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PROBLEMS ON AVERAGES

AND LACUNARY MAXIMAL FUNCTIONS

ANDREAS SEEGER AND JAMES WRIGHT

Abstract. We prove three results concerning convolution operators
and lacunary maximal functions associated to dilates of measures. First
we obtain an H1 to L1,∞ bound for lacunary maximal operators under a
dimensional assumption on the underlying measure and an assumption
on an Lp regularity bound for some p > 1. Secondly, we obtain a nec-
essary and sufficient condition for L2 boundedness of lacunary maximal
operator associated to averages over convex curves in the plane. Finally
we prove an Lp regularity result for such averages. We formulate various
open problems.

1. Introduction

We consider a compactly supported finite Borel measure µ and define its
dyadic dilates by 〈µk, f〉 = 〈µ, f(2k·)〉. The main objects of this paper are
the convolutions f 7→ f ∗ µk and the lacunary maximal function given by

Mf(x) = sup
k∈Z

|f ∗ µk(x)|.

Throughout this paper the dilates 2k can be replaced by more general lacu-
nary dilates λk satisfying infk λk+1/λk > 1.

If µ satisfies the condition µ̂(ξ) = O(|ξ|−ε) (some ε > 0), then Lp-
boundedness of M holds in the range 1 < p < ∞, see e.g. [9]. For suitable
classes of examples we discuss two problems, namely what may happen in
the limiting case p = 1, and, secondly, what could be said about bounded-
ness of M if the above decay condition on µ̂ is relaxed.

Notation: For two quantities A and B let A . B denote the statement
that A ≤ CB for some constant C. The Lebesgue measure of a set E
is denoted by meas(E). Throughout we work with a fixed inhomogeneous
dyadic frequency decomposition {Pk}

∞
k=0. Let β◦ ∈ C∞

c (R) be supported in
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2 A. SEEGER AND J. WRIGHT

(−1, 1) and equal to 1 in [−1/2, 1/2]. Define the operators Pk by P̂0f(ξ) =

β◦(|ξ|)f̂ (ξ) if k = 0 and by P̂kf(ξ) = (β◦(2
−k|ξ|)−β◦(2

−k+1|ξ|))f̂ (ξ) if k > 0.

H1 → L1,∞ boundedness of lacunary maximal operators. Concern-
ing the case p = 1, M can never be bounded on L1(Rd), outwith the trivial
case. One can ask whether the smoothing condition µ̂(ξ) = O(|ξ|−ε) im-
plies that M is of weak-type (1, 1), i.e. maps L1(Rd) to the Lorentz space
L1,∞(Rd). To the best of our knowledge no counterexample and no example
is known for the case that µ is a singular measure with the decay assumption
on µ̂.

For various classes of singular measures it has been observed that a some-
what weaker endpoint inequality holds, namely that M maps the (usual
isotropic) Hardy space H1(Rd) to L1,∞(Rd). The first results in this di-
rection are due to Christ [5] who used some powerful variants of Calderón-
Zygmund theory. We formulate a theorem which unifies and extends some
previous results, with some simplification in the proofs. In what follows we
let A denote the convolution operator A : f 7→ f ∗ µ.

Theorem 1.1. For ρ > 0 let NΣ(ρ) be the minimal number of balls needed
to cover the support of µ. Let 0 < s ≤ d and suppose that

sup
0<ρ<1

ρd−sNΣ(ρ) <∞(1.1)

sup
k>0

2
k(d−s)(1− 1

p
)‖PkA‖Lp(Rd)→Lp(Rd) <∞, for some p > 1.(1.2)

Then the lacunary maximal operator M maps H1(Rd) into L1,∞(Rd).

The covering condition (1.1) is a dimensional assumption on the support
of the measure; in particular when s is an integer it is satisfied if supp(µ) is
contained in an imbedded manifold of codimension s. The assumption (1.2)
expresses an optimal smoothing result in the category of Besov spaces, for
p near 1. We note that assumptions (1.1) together with assumption (1.2)
imply stronger regularity results in Sobolev and Triebel-Lizorkin spaces, see
[23]. When p = 2 the assumption (1.2) is equivalent with the inequality

µ̂(ξ) = O(|ξ|−
d−s
2 ). In this case we recover results by Oberlin [18] and Heo

[13], both extending Christ’s original result and method of proof in [5].

Examples. (i) Our main new example concerns the case of arclength
measure on a compact curve in R3 with nonvanishing curvature and torsion.
Here d = 3, s = 2 and the main regularity assumption is a recent result
of Pramanik and one of the authors [24], established for p < (pW + 2)/pW

where pW < ∞ is an exponent for which a deep inequality of T. Wolff [34]
on decompositions of cone multipliers holds.

(ii) As in [29], [14] one can consider hypersurfaces on which the Gaussian
curvature does not vanish to infinite order. Then of course (1.1) holds with
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s = 1 and, by a result of Sogge and Stein [30], inequality (1.2) holds for
some values of p > 1 (in a range depending on the order of vanishing of the
curvature).

(iii) An interesting example occurs in [15] where Σ is a portion of the
light cone in Rd when d ≥ 5. In this case one can see condition (1.2)
as a consequence of a sharp space time inequality for spherical means, see
inequality (10.9) in [16].

Open problems. There are many, concerning both the hypotheses and the
conclusion of Theorem 1.1.

(a) Given the dimensionality assumption (1.1), under what conditions
does (1.2) hold? More concretely, if dµ = χdσ and dσ is arclength measure
on (a compact piece of) a curve of finite type in Rd, does (1.2) hold with
s = d − 1 and some p > 1. This is open in dimensions d ≥ 4. Similarly, is
M : H1 → L1,∞ for these examples?

(b) More generally, if Σ is a manifold of finite type (in the sense of ch.
VIII, §3.2. of [31]) does it follow that the lacunary maximal operator maps
H1 to L1,∞? See [33] for a measure supported on a cylinder for which the
associated lacunary maximal operator which does map H1 to L1,∞ but for
which the hypothesis (1.2) does not hold.

(c) In Theorem 1.1, can one replace the usual isotropic dilations by non-
isotropic ones, with the corresponding change of Hardy spaces, but keeping
the isotropic assumption (1.2)? See [5] for results on averaging operators
along curves in two dimensions and related results in [29], [14] for hypersur-
faces. The question whether the ‘maximal function along the (t, t2, t3) maps
the corresponding anisotropic Hardy space H1 to L1,∞ is currently open.

(d) In [29] it was shown that the lacunary maximal operators associated
to hypersurfaces of finite type (with respect to an arbitrary dilation group)
are of weak type L log logL. This is the current result closest to a perhaps
conjectured weak type L1 bound. It is open whether one can prove a similar
result merely under the regularity assumption (1.2).

Remark. We take this opportunity to mention a fallacious argument in
the exceptional set estimate in §5 of the article [29] and thank Neil Bez for
pointing it out. A correction is posted on one of the authors’ website (see
the reference to [29] below).

Lacunary maximal operators associated to convex curves in the

plane. Let Ω be a convex open domain in the plane with compact closure
so that the origin is contained in Ω. We let σ be the arclength measure
on the boundary ∂Ω and consider the question of Lp boundedness of the
lacunary maximal operator associated to ∂Ω,

(1.3) Mf(x) = sup
k∈Z

∣∣∣
∫

∂Ω
f(x− 2ky)dσ(y)

∣∣∣.
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As mentioned above, if |σ̂(ξ)| = O(|ξ|−ε) for some ε > 0, then M is Lp

bounded for 1 < p <∞. Now we are aiming for much weaker hypotheses.

The decay of σ̂ is strongly related to a geometric quantity. Given a unit
vector θ let ℓ+(θ) be the unique supporting line with θ an outer normal to
∂Ω, i.e. the affine line perpendicular to θ which intersects ∂Ω so that Ω is a
subset of the halfspace {x : x = y − tθ : t > 0, y ∈ ℓ+(θ)}. Similarly define
ℓ−(θ) as the unique affine line perpendicular to θ which intersects bΩ and
Ω is a subset of the halfspace {x : x = y + tθ : t > 0, y ∈ ℓ−(θ)}. For small
δ > 0 define the arcs (or ‘caps’)

C±(θ, δ) = {y ∈ ∂Ω : dist(y, ℓ±) ≤ δ}.

By a compactness consideration it is easy to see that there is δ0 > 0 so that
for all θ ∈ S1 and all δ < δ0 the arcs C+(θ, δ) and C−(θ, δ) are disjoint. Let,
Λ(θ, δ) be the maximum of the length of these caps:

Λ(θ, δ) = max
±

σ(C±(θ, δ)) .

The analytic significance of this quantity is that it gives a very good estimate
for the size of Fourier transform σ̂, namely for every θ ∈ S1 and R ≥ 1

(1.4) |σ̂(Rθ)| ≤ CΩΛ(θ,R−1).

This is shown in [1] under the hypothesis for convex domains in the plane
with smooth boundary, with no quantitative assumption on the second de-
rivative. The general case follows by a simple approximation procedure (see
also [21], [22] for similar observations).

We note that for classes of multipliers satisfying standard symbol assump-
tions one can insure boundedness under rather weak decay assumptions on
the symbol, but it is not clear what the optimal conditions are; moreover
the usual method of square-functions is often not the appropriate tool (cf.
[7], [12]). In this light the following characterization for p = 2 in terms of
the quantities Λ(θ, δ) is perhaps surprising (as well as the fact that it can
be proved using simple square-function arguments).

Theorem 1.2. The operator M is bounded on L2(R2) if and only if

(1.5) sup
θ∈S1

∫ δ0

0
Λ(θ, δ)2

dδ

δ
< ∞.

Problem: For q 6= 2, find necessary and sufficient conditions on ∂Ω in
order for M to be bounded on Lq(R2).

It may be interesting to look at specific ‘flat’ examples. By testing M on
functions supported in thin strips we shall obtain a necessary condition

(1.6) sup
‖f‖q=1

‖Mf‖q ≥ c sup
θ∈S1

(∫ δ0

0
Λ(θ, δ)q

dδ

δ

)1/q
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for all q. We note that if ∂Ω has only one “flat” point near which ∂Ω can
be parametrized as the graph of C + exp(−1/|t|a) with C 6= 0, then this Lq

condition holds iff a < q. Thus in this case L2 boundedness of M holds if
and only if a < 2.

Lp-regularity of averages. As in the previous section we consider convex
curves Σ, say boundaries of a convex domain but the position of the origin
will not play a role now. The estimate (1.4) can be interpreted as an L2

regularity result for the integral operator A : f 7→ f ∗ σ. We reformulate
this with the standard dyadic frequency decomposition {Pk}

∞
k=0 as above.

Then setting

(1.7) ωk =
1

supθ∈S1 Λ(θ, 2−k)

(1.4) says that the inequality

(1.8)
∥∥∥
( ∑

k>0

ω2
k|PkAf |

2
)1/2∥∥∥

p
. ‖f‖p

holds for p = 2.

We are now interested in analogous Lp regularity results, i.e. we wish to
determine the range of p for which (1.8) holds, with the optimal weight ωk in
(1.7). In case the curvature vanishes somewhere one expects this inequality
to hold for some p 6= 2; for example if Σ is of finite type, and if m is the
order of maximal contact of tangent lines with Σ then (1.8) holds with the

optimal ωk = 2−k/m for the range m
m−1 < p < m, see [32], [6] (and also

[26], [35] for variable coefficient analogues). Given these known examples
we are mainly interested in very flat cases. We shall prove (1.8) for a family
of curves with additional hypotheses which cover interesting examples for
which the curvature vanishes of infinite order at a point. In those flat cases
one gets (1.8) in the full range 1 < p <∞.

After a localization we assume that (part of) the convex curve is given as
a graph (t, γ(t)) for 0 ≤ t ≤ 1 and consider the integral operator

Af(x) =

∫ 1

0
f(x1 − t, x2 − γ(t))dt.

Theorem 1.3. Let γ be of class C3 on (0, 1] and of class C2 on [0, 1].
Assume that γ(0) = γ′(0) = γ′′(0) = 0, γ′′ is nonnegative and strictly
increasing on [0, 1], and furthermore, the limit

b = lim
t→0+

γ′′(t)

tγ′′′(t)

exists with b ∈ [0,∞). Let

wk =
1

γ−1(2−k)
.
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Then the inequality

(1.9)
∥∥∥
( ∑

k>0

w2
k|PkAf |

2
)1/2∥∥∥

p
. ‖f‖p

holds for 1 + b
1+b < p < 2 + b−1 (and thus for 1 < p <∞ if b = 0).

Examples. We note that, in the setup of this theorem, wk ≈ ωk as defined
in (1.7). In the case γ◦(t) = tm with m > 2 we recover the known result

mentioned above since b−1 = m − 2 and wk ≈ 2−k/m. In the flat case
γ1(t) = e−t−a

we have b = 0 and wk ≈ k−1/a. We may consider evem
flatter cases: Let expn

∗ the n-fold iteration exp ◦ · · · ◦ exp and logn
∗ the n-fold

iteration of ln. For large C > 0 consider γ2(t) = exp(− expn
∗ (Ct−λ)). Then

b = 0 and wk ≈ (logn
∗ (en + k))−1/λ.

Open problems.

(i) For the curves Γ(t) = (t, γ(t)) featured in Theorem 1.3 let M be the
maximal function along Γ (as in (4.8) below). Does M map the Hardy-space
H1

prod (associated with the two-parameter dilations (t1·, t2·)) to the Lorentz

space L1,2? Similar questions can be formulated for certain singular integrals
along Γ. For the finite type case (γ(t) = tm) such estimates can be found
in [27]. For the flat cases one would need to further explore Hardy space
structures associated to the curve Γ.

(ii) Let D1/mf = F−1[(1 + |ξ|2)1/2mf̂ ], the fractional Bessel derivative of
order 1/m. For the finite type m case there are endpoint estimates involving

Lorentz-spaces Lp,2, namely it was shown in [27] that D1/mA maps Lm,2 to

Lm and Lm′,2 to Lm′

, see [6] for the sharpness of such results. It would
be interesting to investigate sharp regularity results for general γ. One
aims to bound the square-function (

∑
k>0w

2
k|PkAf |

2)1/2 in natural Orlicz
or Orlicz-Lorentz spaces associated with γ. As suggested by the method in
[27], endpoint results should be related to a resolution of problem (i).

(iii) Can one prove (1.8) for more general convex domains; in particular,
can one relax the monotonicity assumption on γ′′ in Theorem 1.3?

This paper. The proof of the Theorem 1.1 will be given in §2. The proof
of Theorem 1.2 is in §3. The proof of Theorem 1.3 is in in §4. In §5 we
formulate yet another problem concerning lacunary maximal functions for
dilates of a simple Marcinkiewicz multiplier.

Acknowledgements: We would like to thank Terry Tao for conversa-
tions on the subject of lacunary maximal operators and collaboration on
[28] and [29].
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2. Proof of theorem 1.1

Atomic decompositions. In what follows ψ will denote a nontrivial C∞

function with compact support in {x : |x| ≤ 1/2} so that ψ̂(ξ) 6= 0 for 1
4 ≤

|ξ| ≤ 4 and ψ̂ vanishes to order 10d at the origin. We let ψl = 2−ldψ(2−l·).

We use the atomic decomposition based on a square-function characteri-
zation as given in [4]; for variants and applications of this method see [25],
[28], [16]. Given f in H1 one can write f =

∑
Q bQ where this sum con-

verges in H1, each bQ is supported in the double of the dyadic cube Q with

sidelength 2L(Q), and has the following fine structure. We have

bQ =
∑

j≤L(Q)

ψj ∗ ψj ∗ bQ,j

where bQ,j can be decomposed as bQ,j =
∑

R∈R(Q,j) eR, the families R(Q, j)

consist of dyadic cubes R of sidelength 2j contained in Q with disjoint
interior, the bounded function eR is supported on R, and finally

(2.1)
∑

Q

|Q|1/2
( ∑

j≤L(Q)

∑

R∈R(Q,j)

‖eR‖
2
2

)1/2
. ‖f‖H1

.

We set

γQ,j =
( ∑

R∈R(Q,j)

‖eR‖
2
2

)1/2
, γQ =

( ∑

j≤L(Q)

γ2
Q,j

)1/2
,

and note that

‖bQ,j‖2 . γQ,j ,

‖bQ‖2 . γQ ,

and ∑

Q

|Q|1/2γQ . ‖f‖H1 .

The weak type inequality. By a scaling argument we may assume that
µ0 = µ is supported in the unit ball centered at the origin. (the operator
norm will depend on that scaling).

We need to show that

(2.2) meas
({
x : sup

k

∣∣µk ∗
∑

Q

bQ
∣∣ > α

})
. α−1‖f‖H1 .

To achieve this we assign for each Q an integer τ(Q) depending on α, defined
as follows. We first let τ̃(Q) be the smallest integer τ for which

2(d−s)τ2sL(Q) ≥ α−1|Q|1/2γQ

(or −∞ if there is no such smallest integer) and define

τ(Q) = max{L(Q), τ̃ (Q)} .
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We form an exceptional set depending on α by

E =
⋃

Q

⋃

k:L(Q)<k≤τ(Q)

(supp(µk) +Q∗)

where Q∗ is the tenfold dilate of Q with respect to its center. Note that
(suppµk +Q∗) is contained in the 2k-dilate of a C2L(Q)−k neighborhood of
supp(µ). By the assumption on µ this neighborhood can be covered with

. 2(k−L(Q))(d−s) balls of radius 2L(Q)−k. Thus

meas(supp(µk) +Q∗) ≤ C12
kd2(k−L(Q))(d−s)2(L(Q)−k)d = C12

k(d−s)2L(Q)s

and thus

meas(E) .
∑

Q:L(Q)<τ(Q)

2τ(Q)(d−s)2L(Q)s .

By the minimality property of τ(Q) in its definition it follows that for the

case L(Q) < τ(Q) the inequality 2(τ(Q)−1)(d−s)2L(Q)s ≤ α−1|Q|1/2γQ is sa-
tisfied. Thus

(2.3) meas(E) .
∑

Q:L(Q)<τ(Q)

α−1|Q|1/2γQ . α−1‖f‖H1 .

We split supk |f ∗ µk(x)| into three parts depending on α.

I(x) = sup
k

∣∣∣µk ∗
∑

Q:τ(Q)<k

bQ

∣∣∣ ,

II(x) = sup
k

∣∣∣µk ∗
∑

Q:L(Q)<k≤τ(Q)

bQ

∣∣∣ ,

III(x) = sup
k

∣∣∣µk ∗
∑

Q:k≤L(Q)

bQ

∣∣∣ .

Note that II is supported in E and thus

(2.4) meas
({
x : sup

k

∣∣µk ∗
∑

Q

bQ
∣∣ > α

})
.

‖I‖p
p

αp
+ meas(E) +

‖III‖1

α

where p is as in assumption (1.2).

The estimation for ‖III‖1 is straightforward and just uses the L2 bound-
edness of the lacunary maximal operator. Note that for k ≤ L(Q) the
function µk ∗ f is supported in Q∗. We estimate

‖III‖1 ≤
∑

Q

∥∥ sup
k≤L(Q)

|µk ∗ bQ|
∥∥

1

≤
∑

Q

|Q∗|1/2‖MbQ‖2

.
∑

Q

|Q|1/2‖bQ‖2 . ‖f‖H1 .(2.5)
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We turn to the main term I and estimate

‖I‖p
p =

∥∥∥ sup
k

∣∣µk ∗
∑

L

∑

Q:L(Q)=L
τ(Q)≤k

∑

n≥0

ψL−n ∗ ψL−n ∗ bQ,L−n

∣∣
∥∥∥

p

≤
( ∑

n=0

(∑

k

∥∥In,k

∥∥p

p

)1/p)p
(2.6)

where

In,k = µk ∗
∑

L

∑

Q:L(Q)=L
τ(Q)≤k

ψL−n ∗ ψL−n ∗ bQ,L−n.

We shall bound
∑

k ‖In,k‖
p
p with some exponential gain in n.

We first observe as a consequence of assumption (1.2) the simple convolu-

tion inequality ‖µ∗ψj ∗g‖p . 2−j(d−s)/p′‖g‖p. Indeed this follows from (1.2)

by observing that ‖Pkψj‖1 . 2−|j−k|2d where we use the vanishing moment
assumption on ψj. By scaling, the operator of convolution with µk ∗ ψL−n

has the same operator norm as the operator of convolution with µ0 ∗ψL−n−k

which is O(2−(k+n−L)(d−s)/p′). Because of the almost orthogonality of the

ψj we may apply the inequality ‖
∑
ψj ∗ gj‖p . (

∑
j ‖gj‖

p
p)1/p. Thus we get

‖In,k‖p .
( ∑

L

∥∥∥µk ∗ ψL−n ∗
∑

Q:L(Q)=L
τ(Q)≤k

bQ,L−n

∥∥∥
p

p

)1/p

. 2−(k+n−L)(d−s)/p′
(∑

L

∥∥∥
∑

Q:L(Q)=L
τ(Q)≤k

bQ,L−n

∥∥∥
p

p

)1/p

. 2−(k+n)(d−s)/p′
( ∑

Q:τ(Q)≤k

2L(Q)(d−s)(p−1) ‖bQ,L−n‖
p
p

)1/p
,

where the last inequality follows from the disjointness of the Q with fixed
L = L(Q). Thus we get after interchanging summations and summing in
k ≥ τ(Q)

( ∑

k

‖In,k‖
p
p

)1/p
. 2−n(d−s)/p′

(∑

Q

2(L(Q)−τ(Q))(d−s)(p−1)‖bQ,L−n‖
p
p

)1/p

. 2−n(d−s)/p′
(∑

Q

2(L(Q)−τ(Q))(d−s)(p−1)|Q|1−p/2γp
Q

)1/p
.

In the last estimate we have used Hölder’s inequality and γQ,j ≤ γQ. By the
definition of τ(Q) we have

2−(d−s)τ(Q) ≤ 2−sL(Q)α|Q|−1/2γ−1
Q ,
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no matter whether τ(Q) > L(Q) or τ(Q) = L(Q). This leads to

2(L(Q)−τ(Q))(d−s)(p−1)|Q|1−p/2γp
Q ≤ αp−1|Q|1/2γQ

and consequently we get
∑

k

‖In,k‖
p
p ≤ Cp2−n(d−s)(p−1)αp−1

∑

Q

|Q|1/2γQ

which by (2.6) implies

(2.7) ‖I‖p
p ≤ C̃pαp−1

∑

Q

|Q|1/2γQ.

We finish the proof of (2.2) by combining (2.4), (2.3), (2.5) and (2.7). �

3. Proof of Theorem 1.2

We shall first prove the necessary condition (1.6) for Lq-boundedness of
M. We check the lower bound by providing an example for θ = e2 and the
general case follows by rotating the curve. From the positivity of M and
translation invariance we may reduce to the case where M is replaced by
the maximal operator

(3.1)

Mf(x) = sup
k∈Z

|Akf(x)|

with Akf(x) :=
∣∣∣
∫

|t|≤ǫ
f(x1 − 2kt, x2 − 2kL+ 2kγ(t))dt

∣∣∣;

here t 7→ γ(t) is a convex function with γ(0) = 0, L > 0, ε > 0 and the line
{x2 = L} is a supporting line at (0, L).

We test M on the functions

fη(x) = (2η)−1/qχEη(x) where Eη := {x ∈ R
2 : |x1| ≤ 1, |x2| ≤ η}

for small η > 0. Then ‖fη‖q = 1. For each k ∈ Z set

Fη,k = {x ∈ R
2 : |x1| ≤ 1/4, 2kL ≤ x2 ≤ 2kL+ η/4}.

We define k0 to be the smallest integer k satisfying 2k ≥ ηmax
(
1/4L, 1/γ(ǫ)

)

and note that when k ≥ k0, the sets Fη,k are disjoint and we have the lower
bound

Mfη(x) ≥ (2η)−1/qγ−1(2−kη) for x ∈ Fη,k.

Therefore

(2η)−1
∑

k≥k0

|Fη,k|[γ
−1(2−kη)]q ≤

∑

k≥k0

∫

Fη,k

Mfη(x)
qdx ≤ ‖Mfη‖

q
q.
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Since |Fη,k| = η/4 for each k and σ(C(e2, 2
−kη) ≤ Bγ−1(2−kη) for some

B > 0 depending only on γ, we have

B−q

∫ δ1

0
σ(C(e2, δ)

q dδ

δ
≤ B−q

∑

k≥k0

∫ 2−kη

2−k−1η
σ(C(e2, δ)

q dδ

δ

≤
∑

k≥k0

4η−1|Fη,k|[γ
−1(2−kη)]q

for some δ1 > 0 depending only on γ. Thus from the two previous chains of

inequalities we obtain
∫ δ1
0 σ(C(e2, δ)

q dδ
δ ≤ 8‖Mfη‖

q
q and this completes the

proof of (1.6).

We now assume q = 2 and that the condition on the caps C(θ, δ) in (1.5)
is satisfied. By a partition of unity, the translation invariance and positivity
of M, we may suppose that the maximal operator is of the form (3.1). The
averaging operators Ak are convolution operators with Fourier multipliers

mk(ξ) = m0(2
kξ) :=

∫

|t|≤ǫ
e−i2k [ξ1t+Lξ2−ξ2γ(t)] dt.

For small ξ we have the trivial bound

(3.2) |mk(ξ) − 2ǫ| ≤ C2k|ξ|

where C is a universal constant. For large |ξ| we will use the bound

(3.3) |mk(ξ)| ≤ CΛ( ξ
|ξ| , (2

k|ξ|)−1)

which follows from (1.4).

Now fix a Schwartz function Φ with
∫

Φ(x) dx = 2ǫ and define Φk(x) :=

2−2kΦ(2−kx). In order to prove the L2 boundedness of M , we note the
pointwise bound

Mf(x) ≤ sup
k∈Z

|Φk ∗ f(x)| +
( ∑

k∈Z

|Akf(x) − Φk ∗ f(x)|2
)1/2

.

The first term on the right hand side is dominated by the Hardy-Littlewood
maximal function of f and thus defines a bounded operator on all Lq, q > 1.
Therefore it suffices by Plancherel’s theorem for the second term to show
that the function

ξ →
∑

k∈Z

|m0(2
kξ) − Φ̂(2kξ)|2

is a bounded function in ξ. From (3.2) and (3.3), we see that the bounded-
ness of this function of ξ will follow if we can show that

I(ξ) :=
∑

k:2k|ξ|≥C

σ
(
C( ξ

|ξ| , [2
k|ξ|]−1)

)2
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is uniformly bounded in ξ for some large C. Now

σ
(
C( ξ

|ξ| , [2
k|ξ|]−1)

)2
≤ ln 2

∫ [2k−1|ξ|]−1

[2k|ξ|]−1

σ
(
C( ξ

|ξ| , δ)
)2 dδ

δ

and so

I(ξ) . sup
θ∈S1

∫ δ0

0
σ
(
C(θ, δ)

)2dδ

δ
,

establishing the sufficiency part of Theorem 1.2. �

4. Proof of Theorem 1.3

We let k◦ = min{k : 2−k ≤ 1
4γ

′′(1)} and only need to consider the terms
PkAf with k > k◦. Define

h(t) = t2γ′′(t)

so that γ(t) ≤ h(t). For k > k◦ we define a finite increasing sequence

{tk,n}
Nk

n=1 so that γ′′ doubles on those points (as long as tk,n < 1) and
denote the corresponding images under γ′′ by ρk,n. We set

tk,0 = h−1(2−k)(4.1)

ρk,0 = γ′′(tk,0),(4.2)

and, for n ≥ 1, set

(4.3) ρk,n =

{
2nγ′′(tk,0) if γ′′(tk,0) ≤ 2−n−1γ′′(1)

γ′′(1) if γ′′(tk,0) > 2−n−1γ′′(1)
,

and

(4.4) tk,n = γ′′
−1

(ρk,n) .

Define

Ak,0f(x) =

∫ tk,0

0
Pkf(x1 − t, x2 − γ(t)) dt

Ak,nf(x) =

∫ tk,n

tk,n−1

Pkf(x1 − t, x2 − γ(t)) dt, n ≥ 1.

If we let

Nk = 1 + max{ν : γ′′(tk,ν) ≤
1

2
γ′′(1)}

then tk,n < 1 if n ≤ Nk − 1 and tk,n = 1 for n ≥ Nk; consequently Ak,n = 0
for n > Nk. By Minkowski’s inequality we have

∥∥∥
( ∑

k>k◦

|wkPkAf |
2
)1/2∥∥∥

p
≤

∞∑

n=0

∥∥∥
( ∑

k:k>k◦

n≤Nk

|wkAk,nf |
2
)1/2∥∥∥

p
.

Theorem 1.3 follows from the following two propositions by interpolation;
this can be seen as a variant of arguments in [6], [26], [35].
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Proposition 4.1. For n ≥ 0

∥∥∥
( ∑

k≥k◦

|wkAk,nf |
2
)1/2∥∥∥

2
≤ C2−n/2‖f‖2.

Proposition 4.2. For any ǫ > 0 and for 1 < p <∞,

∥∥∥
( ∑

k≥k◦

|wkAk,nf |
2
)1/2∥∥∥

p
≤ Cǫ2

n(ǫ+b)‖f‖p

for all n ≥ 0.

For the proof of the propositions we need to relate the numbers tk,0 to
the weights wk, and we get

(4.5) wktk,0 ≤ 1 for k > k◦.

For k > k◦ the range of h includes 2−k, and thus (4.5) follows from part (i)
of the following lemma. Part (ii) shows that (4.5) is effective.

Lemma 4.3. Let γ be as in Theorem 1.3.

(i) If 0 ≤ s ≤ γ(1) then s ≤ h(1) and h−1(s) ≤ γ−1(s).

(ii) If 0 ≤ s ≤ h(1/4) then s ≤ γ(1) and γ−1(s) ≤ 4h−1(s).

Proof. Note that the range of h and γ′′ on [0, 1] is the same. (i) follows from
γ(t) ≤ h(t) = t2γ′′(t) for 0 ≤ t ≤ 1. But since γ(0) = γ′(0) = 0 and since γ′′

is increasing we get the better inequality γ(t) ≤ h(t)/2 which is immediate
from Taylor’s theorem. (ii) follows from h(t) ≤ γ(4t) for 0 ≤ t ≤ 1/4 which

holds by the monotonicity of γ′ and γ′′; indeed t2γ′′(t) ≤
∫ 2t
t γ′′(u) du ≤

2tγ′(t) ≤
∫ 4t
2t γ

′(u)du ≤ γ(4t). �

We will now turn to the proof of the propositions. Proposition 4.1 relies
on van der Corput’s lemma (ch.VIII, §1.2. in[31]), while the proof of Propo-
sition 4.2 relies on the eight authors’ theorem [3] on the boundedness of the
maximal operator along (t, γ(t)) under the γ′ doubling hypothesis.

Proof of Proposition 4.1. We may assume n ≤ Nk. Then for n ≥ 1 we need
to estimate the multiplier

mk,n(ξ) =

∫ tk,n

tk,n−1

exp(i(ξ1t+ ξ2γ(t)))dt

when 2k−1 ≤ |ξ| ≤ 2k+1.

For t ≥ tk,n−1 we have

γ′′(t) ≥ γ′′(tk,n−1) = 2n−1γ′′(tk,0) = 2n−1γ′′(h−1(2−k))



14 A. SEEGER AND J. WRIGHT

and since h(t) = t2γ′′(t),

γ′′(h−1(2−k)) =
[h−1(2−k)]2γ′′(h−1(2−k))

[h−1(2−k)]2
=

2−k

[h−1(2−k)]2

Thus if |ξ2| ≥ ε|ξ1| (i.e.|ξ2| ≈ 2k) we get by van der Corput’s Lemma

|mk,n(ξ)| ≤ C|ξ2|
−1/2|γ′′(tk,n−1)|

−1/2 ≤ Cε|ξ|
−1/22k/22−

n−1

2 h−1(2−k)

which is at most C ′
ε2

−n/2γ−1(2−k), by (4.5) .

If |ξ2| ≤ ε|ξ1| and ε is sufficiently small then the derivative of the phase
is |ξ1 + ξ2γ

′(t)| ≥ |ξ1| ≈ 2k and we obtain |mk,n(ξ)| ≤ C2−k. Now

2−k = h(tk,0) = 2−k/22
1−n

2

√
h(tk,n−1) . γ−1(2−k)2−n/2

since h is bounded and γ(t) . t2. We have now proved the estimate

(4.6) |mk,n(ξ)β(2−k |ξ|)| . 2−n/2γ−1(2−k)

for n > 0. For n = 0 we need to estimate

mk,0(ξ) =

∫ tk,0

0
exp(i(ξ1t+ ξ2γ(t)))dt

and we just use the trivial bound

|mk,0(ξ)| ≤ tk,0 = h−1(2−k) ≤ γ−1(2−k).

These estimates imply the asserted L2 bound by Plancherel’s theorem. �

Proof of Proposition 4.2. It suffices to show

(4.7)
∥∥∥
( ∑

k

|wkAk,nfk|
2
)1/2∥∥∥

p
≤ Cε,p2

n(b+ε)
∥∥∥
(∑

k

|fk|
2
)1/2∥∥∥

p

for 1 < p < ∞ since we can apply it with fk = Lkf where Lk is a suitable
Littlewood-Paley type localization operator with Pk = PkLk. By a duality
argument it suffices to prove (4.7) for 1 < p ≤ 2.

Consider the maximal function

(4.8) Mf(x) = sup
0<r≤1

1

r

∫ r

0
|f(x1 − t, x2 − γ(t))|dt.

By our assumption γ′′′(t) ≥ 0 and γ′(0) = γ′′(0) = 0, the convex function
u = γ′ satisfies the doubling condition u(2t) ≥ 2u(t) for 0 ≤ t ≤ 1/2. Thus
by [3] the maximal operator M is bounded on Lp(R2) for 1 < p < ∞. We
also have the vector-valued version

(4.9)
∥∥{

Mfk

}
k∈Z

∥∥
Lp(ℓq)

.
∥∥{
fk

}
k∈Z

∥∥
Lp(ℓq)

, 1 < p <∞, p ≤ q ≤ ∞ .

Indeed for p = q this follows from the Lp inequality for M and interchanging
summation and integration. For q = ∞ it follows from using supk Mfk =
M(supk |fk|) and applying the Lp inequality for M. For p ≤ q ≤ ∞ we use
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a standard linearization and complex interpolation argument. In particular
if 1 < p ≤ 2, (4.9) holds for q = 2.

Now note the trivial majorization

|Ak,nfk(x)| ≤ tk,nM[Pkfk](x).

We shall show that given ε > 0 in the statement of the proposition we have

(4.10) sup
k,n:

n≤Nk

2−n(b+ε)wktk,n ≤ C(ε) .

Using (4.10) we may estimate
∥∥∥
( ∑

k

|wkAk,nfk|
2
)1/2∥∥∥

p
≤ C(ε)2n(b+ε)

∥∥∥
( ∑

k

|MPkfk|
2
)1/2∥∥∥

p

≤ C ′(ε)2n(b+ε)
∥∥∥
( ∑

k

|fk|
2
)1/2∥∥∥

p
,

by (4.9), and vector-valued singular integral estimates for the operator
{fk} 7→ {Pkfk} on Lp(ℓ2).

It remains to show (4.10). By (4.5) the required bound holds for n = 0.
Moreover

wktk,n ≤
γ′′−1(ρk,n)

h−1(2−k)
=

γ′′−1(ρk,n)

γ′′−1(ρk,0)
.

Consequently it suffices to show that

sup
k,n:

1≤n≤Nk

2−n(b+ε) γ
′′−1(ρk,n)

γ′′−1(ρk,0)
≤ C(ε) ,

or, equivalently

(4.11) −b ln 2 +
1

n
ln

(γ′′−1(ρk,n)

γ′′−1(ρk,0)

)
≤ ε ln(2) +

ln(C(ε))

n
,

for any (k, n) with k > k◦ and 1 ≤ n ≤ Nk. Note that n−1 ln(ρk,n/ρk,0) = 1

for n < Nk and 1 ≤ n−1 ln(ρk,n/ρk,0) ≤
n+1

n for n = Nk. The left hand side
of (4.11) is then equal to

1

n

∫ ρk,n

ρk,0

τb(s)
ds

s
+ Ek,n

where

τb(s) =
s

γ′′′(γ′′−1(s))γ′′−1(s)
− b ,

Ek,n = 0 for n < Nk and |Ek,n| ≤ n−1 for n = Nk. Thus it suffices to show
that there is N (ε) > 0 so that

(4.12) sup
k:Nk>n

1

n

∫ ρk,n

ρk,0

|τb(s)|
ds

s
≤ ε ln(2) for n > N (ε) .
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Now γ′′−1(s) → 0 as s → 0 and, since b = limt→0
γ′′(t)
tγ′′′(t) , we have therefore

lims→0 τb(s) = 0. Choose δ(ε) ∈ (0, 1
2γ

′′(1)) so that |τb(s)| < ε/4 whenever

s < δ(ε). Because of the assumed behavior of γ′′(t)
tγ′′′(t) near 0 we see that

M = sup0<t≤1
γ′′(t)
tγ′′′(t) <∞. Let N (ε) = 4Mε−1 ln(γ′′(1)

δ(ε) ).

Let Ik,n = [ρk,0, ρk,n]∩ (0, δ(ε)] and Jk,n = [ρk,0, ρk,n]∩ [δ(ε), γ′′(1)]; one of
these intervals may be empty. Now τb(s) ≤ ε/4 on Ik,n and ρk,n/ρk,0 < 2n+1.
Therefore for all n ≤ Nk

1

n

∫

Ik,n

|τb(s)|
ds

s
≤

ε

4n

∫ ρk,n

ρk,0

ds

s
≤
n+ 1

n

ε ln 2

4
≤
ε ln(2)

2
.

On Jk,n we use the estimate |τb(s)| ≤ 2M and obtain for N (ε) ≤ n ≤ Nk

1

n

∫

Jk,n

|τb(s)|
ds

s
≤

1

n

∫ γ′′(1)

δ(ε)
2M

ds

s
=

2M ln(γ′′(1)
δ(ε) )

N (ε)
≤
ε

2
.

We combine these two estimates and obtain (4.12). Thus the proposition is
proved. �

5. Another open problem

We recall another open problem concerning a lacunary maximal operator
generated by dilates of a Marcinkiewicz multiplier in two dimensions. Let
η0 be a Schwartz function on the real line with η0(0) 6= 0. Let

mk(ξ1, ξ2) = η0(2
2kξ1ξ2)

(the dilates of the so-called hyperbolic cross multiplier) and define

Mf(x) = sup
k

|F−1[mkf̂ ](x)|.

Problem. Is M bounded on Lp(R2), for some p ∈ (1,∞)?

The problem is closely related to one formulated in [10] and [8], on the
pointwise convergence for the “hyperbolic” Riesz means Rλ,tf . These are

defined by R̂λ,tf(ξ) = (1 − t−2ξ21ξ
2
2)λ+f̂ and they were studied in [10] and

[2]. A positive answer to our question is known to imply positive Lp(R2)
boundedness results for the maximal function Mλf(x) = supt>0 |Rλ,tf(x)|,
for suitable λ. A negative answer would prove that Mλ is unbounded on all
Lp(R2), for all λ.

Note that the multipliers mk satisfy the hypotheses of the Marcinkiewicz
multiplier theorem in R2. As proved in [7] Lp boundedness for lacunary max-
imal functions generated by Mikhlin-Hörmander (or Marcinkiewicz) multi-
pliers fails generically, with respect to the topology in some natural symbol
spaces. This however does not settle our question above. More results and
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open problems on minimal decay assumptions for the boundedness of such
maximal operators can be found in [12].

One can also ask for bounds on the Lp operator norm of the maximal

operator MNf(x) = sup|k|≤N |F−1[mkf̂ ](x)|. Petr Honźık [17] noted that

one can improve the trivial upper bound CpN
1/p by combining the good λ

inequalities in [20] with the reasoning in [12]; this yields the bound Cp log(N)
(at least for a discrete analogue).
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