta-
tional dietary methyl donor deficiency [24]. Our results do not
exclude the possibility that global DNA methylation is altered in
other tissues such as brain, or at specific target genes. Indeed
several studies suggest both global and gene-specific alterations in
DNA methylation [12,27] including in this model [19]. The mech-
anisms underpinning the different effects reported in these studies
are unclear but may reflect the nature and specific timing of the
insult in relation to critical periods of organ development [28].

One-carbon donors have the potential to play a key role in
developmental programming and the addition of folate to
a maternal low protein diet appears to attenuate adverse pro-
grammed effects on vascular dysfunction [29] and prevents alter-
ations in DNA methylation in offspring exposed to prenatal protein
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Fig. 2. mRNA expression of placental transporters involved in the transport of folate:
Folate receptor (FR), Reduced Folate Carrier (RFC) and choline: Oct1 and Oct3. N ¼ 15
Dex placentas from 10 litters and 12 vehicle placentas from 8 litters. Values are
mean � SEM.
restriction [11] so that methyl donor supplementation has been
proposed as one strategy to reduce the consequences associated
with exposure to an adverse intrauterine environment. However,
these data suggest that methyl donor supply is complex and that
compensatory mechanisms may operate if deficiency occurs,
highlighting the necessity for further studies to determine optimal
interventions to reduce disease risk.

In conclusion, we show that glucocorticoid overexposure in
pregnancy changes placental transport of folate and choline and
reduces fetal plasma methionine levels. Changes in these key
components of the methyl donor cycle may have implications for
disease risk in the offspring. Given the intricate inter-relationships
between the components of the methyl donor cycle, our findings
illustrate the subtle complexities of themechanismswhichmust be
resolved before any appropriately targeted therapies can be
devised.
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