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Abstract. We consider the natural combinations of algebraic compu-
tational effects such as side-effects, exceptions, interactive input/output,
and nondeterminism with continuations. Continuations are not an alge-
braic effect, but previously developed combinations of algebraic effects
given by sum and tensor extend, with effort, to include commonly used
combinations of the various algebraic effects with continuations. Con-
tinuations also give rise to a third sort of combination, that given by
applying the continuations monad transformer to an algebraic effect. We
investigate the extent to which sum and tensor extend from algebraic
effects to arbitrary monads, and the extent to which Felleisen et al’s C
operator extends from continuations to its combination with algebraic
effects. To do all this, we use Dubuc’s characterisation of strong monads
in terms of enriched large Lawvere theories.

1 Introduction

It is a very great pleasure to contribute to this Festschrift for John Reynolds.
Continuations have been an abiding interest of John’s, starting with his 1972
paper on definitional interpreters and with his most recent contribution being a
historical piece on the origins of continuations [48–52]. Continuations have had
several uses in programming languages and their theory. They have provided
translations between languages, been used to give semantics for programming
languages and have been employed in compilers. They also appear explicitly in
programming languages where the programmer is given access to them as ‘first-
class entities’ via control operators such as Rees and Clinger’s call/cc [46]
or Felleisen et al’s C [10, 11]. Two such languages are the untyped language
Scheme [1] and the typed language ML, particularly New Jersey Standard ML [8].

In this paper we concern ourselves with continuations in programming lan-
guages, in particular, the relation between continuations and other computa-
tional effects such as exceptions, side-effects, input/output and nondeterminism.
? This work has been done with the support of EPSRC grant GR/S86372/01, AIST
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This work forms part of a research programme to develop a theory of computa-
tional effects, following on seminal work of Eugenio Moggi who proposed the use
of strong monads T to uniformly model computational effects [33, 34]. He fur-
ther introduced the computational λ-calculus as a basic functional call-by-value
language for computational effects, modelled in the Kleisli category of T , and
introduced monad transformers as a way of combining effects [6].

One needs to have operations in the language to actually make the effects hap-
pen. The research programme focuses on these operations and their interaction
as primary, via equational or Lawvere theories. In [40] it was shown how various
well-known such monads arise as free algebra monads for natural such theories of
the operations; in [18] it was shown how monads for combinations of such effects
corresponded to natural combinations of the underlying equational or Lawvere
theories, viz the sum or tensor of theories. This yielded a systematic account of
monad transformers as well as a corresponding theory of operation transform-
ers. Where possible the work was carried out at a rather general level, that of
enriched category theory [22], for example considering Lawvere V -theories [43]
and their combinations. One benefit of the more general approach is the ability
to include domain-theoretic considerations, taking V to be, for example, ω-Cpo,
the category of ω-cpos and continuous functions. A survey of the work done so
far on this programme of an algebraic theory of computational effects appears
in [42].

The operations considered are special ones, termed algebraic operations [41].
Working in Set, these are transformations of the form:

opX : (TX)I −→ (TX)O

subject to a certain naturality requirement. The monads that arise from equa-
tional theories of such operations are also special: they have a rank, meaning
that for some cardinal κ they preserve κ-filtered colimits, see [2, 23]. Indeed in
all natural examples they have finite or countably infinite rank. In our previous
work the equivalence between V -monads of, say, countable rank and countable
Lawvere V -theories was central to our analysis.

There are also natural operations that are not algebraic, with a notable
example being exception handlers. Following a suggestion of Filinski one may
call the algebraic operations constructors in that they create effects, whereas
operations such as exception handlers are deconstructors in so far as they analyse
what effects have happened. It seems that even when deconstructors are present,
the monads are given by the theories on the constructors, as is, for example, the
case for exceptions. However, at present no general mathematical account of
deconstructors is available.

Moggi could include continuations via the monad RR−
. However this monad

does not have a rank. Furthermore, none of the natural operations are algebraic,
in fact they do not even have the required form. For example, consider the typed
version Cσ : ((σ → 0) → 0) → 0 of Felleisen et al’s control operator, introduced
by Griffin [15]. This is modelled by a transformation of the form:

CX :¬T¬T X −→ TX



where ¬T X =def T0X . As well as not having the right form to be an algebraic
operation, C− inherently involves contravariance owing to the use of ¬T . It may
perhaps best be thought of as a logical operation rather than an algebraic one,
as is, indeed, suggested by the various works linking continuations and classical
logic within the Curry-Howard paradigm, e.g., [15, 36]. We choose to focus on C
for reasons which we find persuasive though possibly not definitive: most other
control operators are definable from it; the corresponding rule is central in nat-
ural deduction treatments of classical logic; and the operator is mathematically
both natural and elegant. An operator not definable from C is prompt , but that
fits within classical subtractive logic rather than classical implicational logic [3].

In Section 2 we discuss the structure needed to support the combination of
the computational λ-calculus, continuations and algebraic effects. It consists of a
monad T , a continuations transformation C, and a map of monads S → T where
S is the monad for the algebraic operations at hand. We particularly consider
what axioms to impose on the continuations operator. As regards combinations of
continuations with other effects one can apply exception and state transformers
and there is also the well-known continuations transformer. We examine the three
constructions in Sections 3, 4 and 5 respectively. As we shall see, strong axioms
on the continuations transformation are not preserved by the sum construction.
Also, other than in the case of the continuations transformer, we unfortunately
have no universal characterisation of the combinations in terms of axioms on
exceptions, or state, and continuations.

A question arise as to the mathematical status of these combinations, and
of corresponding extensions of the operations. One problem is that if one wishes
to think in terms of Lawvere theories then one needs a notion of large Lawvere
theory, to correspond to monads without a rank. Fortunately, an enriched notion
of such theories has previously been developed by Dubuc [9]. He showed that to
give an arbitrary strong monad on a complete and cocomplete cartesian closed
category V is equivalent to giving what we call a large Lawvere V -theory. That
equivalence is less complex than the size-restricted one: given a strong monad T ,
its large Lawvere V -theory LT is given by Kl(T )op, the opposite of the Kleisli
V -category. But the price for that simplicity is that sums and, we conjecture,
tensors do not exist in general. We recall and explain the result in Appendix B,
and we feel free to use it as convenient: it is often simpler to work in terms of
theories and, indeed, that is how we discovered several of our results.

We end the paper in Section 6 with a formula for a typical combination
of effects, making clear the elegance and simplicity obtained by our analysis,
followed by some discussion of what is missing in our account and what remains
to be done.

For the sake of simplicity of exposition, we express our results without refer-
ring to enrichment, that is we take V = Set. However, all of our general results
extend to the enriched case in a standard way [21]; see [18] for an example. In
particular they extend to the important case where V = ω-Cpo where the strong
monads are exactly the locally continuous monads often considered in domain
theory, i.e., those respecting lubs of ω-chains of morphisms.



2 The Computational λ-Calculus, Continuations and
Algebraic Operations

A categorical treatment of the control operation C has been given recently by
Führmann and [14], partly following on previous work of Hofmann [17]. We adapt
this a little to the context of the computational λ-calculus, λc, treating first-class
continuations in terms of suitable basic types and unary function symbols and
their rules. We give an account of this calculus in Appendix A, extended with
type variables in order to get a smoother treatment of the relation between
conditions on the interpretation of the calculus and semantic properties, such as
the truth of equations. See [16] for another account of this calculus and [33] for
the original source.

To model λc by itself in Set we assume given a monad T , noting that in Set
all monads have a unique strength and all monad maps are strong (i.e., they
commute with the strengths). The Kleisli exponential X ⇒T Y =def TY X acts
functorially as an ‘implication’ bifunctor ⇒T: (SetT )op × SetT → Set; pre- or
post-composing with the left adjoint J : Set → SetT yields bifunctors on Set
or SetT , respectively; we may omit J when writing these, if it is clear what is
meant from the context.

We next assume given a basic type symbol 0 together with a family of con-
stants Aσ : 0 → σ. We interpret 0 by the initial object of Set, viz the empty
set, and then the Aσ receive a unique interpretation, and Hofmann’s equations
A-Abs and A0-Id are satisfied. Using Moggi’s logic for λc these can be written
as, respectively :

Γ, f : (σ → τ) ` f(Aσ(M)) = Aτ (M)

for Γ ` M :σ and:
Γ ` A0(M) = M

for Γ ` M :0. Our interpretation also validates the following rule, written using
Moggi’s existence predicate:

Γ ` M ↓
Γ ` Aσ(M)↓

Finally, recall ¬T X from the Introduction: this is the object part of a ‘negation’
contravariant functor ¬T = − ⇒T 0 : Setop

T → Set; as before, pre- or post-
composing with J we obtain functors on Set or SetT , respectively, and we may
again omit the J .

The typed continuations operator Cσ : ¬¬σ → σ (where ¬σ =def σ → 0) is
interpreted using a transformation:

CT :T0T0− −→ T

Before considering axioms for this transformation, it will be helpful to see how
the continuation monad arises as a standard construction, and to discuss some
of its properties.

One has a self-adjoint contravariant functor R− :Setop → Set for any given
set R; the monad associated to this adjunction is the continuations monad RR−

.



The unit ηX : X → RRX

is given by the formula ηX(x)(κ) = κ(x), and, for
any map f : X → RRY

, its Kleisli extension f ] : RRX → RRY

is given by the
formula f ](γ)(κ′) = γ(x 7→ f(x)(κ′)). The corresponding large Lawvere theory
is equivalent to the full subcategory IR of Set given by exponentials of R, i.e.,
IR(X, Y ) = Set(RX , RY ).

Proposition 1. The following are in 1-1 correspondence for any monad T and
set R:

1. T -algebras r :TR −→ R on R
2. monad maps d :T −→ RR−

3. maps of large Lawvere theories F :LT −→ IR

The correspondences are natural in T and R.

Proof. The correspondences between the first two are in [21, 24]: for any T -
algebra r :TR → R, the monad map is given by dX(γ) = κ ∈ RX 7→ r(T (κ)(γ)),
and given the monad map d the T -algebra map is given by r(γ) = dR(γ)(idR),
and these correspondences are mutual inverses. The correspondences between
the last two follow from the above characterisation of the large Lawvere theory
of RR−

. In one direction, given d, the component of F at X, Y , viz the map
FX,Y :Set(Y, TX) → Set(RX , RY ) is given by FX,Y (f)(κ)(y) = dX(fy)(κ).

It follows that we have a monad map:

dT :T → T0T0− = ¬T¬T

given by dX(γ) = κ ∈ T (0)X 7→ κ](γ) where κ] ∈ T (0)T (X) is the Kleisli
extension of κ. Note the special case where T is the continuations monad RR−

.
Here there is an evident isomorphism θ : R ∼= T0 and so T and T0T0− are
isomorphic and dT is, in fact, the isomorphism. Its inverse provides the standard
interpretation of the continuations operator. Explicitly:

CT
X(F ) = κ ∈ RX 7→ θ−1(F (θoκ))

With this interpretation in mind, returning to the question of how to choose
axioms for C, it is natural to seek axioms for the transformation CT in terms of
its relation to dT . One evident such property is that CT is a retract, meaning
a left inverse to dT . This is equivalent to Hofmann’s equation C-App holding,
that:

Γ ` Cσ(λκ.σ → 0.κM) = M

for Γ ` M :σ; the implication from the rule’s holding to the semantic property
makes evident use of the availability of type variables. Another evident such
property is that CT is right inverse to dT ; this is equivalent to Führmann and
Thielecke’s equation C-Delay holding, that:

F :¬¬σ ` λκ.κ(CσF ) = F



Yet another property is that CT is a natural transformation in SetT from ¬T¬T

to Id, i.e., the following diagram commutes in SetT for all X,T and f :X → TY :

¬T¬T X
CX

> X

¬T¬T f

∨ ∨

f

¬T¬T Y
CY

> Y

This property is equivalent to Hofmann’s equation C-Nat holding, that:

Γ, f :σ → τ ` f(Cσ(M)) = Cτ (λκ :τ → 0.M(λx :σ.κ(fx)))

for Γ ` M :¬¬σ.
The final property we consider is that C is a map of monads. Taking this

apart, naturality in Set is equivalent to the following restricted version C-Natt

of C-Nat holding:

Γ, x :σ ` V ↓
Γ ` V (Cσ(M)) = Cτ (λκ :τ → 0.M(λx :σ.κ(V x)))

for Γ ` V : σ → τ . Preservation of multiplication is equivalent to the following
equation C-Kleisli holding:

f :σ → ¬¬τ, u :¬¬σ ` Cτ (λk :¬τ. u(λx :σ. fxk)) = Cτ (f(Cσ(u))

Preservation of the unit corresponds to the following equation C-Unit holding:

x :σ ` Cσ(λκ.σ → 0.κx) = x

but that is just an instance of C-App.
Some interesting relationships then hold between these properties:

Proposition 2. Suppose that CT is left inverse to dT . Then the following are
equivalent:

1. CT is right inverse to dT .
2. CT is a natural transformation in SetT

3. CT is a monad map.

Proof. That the first two are equivalent under the given assumptions is essen-
tially given in [14], though the statement and proof there are syntactic. For the
implication from the first to the second, one checks that the following diagram
commutes in Set:

TX
dX

> ¬T¬T X

f ]

∨ ∨

¬T¬T f

TY
dY

> ¬T¬T Y



But then, as dT and CT are, by assumption, inverses, the conclusion follows.
For the converse implication first note that ¬T¬T 0 ∼= T0 in Set, with the

inverse to dT
0 being F 7→ F (ηT

0 ). So as CT
0 is left inverse to dT

0 , we have that
CT
0 = F 7→ F (ηT

0 ). Then, taking Y = 0 in the naturality diagram, and any
f :X → T0, one calculates that, for F ∈ ¬T¬T X, f ](C(F )) = F (f).

For the third property, if two transformations are mutually inverse and one
is a monad map then so is the other. Conversely, fix a map f :X → TY to show
naturality in SetT . We have to show, in Set, that µT

Y
o(Tf)oCT

X = CT
Y

o¬T¬T f .
We have:

µT
Y

o(Tf)oCT
X = µT

Y
oCT

TY
oRRf

(by naturality of CT in Set)

= µT
Y

oCT
TY

oRRCT
Y

oRRdT
Y

oRRf

(dT is right inverse to CT )

= CT
Y

oµRRY oRRdT
Y

oRRf

(preservation of the multiplication)
= CT

Y
o¬T¬T f

with the last line following from the equation µRRY oRRdT
Y

oRRf

= ¬T¬T f , whose
verification is a straightforward calculation.

That said, what axioms should one assume on the continuations operator?
To model continuations without any other effects, one simply assumes that CT is
a two-sided inverse to dT , following [14]. Note that this trivially characterises T

as being (isomorphic to) the continuations monad T0T0− . This can perhaps be
regarded as a natural characterisation of the continuations monad via properties
of C, and roughly analogous to our previous characterisations of other monads
by equational means. Unfortunately there is a big difference between the two
situations: the other characterisations are stable in that when the effects are
combined with other effects, the resulting monads can be characterized in terms
of the equations of each collection of operations separately, possibly together
with other, new, equations. However, as we shall see, when continuations are
combined with exceptions the isomorphism no longer holds.

In general, therefore, we assume only that CT is a natural transformation
in Set, left inverse to dT . The only claim we make for this axiomatisation is
an empirical one, that the axioms are true in all the cases we know, with one
exception. The exception is New Jersey Standard ML where the capture/escape
mechanism gives modeling difficulties. This is discussed further in the conclusion,
and our present view is that we prefer not to include this case in our theory but
rather to argue against the capture/escape mechanism.

The axiomatisation seems rather weak, and it would be good to test it, per-
haps by attempting to determine whether it implies the soundness of operational
semantics of continuations and effects such as those of [54, 55]; Proposition 2
shows that some possible strengthenings are too strong as they imply that C is
an isomorphism. In the following, we study both how our assumption and the as-
sumption of invertibility propagate under the various combinations of algebraic
effects and continuations.

We now turn to incorporating algebraic operations, and begin with some
generalities. For any monad T , an algebraic operation of arity (I,O) over T is a



family of maps:
op:(T−)I → (T−)O

natural in SetT . There is a 1-1 correspondence between such algebraic opera-
tions and generic effects g : O → TI [41], i.e., morphisms from I to O in the
large Lawvere theory of T . The result is an instance of the Yoneda embedding.
Explicitly, the correspondence is as follows: given such a g, the corresponding
algebraic operation is:

(TX)I = (I ⇒T X)
g ⇒T X

> (O ⇒T X) = (TX)O

and given an algebraic operation op, the corresponding generic effect is:

1
pηIq

> (TI)I
opI

> (TI)O

In the case of monads presented by a finitary or countably infinitary equa-
tional theory, every operation symbol in the signature of the theory is associated
to an algebraic operation, namely the one which at X is the interpretation of that
operation symbol in the free algebra T (X). These algebraic operations therefore
obey the equations of the equational theory at every X. There is also a con-
verse: that every algebraic operation is definable from the algebraic operations
corresponding to the operation symbols in the signature of the theory.

Let us now consider algebraic operations op : (RR−
)I → (RR−

)O of arity
(I,O) on the continuations monad RR−

. These are in 1-1 correspondence with
maps g : O → RRI

and so with maps h : RI → RO which can be thought of as
operations on R of arity (I, O). Given such an operation h, the corresponding
algebraic operation is defined in a pointwise fashion as:

opX = (RRX

)I ∼= (RI)RX hRX

−→ (RO)RX ∼= (RRX

)O

If one has a monad map m : T → T ′ then, given a generic effect O → TI
for T , one obtains one for T ′ by composition with mI . It follows from the above
equivalence of generic effects and algebraic operations that, given an algebraic
operation op of arity (I,O) over T , one can obtain another, op′, of the same arity
over T ′. One can regard op′ as a lifting of op in that m acts homomorphically
with respect to op and op′, meaning that the following diagram commutes for
all sets X:

(TX)I
opX

> (TX)O

(mX)I

∨ ∨

(mX)O

(T ′X)I

op′X
> (T ′X)O

Conversely, if op, op′ are algebraic operations such that the above diagram com-
mutes then op′ can be obtained from op by the above process, i.e., the generic



effect associated to op′ is obtained from that associated with op by composi-
tion along the monad map. This process of lifting algebraic operations from
one monad to another is explained further and exemplified in [18], albeit in a
somewhat different mathematical context. In the case where T is presented by a
finitary or countably infinitary equational theory, the extensions of the algebraic
operations associated to operation symbols in the signature of the equational
theory also obey the equations of that theory.

Returning to the structure needed to model continuations with algebraic
effects, we assume an additional monad S together with a monad map m :S → T .
The new monad is to be thought of as comprising the algebraic operations and
their equational relationships, which latter the monad map permits to be lifted
to T . It will generally be given by a finite or countable Lawvere theory and one
will have an explicit equational presentation.

Any operation over S therefore lifts to one over T and thence, using dT ,
to one over T0T0− , where it is pointwise. Furthermore, since CT is left inverse
to dT , we see, by consideration of the relationship between generic effects and
algebraic operations and the above remarks, that it acts homomorphically on
the latter two operations.

For example, suppose we are given a binary algebraic operation:

opX : (SX)2 → (SX)1 ∼= SX

We introduce an extension of λc with expressions of the form op(M,N), of
type σ when both M and N are, and interpret them using the extension of the
binary algebraic operation. A more specific example is where S is the monad for
nondeterministic choice, given by the theory of semilattices, i.e., with signature
a binary operation symbol and with axioms of associativity, commutativity and
idempotency; S is then the non-empty finite subsets monad and op is modelled
by set-theoretic union. The axioms hold for the extension to T so that, for
example, the following general associativity equation holds:

(L opM) opN = L op (M opN)

where L, M , N all have the same type, and we are using infix notation.
The naturality of the algebraic operation op is equivalent to the following

commutativity equation for (strict) evaluation contexts:

E[M opN ] = E[M ] op E[N ]

(see Appendix A for a brief discussion of evaluation contexts). For example, the
fact that CT acts homomorphically results in the equation:

C¬¬σ(M opN) = C¬¬σ(M) op C¬¬σ(N)

where M , N have type ¬¬σ.
When S is presented by a finitary equational theory one can follow the above

pattern for all the operation symbols of the signature of that theory. When it is



presented by an infinitary theory, as in, for example, the case of the monad for
state, it is natural to seek a finitary syntax involving a bound parameter over
a base type denoting the infinitary arity. We do not give more detail here, but
some further discussion of this point can be found in [41, 37].

Following the policy stated in the introduction, only the case of Set has been
considered explicitly, but with the discussion extending to any suitable category
V . In fact, for this section, it suffices to assume that V is cartesian closed and
has an initial object, i.e., it is a model of intuitionistic logic with conjunction,
implication and absurdity. The strong monads are then precisely the enriched
ones, and similarly for maps of strong monads.

From the point of view of modelling the λc-calculus for a given T the assump-
tions on V are a little stronger than needed: one normally assumes only finite
products, a strong monad and Kleisli exponentials. However we are dealing here
with a variety of monads and their combination and we have no theorems to the
effect that if Kleisli exponentials exist for each of two monads then they also
exist for some combination of them. For that reason the blanket assumption of
cartesian closure is convenient.

Considering now the blanket assumption of initiality in V , if we assume
instead only initiality in the Kleisli category then both of the equations A-
Abs and AO-Id hold. For the above existence assertion it suffices to assume
additionally that 0 is weakly initial in V . However, for the same reasons as before,
the blanket assumption is convenient as it does not refer to Kleisli categories.

As regards modelling C with the weaker assumptions, one can still construct
dT : T → ¬T¬T , Proposition 2 goes through and so do the correspondences
between the various assumptions on CT and equations or rules in λC . However,
to treat algebraic operations in an enriched context [41], one employs the normal
apparatus of enriched category theory, making assumptions which here include
that V is cartesian closed.

3 Sum and exceptions

In this section, we consider the sum of effects. That is one of the natural ways
in which to combine algebraic effects, yielding the most commonly used com-
bination of exceptions with any other algebraic effect and the most commonly
used combination of interactive input/output with most other algebraic effects.
The sum of the interactive input/output monad with the continuations monad
does not exist in Set, as we shall see; but the sum of the exceptions monad
TE =def E + − with the continuations monad, and, indeed, any monad, always
does. As we shall show in Theorem 2 below, we are in fact able to combine
exceptions with any model of continuations. We begin with some general con-
siderations on the existence of sums of monads.



Given monads T and T ′ on an arbitrary locally small category A, consider
the pullback in the category of locally small categories:

T -Alg ×A T ′-Alg > T ′-Alg

∨ ∨

U ′

T -Alg
U

> A

Proposition 3. If A has all powers, then the sum T + T ′ of monads exists if
and only if the forgetful functor from T -Alg ×A T ′-Alg to A has a left adjoint.
And if so, the comparison functor from (T + T ′)-Alg to T -Alg ×A T ′-Alg is an
isomorphism of categories.

Proof. Given an object x of A, to give a T -action on x is, by a mild generalisation
of Proposition 1, equivalent to giving a monad map from T to xA(−,x), which
has a canonical monad structure. So, if the sum exists, applying the definition
of pullback, we are done.

Conversely, the forgetful functor from T -Alg×A T ′-Alg to A reflects isomor-
phisms and satisfies Beck’s monadicity condition. So, as the forgetful functor
has a left adjoint, by Beck’s monadicity theorem, it is monadic [4]. A monad is
determined uniquely up to equivalence by its category of algebras, so applying
the above argument again, i.e., the characterisation of an algebra in terms of
monad maps, we are done.

We should mention that the sum of monads agrees with the sum of mon-
ads with countable rank as used in [18] to model the sum of algebraic effects.
Formally, we can express this as follows:

Proposition 4. If A is a locally countably presentable category and T and T ′

are monads with countable rank on A, then the sum of monads T + T ′ exists
and is of countable rank. Moreover, it is the sum in the category of monads with
countable rank.

Proof. To give a T -action on x is equivalent to giving a monad map from T to a
modified form of xA(−,x) with countable rank [24]. We know, e.g., from [18], that
the category of monads with countable rank has sums. So, applying Proposition 3
and a corresponding characterisation of (T + T ′)-Alg for monads of countable
rank, we are done.

We now consider some specific sums from the analysis of [18]. For notation,
given an endofunctor Σ on a category A, if the forgetful functor from Σ-alg to
A has a left adjoint, we say that the resulting monad is the free monad on Σ
and write it as Σ∗. Explicitly, Σ∗ is µy.(Σy +−), the initial algebra of Σy +−,
with one existing if and only if the other does.



Theorem 1 ([18]). Let Σ be an endofunctor for which Σ∗ exists, and let T be
a monad. If µz.T (Σz + x) always exists, the sum of monads Σ∗ + T exists and
is given by a canonical monad structure on µz.T (Σz +−).

Theorem 1 includes the example of exceptions, taking A = Set and Σ to be the
functor given by the constant at E: the sum with T is given by T (E +−); one
can also give a direct proof [18, 31]. Note that the sum of monads is not the sum
of the underlying functors, i.e., it is not given pointwise.

Let us now consider the combination of exceptions and continuations. As we
said above, when there are no additional effects, we take this to be given by the
sum of the exceptions monad with the continuations monad, viz RRE+−

. This
monad is isomorphic to RRE×R−

and models the combination of exceptions and
continuations with the syntax and operational semantics described in [54, 55]. A
continuation semantics of this form is called ‘double-barrelled’ in [56], where such
semantics are classified as ‘static,’ ‘dynamic’ and ‘return’: we use the dynamic
one here.

When there are additional effects we follow the approach of Section 2 and
assume a map of monads m : S → T , with S modelling the additional effects
and a natural transformation CT left inverse to dT . Our task is then to find a
new model over the monad TE + T = T (E + −) to incorporate exceptions. We
immediately have a map of monads TE + m :TE + S → TE + T , so we then need
to find an interpretation:

CTE+T
X :TETEX

→ T0T0E+X

for the continuations operator for TE + T (we are identifying E + 0 with E).
Define cX :TETEX → T0T0E+X

by:

cX(z)[ε, κ] = ε](z(T (inlE)oκ))

and then set:
CTE+T

X = CT
E+X

ocX

Theorem 2. CTE+T is a natural transformation left inverse to dTE+T ; it need
not be invertible, even if CT is.

Proof. It is clear from the form of the definition that CTE+T is natural. The
possible lack of invertibility follows by a standard cardinality argument taking
the case where T is the continuations monad. That CTE+T is left inverse to dTE+T

follows immediately from the equation codTE+T = dT and the assumption that
CT

X is left inverse to dT . To prove the equation we calculate:

cX(dTE+T
X (z))[ε, κ] = ε](dTE+T

X (z)(T (iE)oκ))
= ε]([ηT

E , T (iE)oκ]](z))
= [ε]oηT

E , ε]oT (iE)oκ]](z))
= [ε, κ]](z)
= dT

X(z)



As regards syntax for exceptions, following the lines suggested in [41], one
can assume: a given base type exn of exceptions, with appropriate basic op-
erations and predicates; a family of unary function symbols raiseσ : 0 → σ
for raising exceptions (we generally omit the subscript); and terms of the form
Γ ` handle(M, (e : exn. N)) : σ, where Γ ` M : σ and Γ, e : exn ` N : σ, for
handling them.

As regards semantics, one interprets exn by E and raise by the algebraic
operation R :T (E + −)0 → T (E + −)E inherited from TE , as described above.
Explicitly, and regarding RX as a function E → T (E + X), we have that:
RX = ηT

(E+X)
oinl.

Next, we seek an operation H : T (E + −) × T (E + −)E → T (E + −) for
the interpretation of handle, following [13] . To this end, we first define an
operation H ′ : (E + −) × T (E + −)E → T (E + −) where H ′

X(x, ε) = ηT
E+X(x),

for x ∈ X, and where H ′
X(e, ε) = ε(e), for e ∈ E. Then HX can be defined

via a Kleisli extension by: HX(γ, ε) = H ′
X(−, ε)†(γ). A theory of deconstructors

should surely be able to account for this definition of handle by viewing it as
an extension of a deconstructor (here, the exception-handling operation) for an
effect (here, exceptions alone) to a deconstructor for the combination of that
effect with others (here, those modeled by T ).

With these definitions, exception handling obeys some natural equations:

x :σ, g :exn → σ ` handle(x, (e :exn.ge)) = x

e :exn, g :exn → σ ` handle(raise(e), (e′ :exn.ge′)) = ge

and:

handle(M opM ′, (e :exn.N)) = handle(M, (e :exn.N)) ophandle(M ′, (e :exn.N))

if, for example, op denotes a binary operation inherited from the monad S.

3.1 Existence of Sums

We now consider some questions on the existence of sums of monads and locally
continuous monads. Pleasingly, it turns out that Theorem 1 has a converse: if
the sum exists, it must be given by the formula.

Theorem 3. Let Σ be an endofunctor for which Σ∗ exists, and let T be a
monad. If the sum of monads Σ∗ + T exists, it is given by a canonical monad
structure on µz.T (Σz +−).

Proof. Suppose that the sum of the monads Σ∗ and T exists. Then for each x
we have the free algebra on x, i.e., the free object a with T -algebra structure
α :Ta −→ a and s :Σa −→ a, and map x −→ a. We can show that a is initial of
the form T (Σa + x) −→ a.

For the argument, we can absorb +x into Σ, so it is enough to prove the
result for x = 0, and thus we can ignore x. The structure TΣa −→ a is given by



the composite α(Ts). So suppose we have β :TΣb −→ b. We need to show that
there is a unique g :a −→ b satisfying the evident coherence property. Note that
TΣb has the structure of a free T -algebra and also that of a Σ-algebra, where
the Σ-algebra structure is η(Σβ). This gives us a unique map f : a −→ TΣb
satisfying evident properties. One can then check readily that the composite
βf :a −→ b is a candidate for g. It remains to prove uniqueness.

Consider the facts that TΣa is a (free) T -algebra and also a Σ-algebra, the
map for the latter being η(Σα)(ΣTs). It follows that there is a unique map
k : a −→ TΣa satisfying to evident properties as above for f . Now suppose we
have any g :a −→ b that is a map of TΣ-algebras. Consider (TΣg)k :a −→ TΣb.
It readily satisfies the two commuting diagrams for f . So by uniqueness we have
f = (TΣg)k. It remains to show that βf = g. Writing f as just given, this
reduces readily to showing that α(Ts)k :a −→ a is the identity. But a is initial,
and the composite α(Ts)k is a map of T -algebras as all three components are.
Moreover, k is a map of Σ-algebras, and we can check directly that α(Ts) is one
too. Thus, by initiality, the composite is the identity as required.

This theorem allows us to see that a sum of monads does not always exist:

Example 1. Let S be the monad on Set generated by a single unary operation. If
the sum S+RR−

existed, one could solve the isomorphism equation Z ∼= RRZ+X

,
but that fails, for evident cardinality reasons, when R > 1.

In the same way we see that the sum of the monad TI/O =def µY.(Y I +O×Y +−)
for interactive input/output with the continuations monad does not exist either
when R > 1, unless I = O = ∅.

Theorem 1 allows us to derive a sufficient condition for the existence of sums.

Proposition 5. Let T and T ′ be monads on Set for which the free monad T ∗

on T qua endofunctor on Set exists, and the sum T ∗ + T ′ exists. Then the sum
T + T ′ also exists.

Proof. First observe that,using freeness of T ∗ applied to the identity map on T
exhibits T as a retract of T ∗. So it is a quotient of T ∗, and so the corresponding
Lawvere theory LT is a quotient of LT∗ . Any relation R that expresses LT as a
quotient of LT∗ extends along the coprojection LT∗ −→ LT∗ + LT ′ to a relation
on LT∗ + LT ′ . Factoring by that using the first part of Proposition 14 yields a
sum LT + LT ′ , and hence a sum T + T ′.

Sums of locally continuous monads do not in general exist: the above exam-
ple adapts to ω-Cpo, takingR to be, for example, the discrete two-point ω-cpo.
However one is more interested in using pointed monads there: a locally contin-
uous monad T is pointed if every T (P ) has a least element; equivalently if there
is a (necessarily unique) monad map TL → T , where TL is the lifting monad,
which adds a new least element; equivalently if T and T + TL are isomorphic.
We conjecture that the sum of a locally continuous monad with TL always ex-
ists, and that the sum of two locally continuous monads exists if one of them is
pointed.



4 Tensor and side-effects

In this section, we extend the notion of tensor of monads with countable rank
on Set, equivalently countable Lawvere theories, to arbitrary monads on Set,
equivalently large Lawvere theories. In the setting of monads with countable rank
on Set, the tensor gave the natural combination of side-effects with most other
algebraic effects: the tensor of the side-effects monad TS = (S×−)S , see [40], with
an arbitrary monad with countable rank T could be characterised by T (S×−)S .
The universal property of the tensor product can be naturally expressed in terms
of countable Lawvere theories: given countable Lawvere theories L and L′, the
tensor, which always exists [18–20] is the countable Lawvere theory L ⊗ L′ for
which there is a canonical equivalence of categories:

Mod(L,Mod(L′,Set)) ' Mod(L⊗ L′,Set)

where Mod(L,A) denotes the category of countable power preserving functors
from L to A.

Although the notion extends, the tensor seems very unlikely to exist for an
arbitrary pair of monads. Nevertheless, it follows from Corollary 1 below that the
tensor does exist if one of the components is the side-effects monad, and it gives
the natural combination of the side-effects monad with the continuations monad
RR−

, namely (RS)(R
S)− , as used in Scheme [1]. The operations associated with

an algebraic effect automatically extend to the tensor; with a little effort, one
can see that the continuations operation extends too.

Definition 1. Given large Lawvere theories L and L′, the tensor product of L
and L′, if one exists, is the large Lawvere theory L⊗L′ for which Mod(L⊗L′,Set)
is coherently equivalent to Mod(L,Mod(L′,Set)).

Theorem 4. Given large Lawvere theories L and L′, the following are equiva-
lent:

1. Their tensor L⊗ L′ exists.
2. The forgetful functor from Mod(L,Mod(L′,Set)) to Set is monadic.
3. The forgetful functor from Mod(L,Mod(L′,Set)) to Set has a left adjoint.

upon which L⊗ L′ is the large Lawvere theory corresponding to the monad.

Proof. The equivalence between 1) and 2) follows immediately from the equiv-
alence between large Lawvere theories and monads on Set [9]. The implication
from 2) to 3) is trivial. It remains to show the converse.

First observe that the forgetful functor

U :Mod(L,Mod(L′,Set)) −→ Set

reflects isomorphisms as the maps in Mod(L,Mod(L′,Set)) are fully determined
by their behaviour on the (1, 1) component by applying powers, and the appli-
cation of a power is functorial, so preserves invertibility. Now, a model of L in



Mod(L′,Set) is exactly a model of L in Set, together with an L′-structure on its
underlying object, such that the maps of L are sent to maps of L′-models relative
to the induced L′-structure on each power. So, given a U -split coequaliser, say
h : N(1,1) −→ P , of a parallel pair (f, g) : M −→ N , one can lift the splittings,
not necessarily naturally, to each (L,L′)-component. Pointwise, each lifting is
a split coequaliser. So one can extend P to have the data for a model of L in
Mod(L′,Set). The required commutativities of the data hold by construction
of the extension and because they hold of N . Similarly, this extension of P is
readily seen to be a coequaliser. Thus, Beck’s monadicity condition holds, and
so the functor U is monadic.

The required left adjoint surely does not exist in general. Moreover, it seems
most unlikely that restricting one theory by size will provide it. But it does exist
in the particular case of primary interest to us by a mild modification of an
argument in [40]. It works as follows.

Proposition 6. Let LS be the large Lawvere theory for state. Suppose A has
countable products. Call an object of Mod(LS ,A) an A-model of LS. Let X be
an object of A for which countable copowers of X exist in A. Then there is a
free A-model of LS on X given by

∏
S

∐
S X.

Proof. The proof is essentially in [40], subject to the observation that the proof
therein is entirely local, only requiring copowers of X without requiring coprod-
ucts in general.

Theorem 5. Let L be an arbitrary large Lawvere theory. Then the forgetful
functor from Mod(LS ,Mod(L,Set)) to Set has a left adjoint which is given by
TL(S ×−)S, yielding the tensor product, qua monad, of L with LS.

Proof. Let A = Mod(L,Set). Then A has countable products. For each set
Y , the category A has countable copowers of the object TLY because countable
copowers are preserved by TL seen as a left adjoint and because Set has countable
copowers. So by Proposition 6 and Theorem 4, we are done.

One can characterise the construction of the tensor product of large Lawvere
theories in terms of monads on Set:

Definition 2. Given monads T and T ′ on Set, the monad T ⊗ T ′, which we
call the tensor of T and T ′ if it exists, is defined by the universal property of
having monad maps α and α′ from T and T ′ to T ′′ = T ⊗ T ′, subject to the
commutativity of the following diagram:

TX × T ′Y
α⊗ α′

> T ′′X × T ′′Y

α⊗ α′

∨ ∨

σ

T ′′X × T ′′Y
σ̄

> T ′′(X × Y )



where σ and σ̄ are the two canonical maps induced by the strength of T ′′.

Proposition 7. Let L and L′ be large Lawvere theories. Then the tensor product
L⊗ L′ exists if and only if the tensor product of the monads TL and TL′ exists,
in which case TL⊗L′ is coherently equivalent to TL ⊗ TL′ .

Proof. This follows directly from the correspondence between large Lawvere the-
ories and monads on Set: L = Kl(T )op, so, taking the component at 1 of the
commutativity condition on L and L′ yields the coherence condition for TL×TL′ ,
with the converse given by precomposition.

The coherence condition of the tensor product, expressed in terms of Lawvere
theories, is the assertion that the operations of one theory commute with those
of the other, and that is the more natural formulation for algebraic effects [18].
There do not seem to be computationally natural operations and equations that
generate the continuations monad, so it is unclear to us how best to understand
the tensor product of continuations with algebraic effects in general. Thinking
of it in terms of monads does not seem to help much.

Proposition 7 allows us to make a formal comparison between the tensor
product we use here and that we used for monads with countable rank on Set,
equivalently countable Lawvere theories, in [18]:

Proposition 8. Given monads T and T ′ with countable rank on Set, the tensor
product of T and T ′ seen as monads always exists and agrees with the tensor
product of T and T ′ seen as monads with countable rank.

Proof. Given any monad T with countable rank on Set, the category Kl(T )op

is the free category with all small powers on the full subcategory Kl(T )op
ℵ1

de-
termined by the countable sets: that it satisfies the freeness property relative to
models in Set holds because the two theories, one large, the other countable,
are equivalent to the same monad; and freeness relative to Set is, using repre-
sentability, equivalent to freeness relative to any category with all small powers,
cf. [22]. It follows that the category of small power preserving functors from
Kl(T )op to T ′-Alg is equivalent to the category of countable power preserving
functors from Kl(T )op

ℵ1
to T ′-Alg. Thus, the two tensor products, which are given

by the left adjoints to the forgetful functors to Set, agree.

Formulating Theorem 5 in terms of monads, we obtain:

Corollary 1. If T is an arbitrary monad on Set, the tensor product of TS with
T exists and is given by the monad T (S ×−)S.

Along the same lines one can prove that the tensor product of the ‘read-only’
state monad (−)S with an arbitrary monad T is (T−)S , and, as in [18], for any
monoid M the tensor product of M ×− with T is M × T (−).

In regard to the continuations operation, we have the following result:

Proposition 9. If dT , considered as a natural transformation, is invertible (has
a left inverse) then dTS⊗T is also invertible (has a left inverse).



Proof. Given a left inverse CT , consider CTS⊗T =def (CT
S×−)S .

As regards tensors and algebraic operations, or generic effects, we note that,
analogously with the case for sums, if we assume a monad map S′

m−→ T then
we obtain another TS ⊗ S′

TS⊗m−→ TS ⊗ T . In particular, for state it is natural to
work with generic effects. Suppose, as in [40], that we have a finite set of natural
number locations L, so that S = NL. Then we have generic effects for looking
up the value of a location and for updating the contents of one. These are:

l :L → (TS ⊗ T )(N) = T (S × N)S

and
u :L× N → T (S × 1)S

and are given by l(loc)(σ) = ηT
S×N(σ, σ(loc)) and u(loc,m)(σ) = ηT

S×1(σ[m/loc], ∗).
Syntactically we employ basic type symbols loc and nat and unary function
symbols ! : loc → nat and :=: loc× nat → 1.

4.1 Existence of Tensor Products

We now consider questions on the existence of the tensor product of monads or of
locally continuous monads. In general, the tensor product of two arbitrary mon-
ads seems not to exist, but we do have a positive result on the existence of tensor
products with the continuations monad in Set. First we need a generalization
of Paré’s theorem [4] for the case of the topos Set:

Proposition 10. For any set R with |R| ≥ 2 the functor R− :Setop −→ Set is
monadic, the monad being given by R(R−).

Proof. Since |R| ≥ 2 it retracts to 2. So, as 2− is faithful, so reflecting monos
and epis, and so isos, R− is faithful and so reflects isos. Now suppose that we
have a reflexive coequalizer diagram in Setop i.e, a reflexive equalizer diagram
in Set:

A
e

> B
f

g

>
> C

Then we have a pullback diagram:

A
e

> B

e

∨ ∨

f

B
g

> C

with all maps monos.



If R is a partial map classifier, i.e., it has a distinguished point, then it admits
existential quantification for sets of size less than or equal to 1: i.e., all the maps
Re have a kind of one-sided inverse Ee say (extending, e.g., maps A → R to
maps B → R using the chosen point), with, e.g., ReEe = id and with a Beck-
Chevalley condition for the above pullback, i.e., EeR

e = RgEf . All that makes
the image under R− of the equalizer diagram a split coequalizer in Set. We are
now in a position to apply Beck’s theorem.

The category Comod(L, Set) of comodels of a countable (large) Lawvere the-
ory L in Set is the category of countable (respectively all) co-product-preserving
functors from L to Set.

Proposition 11. Let L be a countable (or large) Lawvere theory. If the forgetful
functor Comod(L, Set) → Set has a right adjoint then the tensor product of L

with RR−
exists for any R with |R| ≥ 2.

Proof. The categories Comod(L, Set)op and Mod(L, Setop) are canonically iso-
morphic. As the forgetful functor U :Mod(L, Setop) → Setop has a left adjoint,
by Proposition 10 the composite Mod(L, Setop) → Set of U with R− also has a
left adjoint and so, by Theorem 4, we are done.

With the aid of this proposition, or, rather, its proof, we can find explicit
formulas for some tensor products. Consider the free large Lawvere theory with
operations of given arities Ii → Oi, for i ∈ I. A comodel of this consists of a set
X and functions Oi×X → Ii×X, which is the same as a coalgebra of the functor∏

i∈I(Ii×−)Oi . Writing νY.F (Y ) for the final co-algebra of a functor F when it
exists, for any functor B the cofree B-coalgebra on a set X is νY.(B(Y ) ×X),
if that exists; if it always exists then νY.(B(Y )×−) is the free comonad B∗ on
B. It does always exist in the case at hand, and so, following the proof of the
above proposition, the tensor product of TL and RR−

, for |R| ≥ 2, is RB∗(R−)

with B∗(X) = νY.(
∏

i∈I(Ii × Y )Oi ×X).

Theorem 6. The tensor product of any monad with countable rank on Set with
the continuations monad RR−

on Set exists.

Proof. The two cases where |R| < 2 are simple. Otherwise, as shown in [45], for
every countable Lawvere theory L, the forgetful functor from Comod(L, Set) to
Set has a right adjoint. So, by the above proposition we are done.

We do not know whether the converse of Proposition 11 holds for large Law-
vere theories, but it does suggest that to find a counterexample to the existence
of tensor products of large Lawvere theories one should first look for a large
Lawvere theory which does not have cofree comodels. We remark that if a large
Lawvere theory L has a nullary operation, then its tensor product with contin-
uations exists and is trivial, as it has a unique comodel, the empty one.

Our next proposition relates the existence of tensors to the existence of sums.

Proposition 12. Let T and T ′ be monads on Set. Then if their sum exists, so
does their tensor product.



Proof. T and T ′ correspond to large Lawvere theories LT and LT ′ . The sum of
the former exists if and only if the sum of the latter exists; likewise for the tensor.
But the tensor LT ⊗ LT ′ is given by quotienting the sum by the commutativity
equations. And by by Part 1 of Proposition 14, such a quotient always exists.

We do not know any version of Paré’s theorem for ω-Cpo and, as regards
general statements on the existence of tensor products of two locally continuous
monads,we only have a conjecture: that they always exist, provided one of them
is pointed.

5 The continuations monad transformer

Suppose we have a monad S and wish to obtain a model for continuations
over it. Proposition1 tells us that given an S-algebra SA → A, we obtain a
map of monads S → C(S) =def AA−

; we also know, from the discussion after
this proposition, that dC(S) is an isomorphism. This defines the continuations
monad transformer, parameterised on an S-algebra [28]. Algebraic operations
are defined pointwise on it from the corresponding operations on the algebra A.
The usual continuations monad transformer [6, 5] is a little less general, being
parameterised on a set R; it is a special case of ours, taking A = S(R). Note
that the continuations monad transformer is a parameterised unary construction,
whereas sum and tensor are binary constructions, applied to continuations and
some other effect.

The continuations monad transformer applies naturally to nondeterminism
and I/O, e.g., taking the finite non-empty powerset monad F+ to (F+R)(F

+R)− .
Another interesting example is the application of the transformer to exceptions,
taking E + − to (E + R)(E+R)− ; here the operation for raising exceptions is
defined pointwise by RX(i) = λe.λκ.inl(e); operationally this amounts to ignor-
ing the continuation and raising the exception at top level. This monad was,
implicitly, used in [8] to model run-time errors, there taking E = 1. When work-
ing over ω-Cpo the continuations monad transformer also applies naturally to

nontermination, now taking the lifting monad (−)⊥ to R
R−
⊥

⊥ .
For an example of the more general transformer, consider (RS)(R

S)− , the
tensor product of the side-effects monad TS with the continuations monad RR−

.
This can be alternatively viewed as applying the generalised continuations monad
transformer to the side-effects monad TS , together with the TS-algebra with
structure given canonically on RS .

The continuations monad transformer seems to be more primitive than the
continuations monad: we have RR−

= C(Id), but we do not see any conceptual
way to derive C(−) from RR−

. Moreover, it seems there is, in general, no monad
map from RR−

to C(S), whereas there is one from T to C(S).
We do not have very substantial results about the continuations transformer,

but we can say a little:



Proposition 13. Given a monad S, and an S-algebra (A, a), the monad AA−
is

universal relative to the following structure: a monad T ; a monad map S
m−→ T ;

a coherent isomorphism T0 ∼= A; and a monad map CT left inverse to dT .

Proof. Consider the following diagram in the category of monads:

S > C(S)
∼=

> (T0)(T0)−

@
@
@

m @
@
@R 	�

�
� CT

�
�
�

T

If one took the diagram, reversed the direction of CT , and labelled it by dT , one
would have a commutative diagram by assumption. So, since CT is a retract of
dT , the above diagram also commutes. Now, given any morphism f : x −→ y
in any category, the colimit of f is, up to coherent isomorphism, given by y.
Applying that fact to S −→ C(S) and the above diagram yields the result.

The various constructions here arise directly in terms of large Lawvere theo-
ries, which also allow for easier calculation: the monad S corresponds to the large
Lawvere theory LS ; the S-algebra corresponds to a model of L, i.e., a product
preserving functor M :LS −→ Set; and the continuations transformer is given by
the (identity-on-objects, fully-faithful)-factorisation of M . This inherently yields
a canonical map of large Lawvere theories from LS to the theory given by the
factorisation. The factorisation also immediately yields Proposition 13, which
we expressed in terms of monads.

6 Discussion

Using the constructs we have developed, there is a natural formula for the com-
bination of all of exceptions, side-effects, interactive input/output, (binary) non-
determinism and continuations:

TE + (TS ⊗ C(TI/O + F+))

or, explicitly: (
R

R
S×(E+−)

)S

where:
R = µZ.F+(ZI + O × Z + R)

which we note is linear, having the form ME(MS(C(MI/O(F+)))) with each M
derived from + or ⊗ applied to a particular monad. To omit effects, omit the
corresponding parts of the formula. We have no independent justification of these
proposals, but they are consistent with all the cases we know. A similar formula
is available if we pass to ω-Cpo and add nontermination.



We have given accounts of the combinations of continuations and other ef-
fects in terms of a unary or a binary operation on monads, together with the
construction of a continuation operator for the combination. The main thing
missing in our account is an understanding of why these are the right choices
(if indeed they are!). For the combinations of other effects with each other, the
choices were justified computationally in terms of the equations involving the
sets of operations inherited from each effect [18], but there is nothing of that
sort here.

It may be that we are simply taking the wrong approach, as continuations
are, as mentioned above, of a logical rather than an algebraic character. For
example the computational correlate of implication is the Kleisli exponential
and that is justified by its universal property relative to the monad. However we
did not succeed in finding such characterisations other than for the continuations
monad transformer.

Closely related questions concern finding the right, possibly even complete,
axiomatisation of the computational λ-calculus with continuations and the vari-
ous effects, cf. [17, 54, 55, 27]. Further, investigations of continuations and effects
would not be complete without a treatment of operational semantics: see [39] for
work on the operational semantics of effects in the context of λc, but without
continuations, and [54, 55] for operational semantics for combinations of continu-
ations and specific effects. As remarked above, an interesting test of the strength
of axioms for continuations is to establish the soundness of an operational se-
mantics. One would also like to understand combinations of continuations with
local effects, such as local store or exceptions, as well as with other calling mech-
anisms.

There are various other computational calculi one might consider when inves-
tigating the combination of algebraic effects with continuations. For example, for
call-by value there are the call-by-value λµ-calculus [35] and [30], a fine-grained
variant of λc; for call-by-name there is the call-by-name λµ-calculus [36]; and
for the combination there are the λµµ-calculus [7] and the call-by-push-value
calculus [28].

In addition to callcc/throw and raise/handle, New Jersey Standard ML pro-
vides two additional constructs capture and escape based on the idea of im-
plementing exceptions via a stored handler [53]. Thielecke1 and Filinski2 have
independently observed that the monad (RS)(R

S)− , where S =def RE , can be
used to model these constructs. This monad can be viewed either as the tensor
product of the read-only state monad with the continuations monad or else as
the continuations monad transformer applied to the read-only state monad.

Although dT is then invertible, we cannot use its inverse to model the C
operator, as that would validate an equation that Laird [27] shows to be broken
in the presence of exceptions. Moreover, since the only left inverse of dT is
its inverse, C cannot even be a left inverse of dT . This also follows from an
observation of Filinski that the capture/escape constructs break C-App.

1 Unpublished manuscript
2 Personal communication



Filinski also showed, as mentioned in [29], that capture/escape breaks the
equation:

M = handle(M, (e :exn. raise(e)))

Indeed it is argued there that, for a monad on Set to model the ‘basic equations’
of exceptions, such as that above, it has to be of the form T (− + E), where
E is the set of exceptions. We therefore would argue that capture/escape are
incompatible with equations one would naturally wish to hold when reasoning
either about continuations or exceptions.

In this paper we have viewed semantics in a standard denotational way,
uniformised via the semantics of the computational λ-calculus; the latter is pa-
rameterised on a strong monad, following Moggi, and further parameterised to
interpret continuations and algebraic effects. As is well known, see, e.g., [12, 13],
an alternative would be to give compositional syntactic translations to a target
‘metalanguage.’ For the computational λ-calculus one could translate to Moggi’s
computational metalanguage, where a general T is concerned; for the case of the
continuations monad one could be more specialised and translate to the ordinary
typed λ-calculus, using a continuations transformation. It might be interesting to
present the work of this paper in such a style; presumably one would deal with
our various combinations of semantics by translations of the chosen metalan-
guage into itself. The reader will have noted that at various points of the paper
we use the λ-calculus informally to give auxiliary definitions; these definitions
can generally be be read as being within the computational metalanguage.

Acknowledgments

We would like to thank Andrzej Filinski, Ian Stark and Hayo Thielecke for many
useful conversations.

References

1. H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams, D. P. Friedman,
E. Kohlbecker, G. L. Steele, D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman,
G. Brooks, C. Hanson, K. M. Pitman & M. Wand, Revised Report on the Algo-
rithmic Language Scheme, Higher-Order Symb. Comput. 11(1), 7–105, 1998.
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A The computational λ-calculus

In this appendix, we describe the computational λ-calculus, or λc-calculus, ex-
tended by type variables, and recall Moggi’s notion of λc-model [33, 34]. There
are several equivalent formulations of the λc-calculus. We shall not use the orig-
inal formulation but a version that is equivalent, modulo the extension by type
variables. Our version of the λc-calculus has types given by:

σ ::= B | X | σ × σ | 1 | σ → σ

where B ranges over a given set of base types, e.g., int, and X over type variables.
We do not assert the existence of a type construction Tσ: this formulation is
equivalent to the original one because Tσ may be defined to be 1 → σ.

The terms of the λc-calculus are given by:

M ::= x | f(M) | MM | λx : σ.M | ∗ | (M,M) | πi(M)

where x is a variable; f ranges over unary function symbols of given closed types
σ → τ , such as 0 and succ, of respective types 1 → int and int → int; and
with πi existing for i = 1 or 2. There are evident typing rules for judgements
Γ ` M : σ, that the term M has type σ in the context Γ (and contexts have
the form Γ = x1 : σ1, . . . , xn : σn); in particular ∗ is of type 1. This differs from
the original formulation of the calculus in that we do not explicitly have a let
constructor or constructions [M ] or µ(M). The two formulations are equivalent
in that let x = M : σ in N may be considered as syntactic sugar for (λx : σ.N)M
(we may then elide the σ), [M ] may be considered as syntactic sugar for λx : 1.M
where x is of type 1 and does not occur freely in M , and µ(M) may be considered
as syntactic sugar for M∗.

The λc-calculus has two predicates: existence, denoted by ↓, and equality,
denoted by = (Moggi writes instead ↓σ and ≡). The corresponding judgements
are Γ ` M ↓ and Γ ` M = N . The ↓ rules may be expressed as saying that x ↓,
λx : σ.M ↓ for all M , ∗ ↓, if M ↓ and N ↓ then (M,N) and if M ↓ then πi(M) ↓,
that existence is closed under equivalence and substitution by (existing) terms,
with given additional rules for the unary function symbols, e.g., succ M ↓ when
M ↓. We say that a value (relative to Γ ) is a term V such that Γ ` V ↓.

There are three classes of rules for equality. The first class are rules to the
effect that it is a congruence, closed under substitution by existing terms (i.e.,
values); the second class are rules for the unit, product and functional types; and
the third class of rules are given rules for the unary function symbols. It follows



from the rules for both predicates that types together with equivalence classes
of terms form a category, with a subcategory determined by values.

It is straightforward, using the original formulation of the λc-calculus in [33],
to spell out the (second class of) inference rules required to make this formulation
agree with the original one: one just bears in mind that the models are the same,
and uses syntactic sugar as detailed above.

The first class of models for the λc-calculus was given by Moggi in [33, 34]
with another formulation using Freyd-categories being given in [44]. For Moggi,
a λc-model consists of a category C with finite products, together with a strong
monad T on C, such that T has Kleisli exponentials, i.e., for each object x of
C, the functor J(−× x) : C −→ CT has a right adjoint, where CT is the Kleisli
category for C and J : C −→ CT is the canonical functor.

We assume given an object [[b]] to interpret each basic type b, and then every
type σ receives an interpretation as an object [[σ]], assuming an interpretation
of any type variables occurring in it. We also assume given a map [[σ]] → T ([[τ ]])
to interpret every unary function symbol f of given type σ → τ . A term of
type σ in context Γ is modelled by a map in the Kleisli category for T , i.e.,
by a map in C from [[Γ ]] to T [[σ]], where [[−]] denotes the semantic construct
(and for Γ = x1 : σ1, . . . , xn : σn, [[Γ ]] = [[σ1]],× . . .× [[σn]]), and again assuming
an interpretation of any type variables occurring in Γ or σ.

An existence assertion holds if the corresponding map is total, meaning that
it factors through the unit of T ; an equivalence assertion holds if the two corre-
sponding maps are equal. With this all the rules mentioned above automatically
hold, except those for the unary function symbols which must be verified sep-
arately; indeed Moggi showed that his class of models is complete for the pure
λc-calculus, meaning the one with no rules for the unary function symbols.

The extension of these semantical ideas to the more general situation where
C is V-enriched is straightforward, one simply interprets using the underlying
ordinary categories and functors. An important example is provided by the case
V = ω-Cpo where one can interpret the call-by-value recursion operator. Syn-
tactically one assumes a family Zσ,τ : ((σ → τ) × σ → τ) × σ → τ of unary
function symbols. 3 The fixed-point equation takes the form:

F : (σ → τ)× σ → τ, x :σ ` Z(F, x) = F (λx : σ.Z(F, x), x)

and one can also give versions of the uniformity and stability axioms of [16] (the
authors there employ a slightly different version of the call-by-value recursion
operator). The operator can be interpreted in the standard least fixed-point way
provided that the locally continuous monad T is pointed, meaning here that
every T (P ) contains a least element; the three axioms then hold.

Evaluation contexts for the λc-calculus are defined by the following inductive
clauses: [−]σ is an evaluation context, and f(E), EM , V E, (E,M), (V,E) and
πi(E) are evaluation contexts for any evaluation context E, term M and value
3 The name comes from Z = λf.((λxf.(λz.xxz))(λxf.(λz.xxz))) the untyped fixed-

point operator for the call-by-value λ-calculus referred to in [38], and due to John
Reynolds [47] and Wozencraft and Evans[57].



V . One can type evaluation contexts by adding the rule that [−]σ : σ. The
computational thought behind evaluation contexts is that in a program of the
form E[M ], where Γ ` M :σ, the first computational step arises within M .

Returning to semantics, to each such context Γ ` E : τ where the ‘hole’ in E
is [−]σ one can assign a morphism [[E]] : [[Γ ]]× [[σ]] → T ([[τ ]]). One then has that
[[E[M ]]] = E]ot[[Γ ]],[[σ]]o(id[[Γ ]], [[M ]]), where t is the strength of T and, in this sense,
evaluation contexts can be said to be strict. In extensions of the λc-calculus, e.g.,
for exception handling, one may employ a larger set of evaluation contexts which
are no longer strict, and one may need to pick out a smaller set of evaluation
contexts which are.

B Large Lawvere Theories

The notion of monad on Set may be proved to be mathematically equivalent
to that of large Lawvere theory. That result enriches, yielding an equivalence,
on an appropriately restricted category V , between strong monads, equivalently
enriched monads, and V -enriched large Lawvere theories. The definition of large
Lawvere theory or more generally V -enriched large Lawvere theory, is usually
more amenable than that of strong monad to the constructions we develop in
combining computational effects. So in this appendix we explain the equivalence
between the notions of strong monad and large Lawvere V -theory so that we
can freely swap between them as convenient.

The abstract work here bears comparison with Section 2 of [18], which ex-
hibits an equivalence between countable Lawvere theories and monads with
countable rank. The size distinction is fundamental: the equivalence we describe
in this section is considerably less sophisticated, but the issues involved with
combining arbitrary monads, equivalently large Lawvere theories, are far more
complicated and far less elegant than those that arise under the assumption of
countable rank.

For convenience of exposition, we start by considering the base category Set.

Definition 3. A large Lawvere theory is given by a locally small category L
with small products, together with a strict product preserving identity-on-objects
functor I :Setop −→ L.

Note that, in this context, strictly preserving all small products is equivalent
to strictly preserving all powers. One typically denotes a large Lawvere theory
by L, leaving the data for the functor I implicit. Large Lawvere theories form the
objects of a category, for which a map from L to L′ is a functor (that necessarily
strictly preserves products) from L to L′ commuting with I and I ′. Thus we
have a category of large Lawvere theories.

Definition 4. A model of a large Lawvere theory L in any locally small category
A with products is a product preserving functor M :L −→ A.

For any large Lawvere theory L and any locally small category A with prod-
ucts, we thus have the category Mod(L,A) of models of L in A; the maps are



all natural transformations, with the naturality condition implying that they re-
spect the product structure, which in turn implies that the category Mod(L,A)
is locally small. There is a canonical forgetful functor U : Mod(L,A) −→ A. If
it has a left adjoint, this forgetful functor exhibits Mod(L,A) as equivalent to
the category TL-Alg for the induced monad TL on A.

Restricting to the case that A = Set, there is a converse: given any monad
T on Set, the category Kl(T )op determined by taking the opposite of the Kleisli
category of T , is a large Lawvere theory LT , and the categories Mod(LT ,Set)
and T -Alg are canonically equivalent. An enriched version of the following result
appears in Dubuc’s thesis [9]:

Theorem 7. The construction sending a large Lawvere theory L to TL together
with that sending a monad T to LT induce an equivalence of categories be-
tween the category of large Lawvere theories and the category of monads on
Set. Moreover, the comparison functor exhibits an equivalence of the categories
Mod(L,Set) and TL-Alg.

We now consider the generalisation from Set to appropriate V , which we
take to be complete and cocomplete cartesian closed categories. The notion of
locally small category generalises to the notion of V -category; the notion of
category that need not be locally small does not immediately generalise to any
definition in terms of V . The careful reader may note that, a priori, the category
Mod(L,A) we considered above might not be locally small: we shall return to
that later.

There are two points that require care in the enrichment the equivalence
between monads and theories: one is a size issue, and the other involves the
notion of cotensor, which yields the appropriate enrichment of the notion of
product of copies of a single generator. The notion of cotensor is the most natural
enrichment of the notion of a power-object. Given an object X of a V -category
A and given an object A of V , the cotensor XA satisfies the defining condition
that there is an isomorphism in V :

A(Y, XA) ∼= A(Y, X)A

V -natural in Y .
There is an evident dual notion of tensor A×X satisfying the defining con-

dition:
A(A×X, Y ) ∼= A(X, Y )A

V -natural in Y . In the case V = Set, the tensor is given by
∐

A X, the coproduct
of A copies of X. In the case A = V , the tensor A×X is the product of A and
X.

Definition 5. A large Lawvere V -theory is given by a V -category L with coten-
sors, together with a strict cotensor preserving identity-on-objects V -functor
I : V op −→ L. A model of L in a V -category A with cotensors is a cotensor
preserving V -functor M :L −→ A.



For the size reasons mentioned above, it is not entirely trivial but nonetheless
true that if we additionally assume that V has arbitrary intersections, then
for any large Lawvere V -theory L and any V -category A with cotensors, we
have a V -category Mod(L,A) of models of L in A. The homobjects are given
by all V -natural transformations. That they form an object of V (rather than
being too large) is because the V -naturality condition implies that they respect
cotensors, and so are determined by the component at 1; the presence of arbitrary
intersections allows us to take the intersection of the large family of equalisers
that express the preservation of all operations of L.

That said, we can routinely generalise the unenriched case: there is a canon-
ical forgetful V -functor U : Mod(L,A) −→ A, and if it has a left V -adjoint, it
exhibits Mod(L,A) as V -equivalent to the V -category TL-Alg for the induced V -
monad TL on A. And for a converse, without needing to assume the presence of
intersections in V , if A = V , given a V -monad T on V , the V -category Kl(T )op

is a large Lawvere V -theory, with T -Alg canonically equivalent to Mod(LT , V ).
To give a V -enriched V -monad is equivalent to giving a strong monad on

V (see [26]). So, in order to make the comparison with Moggi’s definition most
direct, we express Dubuc’s result [9] in terms of strong monads:

Theorem 8 ([9]). The constructions of TL from L and of LT from T induce an
equivalence of categories between the category of large Lawvere V -theories and
that of strong monads on V . Moreover, the comparison V -functor exhibits an
equivalence of the V -categories Mod(L, V ) and TL-Alg.

We conclude with a proposition specific to Set.

Proposition 14. For any large Lawvere theory L, and for any family of rela-
tions RX,Y ⊆ L(X, Y )× L(X, Y ), there is a large Lawvere theory L/R together
with a map of large Lawvere theories L −→ L/R that universally forces any
maps related by R to be equal.

Proof. The proof of the first part is essentially that of Theorem 1.5.45 of [32].

As a consequence we note that the category of monads on Set has coequalisers.
Unfortunately, we could not prove an analogue of this proposition for ω-Cpo.


