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Abstract – Aims were to estimate the extent of genetic heterogeneity in environmental vari-
ance. Data comprised 99 535 records of 35-day body weights from broiler chickens reared in a
controlled environment. Residual variance within dam families was estimated using ASREML,
after fitting fixed effects such as genetic groups and hatches, for each of 377 genetically con-
temporary sires with a large number of progeny (>100 males or females each). Residual vari-
ance was computed separately for male and female offspring, and after correction for sampling,
strong evidence for heterogeneity was found, the standard deviation between sires in within
variance amounting to 15–18% of its mean. Reanalysis using log-transformed data gave similar
results, and elimination of 2–3% of outlier data reduced the heterogeneity but it was still over
10%. The correlation between estimates for males and females was low, however. The correla-
tion between sire effects on progeny mean and residual variance for body weight was small and
negative (−0.1). Using a data set bigger than any yet presented and on a trait measurable in both
sexes, this study has shown evidence for heterogeneity in the residual variance, which could not
be explained by segregation of major genes unless very few determined the trait.

broiler chickens / body weight / genetic variance / environmental variance / heterogeneity
of variance

1. INTRODUCTION

In the simplest terms, phenotypic value is the sum of the genotypic value
and a residual error contributed by random environmental or other non-genetic
influences, such as developmental noise. A multivariate normal distribution
with homogeneous variances and independent normally distributed effects is
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often assumed [3, 15]. Thus, the assumption is made that the residual vari-
ance is the same for any given genotype [10, 22]. As environmental variance
cannot usually be estimated directly, but only from the variation within fami-
lies, genetic and non-genetic causes are confounded. Under the infinitesimal
model, the genetic variance within families is the same in each family, so
assuming that the residual variance is homogeneous, is equivalent to assum-
ing that the environmental variance and the genetic variance within families
are homogeneous. There can, however, be substantial heterogeneity of pheno-
typic variances amongst environmental groupings such as milk yield in dairy
herds [1, 19]. In a few studies, the objective has been to quantify heterogeneity
of variance and explore the extent to which heterogeneity of environmental or
residual variance plays a role [4, 5, 12, 13, 21]. Foulley and Quaas [4] discuss
the estimation of source and magnitude of effect of heterogeneous variances
within linear mixed models. There is evidence to suggest that residual het-
erogeneity is under genetic control, based on analysis of data on fecundity of
sheep by SanCristobal-Gaudy et al. [23], who used a log linear model to test
the significance of additive genetic influence on the residual variance. Earlier
and more direct evidence for genetically structured adaptation or environmen-
tal sensitivity is found in studies of genetic assimilation [27] canalisation [18]
and environmental plasticity [26].

Variation in environmental sensitivity under genetic control might be ex-
plained by the assumption that genotypes at individual loci differ not only in
their effect upon the mean but also on the variance of the trait [7,10,23]. Conse-
quently, simple directional selection on the trait would change environmental
variability [10]. Furthermore, in production systems the aim is frequently to
minimise variation in order to achieve product consistency, which could be
achieved if there is a genetic component to variation in environmental vari-
ation. More recent evidence for a genetic component includes litter size in
pigs [24], body weight of snails [20] and bristle number in Drosophila [16].
Sorensen and Waagepetersen [24] use data on pig litter size to compare four
Bayesian models varying in complexity in the residual variance structure in
terms of goodness of fit, and retrospective performance for the prediction of
response to selection. They conclude that there is very strong evidence for a
genetically structured residual heterogeneity. Furthermore reproductive traits
are usually not normally distributed and are measurable in only one sex.

A simpler approach has been proposed of using data on animals in the same
location, and estimating the variance among large half sib families in the vari-
ance within families [8]. The additive genetic variation in the environmental
variance can then be estimated on the assumption that the genetic variance
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within families is constant. This method is transparent, albeit less efficient than
a full analysis via model fitting, and requiring some assumptions, particularly
of homogeneity of genetic segregation variance. It is basically an extension of
an earlier application to detect heterogeneity in phenotypic variance amongst
dairy herds [1]. The data analysed in this report are highly suitable for such a
study. They are on juvenile body weight in broiler chickens, a continuous trait
that is recorded on all birds of both sexes and is approximately normally dis-
tributed. Sire family sizes used were large and records of many families were
available. The data were from a commercial breeding programme with selec-
tion inter alia on body weight, with genetically contemporary birds reared
together.

2. MATERIALS AND METHODS

2.1. Data

The data provided by Aviagen Ltd. comprised 176 973 records of body
weights at 35-days of age for a line of broiler chickens recorded over a
three year period. Birds were pedigree breeding stock, with all birds in each
weekly hatch reared together in a controlled environment. Potential parents
were selected each week and allocated to mating groups, which commenced
at three-weekly intervals. Sires and dams were allocated to the mating group
that commenced closest to them becoming a set age. A mating group typically
comprised about 8 sires, each mated to about 10 dams in a nested structure, for
a standard number of hatch weeks. Progeny from different mating groups were
reared together, with individuals randomly assigned to pens. Thus progeny
born in a particular hatch from a particular mating group come from contem-
poraneous parents (important since selection was practised for body weight
inducing a genetic trend) and shared the same environment.

Data were extracted on sire families which had records of body weight
on at least 100 progeny of one sex and 50 of the other, a criterion met by
377 sire families. The resulting data set comprised a total of 99 535 records,
47 730 males and 51 805 females, spread over 50 mating groups spanning
160 hatch weeks (Tab. I).

2.2. Analysis

2.2.1. Outline

Data on males and females were analysed separately within contempora-
neous mating groups to render the model as parsimonious as possible and to
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Table I. Description of data.

Males Females
Mating groups 50 50
Sires (mean sires/mating group) 377 (7.5) 377 (7.5)
Dams (mean dams/sire) 3506 (9.3) 3503 (9.3)
Progeny recorded 47730 51805
Mean progeny/sire (/dam) 126 (13.6) 137 (14.8)
Mean body weight (kg) 2.291 2.051
Mean residual SD (kg)* 0.177 0.154

* Square root of pooled estimates of s2
gi.

avoid the need to adjust for differences in mean or variance due to sex and for
trend effects over time. All progeny contributed by a mating group and hatch-
ing in a particular hatch week were treated equally, hence the environment
within hatch week was assumed constant. In order to correct for sampling er-
rors, observations within families were assumed to be normally distributed.
To allow for possible scale effects and log-normal distribution of body weight
data, all data were reanalysed after log transformation. To allow for atypical
observations, e.g. sick birds, data were reanalysed after excluding outliers.

2.2.2. Basic analysis

The within family residual variance for offspring of each sire was estimated
using a linear mixed model in separate analyses for each sex to correct for
known fixed environmental and random genetic effects. The model was

yghi jk = µ + mg + Hgh + S gi + Dgi j + eghi jk (1)

where yghi jk is the bodyweight of an individual bird, µ is the overall mean
for the sex being analysed, mg is the mating group effect, Hgh is the hatch
week within mating group effect, S gi is the sire within mating group effect
(variance σ2

s ), Dgi j is the dam within sire effect (variance σ2
d), and eghi jk is

the residual within dam family effect, allowing for hatch, with variance σ2
gi

assumed to be dependent on sire within mating group. The mean and hatch
weeks were fitted as fixed effects and, because parents in a mating group were
contemporaries, dam age was confounded with hatch week and thus was not
fitted separately. The effects of sires and of dams nested within sires were
assumed random. Analyses were undertaken by restricted maximum likelihood
(REML) within each mating group using the ASREML package [6], such that
residual variances could be estimated separately for each sire family.
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2.2.3. Estimation of heterogeneity of within family residual variance

As with the REML analysis using model (1), subsequent calculations were
conducted independently on data from each sex. Let s2

gi denote the REML es-

timate of σ2
gi, (the variance within sire family i of mating group g), and let

xgi = ln(s2
gi). Following Ibanez et al. [12] based upon Foulley et al. [5] this

transformation simplifies the analysis of heterogeneity of variance because
it removes the relationship between the variance and its sampling variance.
Assuming independent normality of observations within dam families within
sires, the s2

gi are proportional to chi-square variates, and the sampling variance

of s2
gi equals 2σ4

gi/dgi, where there are dgi degrees of freedom (df) used to esti-
mate the variance (i.e. the number of progeny less the number of dam families,
ignoring the few df lost for fitting hatch effects across mating groups). If the
variances within sires have constant value VW , then var(s2

gi) = 2V2
W /dgi, and

var(xgi) = 2/dgi approximately.
If the variances within sires are homogeneous, the quantity

Xg = (1/2)
∑

i

dgi(xgi − xg.)
2 (2)

is approximately χ2 distributed with fg − 1 df, where fg is the number of sire
families in mating group g and xg. =

∑
i dgi xgi/

∑
i dgi.

If the variances within sire (σ2
gi) are heterogeneous, with mean VW and vari-

ance VB, then we assume

var(s2
gi) = 2V2

W/dgi + VB.

Hence
var(xgi) = 2/dgi + γ

2 (3)

approximately, where γ = (
√

VB)/VW = CV(VW) is the coefficient of variation
of the σ2

gi. Using (3) in (2) we obtain the expectation of the sum of squares for
group g

E(Xg) = ( fg − 1) + (1/2)d̃gγ
2, (4)

where d̃g =
∑

i dgi −∑i d2
gi/
∑

i dgi, i.e. approximately the total df within dams
within sires in mating group g. A useful reference for illustrating heterogeneity
is the corresponding mean square, Zg = Xg/( fg − 1). From (4)

E(Zg) = 1 + [(1/2)d̃g/( fg − 1)]γ2, (5)

and under the assumption of homogeneity, E(Zg) = 1. This was used as a
preliminary test for heterogeneity within individual mating groups.
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Table II. Estimates of average mean square (Z) and CV(VW ) for body weight and
summary of statistics used in their computation.

Males Females
df sires,

∑
g( fg − 1) 327 327

Mean df/sire, d̃g* 116.9 127.8
Z CV Z CV

Untransformed 2.256 0.146 2.511 0.153
Log transformed 2.838 0.177 3.414 0.194
Trimmed 1.577 0.100 1.740 0.109

* 112.9 and 121.9 for trimmed data.

Summing over mating groups, X =
∑
g Xg, and equating observation to ex-

pectation from (4) gives an estimate,

γ̂2 =

[
X −
∑
g

( fg − 1)
]/(1

2

∑
g

d̃g
)
. (6)

CV(VW) was estimated as
√
γ̂2. The average variance within sires, VW , and

subsequently the variance between sires in within sire variance, VB, were esti-
mated by pooling s2

gi over mating groups, and V(VW) was estimated as γ̂2V2
W .

The above procedure is much more straightforward than that suggested by
Hill [8] which was based on analysis of s2

gi to estimate VB rather than on ln(s2
gi)

to estimate the CV(VW) as here, and gives similar estimates.
For the data included in the analysis from the 50 mating groups, the number

of degrees of freedom between sires ( fg − 1) ranged from 2 to 10, with 1, 1, 7,
and 5 mating groups having 2, 3, 4 and 5 df, respectively, and the remaining
36 having 6 − 10 df. The total df between sires within mating groups was 327.
The values of d̃g (approx. within sire df) ranged from 90.2 to 151.7 for data
on male progeny and from 49.9 (group 50) to 145.2 for females. In only 5
mating groups for males and 3 for females was d̃g < 100. The means of the d̃g
(weighted by fg−1 as in the final analysis) were 127.8 for males and 116.9 for
females (Tab. II).

Visual inspection of untransformed data on bodyweights showed no obvi-
ous signs of non-normality. However skewness and kurtosis coefficients calcu-
lated within each hatch group within mating group provided clear evidence of
non-normality, with a substantial proportion of hatch groups showing negative
skewness and positive kurtosis. On closer scrutiny much of the data was found
to have outliers in the lower tail of the distributions.

Analyses were therefore repeated on a trimmed version of the data (Tab. II)
after the exclusion of outliers, defined for each hatch group as observations
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falling outside the inner fences of the standard ‘box and whisker’ plot [25]. The
box extends from the first to third quartile, and the inner fences are placed 1.5
box lengths from the edges of the box. For normally distributed data, the box
length is 1.35 SD, and the fences are 2.7 SD either side of the mean. The result-
ing data sets were 1.9% and 2.4% smaller for males and females respectively,
and the mean d̃g was 112.9 and 121.9 for males and females respectively.

2.2.4. Additive genetic variance of residual variance
and other components

The additive genetic variance in within family variance was estimated as
VAV = 4V(VW) because one-quarter of the additive variance is between sire
families under the assumption that sires and dams are unrelated. The conven-
tional additive genetic variance, VAM, was estimated as four times the variance
of sire family effects for bodyweight, Sgi, from (1), pooled over mating groups
(direct from the REML analysis). The covariance (×4) of Sgi and the variance
within mating groups was calculated and similarly pooled over mating groups
to obtain an estimate of covAMV , the additive genetic covariance of mean and
within family variance [10]. These estimates are not unbiased, but provide a
reference point.

3. RESULTS

3.1. Description of data

Mean bodyweights and residual variances of progeny are given for each
mating group in Figure 1 and overall in Table I (computed as the mean,
weighted by df for sires in each mating group). There is a substantial increase
in mean body weight, presumably genetic change due to selection as shown
by previous analyses in nucleus broiler populations [17]. There is also a trend
over time in the residual variances after fitting model 1, with those for males
increasing more than for females. The change in mean is, however, greater than
that in phenotypic standard deviation; hence the coefficient of residual varia-
tion (residual SD/mean) from fitted regression on mating group number fell
over the three years, from about 6.8% to 6.4% in males and from about 6.2%
to 5.4% in females.
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Figure 1. Mean 35-day bodyweights (upper panel) and mean residual variance (lower
panel) of 35-day body weight within dam families for male and female progeny of
each mating group.

3.2. Heterogeneity amongst sires in residual variance

To illustrate the heterogeneity of variance among sires in variance within
sires, values of Zg (see (5)) for each mating group and sex are given in Fig-
ure 2. The quantity has expected value 1 in the absence of heterogeneity, which
is shown as a reference line in the graphs. The preliminary test for heterogene-
ity (following Eq. (2)) showed that out of the 50 mating groups, there was
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Figure 2. Heterogeneity of log(s2
gi) (shown as Zg) for each mating group for males

(upper panel) and females (lower panel). Dashed line shows expectation under null
hypothesis of no heterogeneity (Zg = 1). Circles show results after removal of outliers.

significant (P < 0.05) heterogeneity in 21 and 24 individual mating groups for
male and female offspring respectively. Pooled over groups, the heterogeneity
was very highly significant (P < 0.001) in both sexes. The trimming of outliers
using the Tukey plot (consequent values of Zg are also shown in Fig. 2) made a
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Figure 3. Relationship of sire effects on mean and variance for males (left panel,
r = −0.14), and females (right panel, r = −0.12).

substantial difference, with only 10 and 13 mating groups significantly hetero-
geneous, although overall the heterogeneity remained very highly significant
(P < 0.001 in both sexes).

Estimates of the coefficient of variation between sires in the within dam
within sire variance, CV(VW) for both untransformed and transformed data are
given in Table II. As anticipated from Figure 2, these are substantial, 15% for
both males and females on the untransformed data. The standard error of these
estimates, obtained avoiding distributional assumptions by bootstrap sampling
of mating groups and thus of Xg values (Eq. (2)), is approximately 1.5%.

There was not a strong scale effect as indicated by a mean-variance relation
(cf. Fig. 1). Consequently reanalysis of the data after log transformation gave a
very similar pattern (not shown) to the heterogeneities for each mating group as
shown for untransformed data in Figure 2, and rather higher overall estimates
of CV(VW), 18% for males and 19% for females. Trimming of the data to
remove outliers led to a reduction in the levels of heterogeneity, and CV(VW)
fell to 10% in males and 11% in females (Tab. II).

3.3. Relation between sire progeny group mean and residual variance

In Figure 3, the uncorrected estimate of the deviation from its respective
mating group mean of the residual variance for each sire, s2

gi, is plotted against
the sire effect on the mean (from the REML analysis based on model (1), also
expressed as a deviation from mating group mean).
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Table III. Summary of estimates of parameters for untransformed and untrimmed
data: population mean (mean), phenotypic variance (VP), mean within family variance
(Vw), variance between sires of within family variance Vvw, proportion of variance
between sires explained by within sire variation CV(Vw), additive genetic variances in
mean performance (VAM), and residual variance (VAV), and their covariance (covAMV )
and correlation (corrAMV ). Weights are in units of decagrams (1dg = 10g).

Males Females

Mean (dg) 229 205

VP (dg2) 362.6 278.7

VW (dg2) 315.0 238.1

CV(VW) % 14.6 15.3

V(VW) (dg4) 2115 1327

VAM (dg2) 55.1# 49.5#

VAV (dg4) 8460 5310

covAMV (dg3) −116.4 −57.1

CorrAMV −0.17 −0.11

# Estimated SE of VAM : males 7.00 dg2, females 5.52 dg2.

Estimates are given in Table III for the additive genetic variance of sire
effects upon the mean (VAM), the equivalent for the residual variance (VAV)
obtained as 4V(VW ) = 4[CV(VW)×VW]2 (from Tab. II, i.e. for untransformed,
untrimmed data) and their covariance (covAMV). There is a small negative cor-
relation between the sire effects on mean and variance for both sexes (Fig. 3,
Tab. III).

3.4. Relation between estimates from male and female progeny

The association between sire effects of male and female progeny for mean
body weights and for residual variances is shown in Figure 4. When calculated
within mating groups and pooled, weighted by df for sire families, the corre-
lations of effects between the sexes were 0.74 for means and 0.11 for residual
variances. Outliers were evenly distributed across sires therefore trimming had
a small effect on many sires rather than a large effect on a few. Consequently
trimming of outliers increased the correlations marginally, to 0.75 and 0.18 for
means and residual variances respectively.
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Figure 4. Relationship of sire effect on mean weight of male and female progeny (left
panel, r = 0.74) and on residual variance of male and female progeny (right panel,
r = 0.11).

4. DISCUSSION

4.1. Evidence for genetic heterogeneity of residual variance

Evidence of heterogeneity was based upon the assumption that the body
weights were approximately normally distributed and consequently that the
residual variances would be chi-squared distributed. The observed variance
amongst sires in residual (within dam family) variance was significantly
greater than expected. Furthermore, 37 and 39 out of 50 estimates for males
and females were greater than expectation (illustrated in Fig. 2). The magni-
tude of the heterogeneity is most simply expressed as the coefficient of varia-
tion of the residual variances (after they were corrected for sampling). These
CVs were approximately the same for males and females (15%, respectively).
Estimates were slightly increased by log transformation of the data (Tab. II)
indicating that they were not a consequence of a simple scale relationship of
means and standard deviations. Inspection of Figure 2 does, however, show
that particularly in males the magnitude of the heterogeneity tended to increase
in later mating groups. This is redressed to some extent by removal of out-
liers within hatch within mating group although this fails to reduce CV(VW)
by more than 1/3. It is moot, however, as to what is the appropriate level
of trimming of the data: the aim was to remove particularly aberrant birds,
which for example had grown very poorly perhaps as a consequence of some
disease challenge or other unidentified sources, and which caused substantial
skewness in the data. But trimming is also likely to reduce estimates of real
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heterogeneity, because obviously the sire families in which individuals are
most variable are most likely to have individuals excluded. Thus the estimated
CV(VW) of around 10% after trimming is probably biased downwards.

There were, however, some contra-indications of genetic variation in resid-
ual variance. The correlation between sires of estimates of residual variance
from male and female progeny was very low, in contrast to that on the mean
(Fig. 4). The limited numbers in each sire family would only partly account
for this low correlation, although it might have been obscured during pooling
with only some mating groups showing heterogeneity.

4.2. Possible non-genetic causes of heterogeneity

Other possible causes of the heterogeneity have to be eliminated before it
can be attributed to a genetic effect upon the environmental variance. These
might be a breakdown in statistical assumptions, confounding environmental
heterogeneity, or confounding genetic heterogeneity.

Outliers in the original body weight data caused both skewness and kurto-
sis. However significant heterogeneity remained after removal of outliers, and
after log transformation. Our original analysis can therefore be regarded as
fairly robust. One reason for this is that family sizes were large, such that the
precise distribution of the estimates of within sire variance does not become
critical. Assuming normality, simulation [8] shows that the estimates are not
substantially biased with large families such as these.

Environmental heterogeneity could arise if, for example, sires’ offspring
were reared together and separate from those of others. That was not the case
within mating groups. Nor does it seem feasible that any covariance could arise
during the mating or hatching process, as each sire had several female mates
with progeny reared over several hatches. Covariances among members of dam
families contribute only a fraction to the sire component when, as here there are
several dams mated to each sire. Further, these data came from a breeder tak-
ing care to minimise environmental confounding of family members in order
to maximise accuracy of selection. Differential effects of competition within
or between progeny groups could lead to heterogeneity of variance, but that
seems better regarded as a real factor that has been properly included rather
than a source of bias.

4.3. Possible genetic causes of heterogeneity

The residual or within dam-family variance comprises the environmental
variance and one-half of the additive and three-quarters or more of dominance
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and epistatic genetic variance components. A gene with large effects upon the
mean segregating in the population could be a source of heterogeneity. Indeed
heterogeneity of within family variance has been used as a test for the segre-
gation of major genes such as those found in QTL studies (see review by Hill
and Knott [9]), albeit not a powerful one. Although there is evidence of quanti-
tative trait loci (QTL) segregating within families even after many generations
of selection, genes of such large effect would rapidly be fixed, and have not
been observed in segregating populations [2].

A recent review of QTL analysis in chicken [11] reports the majority of
QTL for body weight are additive with effects between 0.3 and 1.0 phenotypic
standard deviations. Such genome scans for QTL affecting growth suggest at
least 6–8 mostly additive genes of large effect. De Koning et al. [2] do identify
one QTL for body weight segregating in a different line of commercial broiler
chickens that contributes approximately 24% of the within family variance. We
have no information as to whether the QTL was additive, and also De Koning
et al. point out that estimates of the proportions of variance removed by QTL
are biased upwards.

In the Appendix, the possible contribution due to segregation of genes of
large effects is considered. For intermediate gene frequencies, the coefficient
of variation of within family variance relative to the heritability (CV(Vw)/h2)
is of order 1/(2

√
n) for n dominant loci and 1/(4

√
n) for n additive loci. The

impact is therefore greater for dominant than additive loci, and is approxi-
mately inversely proportional to the square root of the number of loci. In the
present example, h2 ∼ 0.17 and CV(VW) ∼ 0.15, so segregation of additive
genes of large effect would be unlikely to contribute a large part of this het-
erogeneity. Indeed although an additive gene with an effect of one standard
deviation or 21 dg could potentially contribute 12% of heterogeneity between
sires, the additive genetic variance would be more than 4 times that observed.
The observed CV(Vw)/h2 of 0.88 suggests that there would need to be one or
two dominant loci segregating at low frequencies controlling the trait.

Furthermore, such genetic segregation could not explain the low correla-
tion of the heterogeneity between male and female progeny shown in Figure 4
which, apart from sex linked genes (unlikely, as the sire is homogametic) or
sex limited genes (unlikely, as the correlation of mean weights in males and fe-
males is high) would be expected to contribute similarly to males and females.
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4.4. Evidence for environmental sensitivity

Strong evidence for genetic variation in environmental variance also comes
from direct analysis by Mackay and Lyman [16] of variance in bristle number
among isogenic lines of Drosophila derived from natural populations, and in
farmed species from more formal analyses than that presented here incorporat-
ing Bayesian models including genetically structured environmental variation
for data on litter size of sheep [23], litter size of pigs [24] and body weight
of snails [20]. Under the assumption that genetic segregation is unlikely to be
the cause, the heterogeneity can be attributed to differences in response to en-
vironmental conditions. Both plasticity and canalisation can be explained by
environmental sensitivity under genetic control, where variation or stability of
expression are selected for directly when fitness is related to the ability to adapt
or to control phenotypic expression respectively [26]. Where it is important to
have constancy over environments, such as homeostasis of temperature con-
trol, genotypes with low variability will be fittest; whereas if environment is
constantly changing, adaptation will bring fitness benefits for a range of phe-
notypic expression.

Genes that affect the mean and the variance also perhaps explain why the
coefficient of variation in many traits lies within a narrow range across species
and why there is often a mean variance relationship in quantitative traits. There
is also evidence of greater environmental sensitivity in inbred compared to
outbred populations [14]. This could be explained by homozygotes having a
greater effect upon the variance by fixing additive alleles that increase variance.

4.5. Prediction of response to selection

A small negative correlation between sire effects on the mean and the vari-
ance was observed in this study, indicating little association between gene ef-
fects on mean and variance. In previous studies, a stronger negative correlation
(−0.62) was found by Sorensen and Waagepetersen [24] and positive correla-
tions of 0.19 and 0.8 by SanCristobal-Gaudy et al. [23] and Ros et al. [20],
respectively, although partly explicable as a scale effect.

If there is genetic variation in residual variance, intense directional selec-
tion for a trait can lead to increases in both residual and phenotypic vari-
ance because individuals of more variable genotypes are more likely to be
selected [7, 10]. A negative covariance of genetic effects on mean and vari-
ance implies that the change in variance would be lessened or even reversed.
Selection in this population used information on individuals, full and half sib
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families for multiple traits, and so it is not possible to make precise predictions
of changes in variance. Simple calculations based on the model of Hill and
Zhang [10] and assuming intense mass selection on body weight indicate that
the negative correlation would be too small to prevent an increase in variance,
but family selection puts less pressure on the performance of extreme animals
and would further dilute the effect.

If genetic variation in environmental variance can be incorporated into cur-
rent selection tools, this could be of particular interest in threshold traits such
as fecundity [23] and also where homogeneity of product is desirable, or even
serve to harness a further source of variation.

5. CONCLUSIONS

A sire effect amounting to up to 15% of residual variance is supported by
evidence from recent studies [20, 23, 24]. These involved very different ap-
proaches yet the magnitude of the effects found were similar, with CV(VW)
ranging from 0.11 to 0.29 when scaled by residual variance. The present data
set is bigger than any yet presented, the first to examine a trait in both sexes,
and, furthermore, the method has the benefit of transparency in that the mag-
nitude of heterogeneity can be viewed for subsets of the data. It is, however,
difficult to explain the low correlation of sire effects for males and females
on the variance if the heterogeneity is genetically structured. Previous studies
have considered traits measured in one sex or hermaphrodites. In turn the pro-
portion of variance explained is similar for both sexes. What is clear is that the
assumption of homogeneous residual variance underpinning many statistical
tests such as ANOVA is violated. Although after careful examination of the
data the removal of outliers reduced the estimate of heterogeneity by one third
this still left 10–11% unaccounted for.

Further work is needed to consider the consequences of heterogeneity in
selection programmes. Considerations include the possibility of accounting for
and even utilising the genetic component in heterogeneity of residual variance
using available estimation tools such as BLUP.
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APPENDIX
HETEROGENEITY DUE TO GENETIC SEGREGATION
VARIANCE

Consider a single locus with two alleles A1 and A2, with frequencies p and
q = 1− p, respectively, and genotypic values A1A1 a, A1A2 d and A2A2 a. As-
suming random mating, the variances within full sib families for each mating
type are:

A1A1 × A1A1 and A1A1 × A2A2 and A2A2 × A2A2: 0

A1A1×A1A2: (a−d)2/4; A1A2×A2A2: (a+d)2/4; A1A2×A1A2: a2/2+d2/4.

For an A1A2 sire, for example, the mean within dam family variance is
ν12 = p2[(a − d)2/4] + 2pq[a2/2 + d2/4] + q2[(a + d)2/4]. Variances are sum-
marised in Table (A.I).

The variance between sires in within dam family variance is var(VW) =∑
fi jν

2
i j − (
∑

fi jνi j)2. As general formulae in terms of p, q, a and d are messy
and uninformative, we give examples.
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Table A.I. Mean within dam family variance.

Sire genotype Frequency Mean within dam family variance
A1A1 f11 = p2 ν11 = 2pq[(a − d)2/4]
A1A2 f12 = 2pq ν12 = (1 + 2pq)a2/4 + d2/4 + (q − p)ad/2
A2A2 f22 = q2 ν22 = 2pq[(a + d)2/4]

Additive gene action (d = 0): variation within families from segregation
from the dam does not depend on the sire’s genotype. Then ν11 = ν22 = 1/4a2,
and var(VW ) = 2pq(1 − 2pq)(a4/16), simplifying to var(VW ) = a4/64 at its
maximum when p = 1/2. The heritability contributed by the locus is h2 =

2pqa2/VP, where VP is the phenotypic variance. Assuming for simplicity that
the trait is determined by n identical loci, then h2 = 2npqa2/VP and unless the
heritability is very high and there is a large environmental correlation of sibs,
the mean variance within families approximately equals VP. Hence CV(VW) ≈
[2npq(1 − 2pq)]1/2a2/VP, and CV(VW)/h2 ≈ 1/(4

√
n)[1/(2pq) − 1]1/2. For

p = 1/2 at all loci, CV(VW)/h2 ∼ 1/(4
√

n), increasing as p departs from 1/2,
reaching ∼0.36/

√
n at p = 0.2. If gene effects differ among loci, the effective

number of loci (weighted by a4) replaces n. Thus only if the effective number
of loci is very small (< 4 say), does CV(VW) become of similar order to h2.

Complete dominance (d = a): there is no variation among progeny of A1A1

sires, so ν11 = 0, and also ν12 = q(1 + p/2)a2, ν22 = 2pqa2, with mean
ν. = pq2(3 + q)a2. Although var(VW ) = 2pqv2

12 + q2ν222 − ν2. has pq3 as a
factor the equation is messy; but for p = 1/2, var(VW ) = (17/256)a4 ∼ a4/16.
The additive genetic variance is 8pq3a2, giving VA = a2/2 for p = 1/2. Hence,
making the same assumptions as for the additive case, CV(VW)/h2 ∼ 1/(2

√
n).

The segregation variance contributes more with dominance, as expected from
the contrast in variances within families of A1A1 vs. A2A2 sires.


