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Abstract. The matriz-free technique is an iterative approach to inte-
rior point methods (IPM), so named because both the solution procedure
and the computation of an appropriate preconditioner require only the
results of the operations Az and ATy, where A is the matrix of constraint
coefficients. This paper demonstrates its overwhelmingly superior perfor-
mance on two classes of linear programming (LP) problems relative to
both the simplex method and to IPM with equations solved directly. It
is shown that the reliance of this technique on sparse matrix-vector op-
erations enables further, significant performance gains from the use of a
GPU, and from multi-core processors.

Keywords: interior point methods, linear programming, matrix-free
methods, parallel sparse linear algebra.

1 Introduction

Since they first appeared in 1984 [9], interior point methods (IPM) have been a vi-
able alternative to the simplex method as a means of solving linear programming
(LP) problems [I4]. The major computational cost of IPM is the direct solution of
symmetric positive definite systems of linear equations. However, the limitations
of direct methods for some classes of problems have led to iterative techniques
being considered [IBIII]. The matriz-free method of Gondzio [5] is one such ap-
proach and is so named because the iterative solution procedure and the computa-
tion of a suitable preconditioner require only the results of products between the
matrix of constraint coefficients and a (full) vector. This paper demonstrates how
the performance of the matrix-free IPM may be accelerated significantly using a
Graphical Processing Unit (GPU) via techniques for sparse matrix-vector prod-
ucts that exploit common structural features of LP constraint matrices. To the
best of our knowledge this is the first GPU-based implementation of an interior
point method.

Section [2] presents an outline of the matrix-free IPM that is sufficient to mo-
tivate its linear algebra requirements. Results for two classes of LP problems
demonstrate its overwhelmingly superior performance relative to the simplex
method and to IPM with equations solved directly. Further analysis shows that
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the computational cost of the matrix-free IPM on these problems is dominated by
the iterative solution of linear systems of equations which, in turn, is dominated
by the cost of matrix-vector products. Techniques for evaluating products with
LP constraint matrices on multi-core CPU and many-core GPU are developed
in Section Bl These techniques exploit commonly-occurring structural features
of sparse LP constraint matrices. The results from an implementation with ac-
celerated matrix-vector products show that significant speed-up in the overall
solution time can be achieved for the LP problems considered, with the GPU
implementation in particular providing large gains. Conclusions and suggestions
for future work are offered in Section [l

2 The Matrix-Free Interior Point Method

The theory of interior point methods [6/14] is founded on the following general
primal-dual pair of linear programming (LP) problems.

Primal Dual
min ¢’z max b’y 1
s.t. Az =b s.t. ATy+s=c (1)
x>0 y free,s > 0,

where A € IR™*" has full row rank m < n, z,s,c € IR" and y,b € IR". IPMs
employ logarithmic barrier functions to handle simple inequality constraints.
The first order optimality conditions for the corresponding logarithmic barrier
problems can be written as

Ax =b

ATy+s=c
XSe = ue (2)

(z, s)=0

where X and S are diagonal matrices whose entries are the components of vectors
x and s respectively and e is the vector of ones. The third equation XSe =
pe replaces the usual complementarity condition X Se = 0 which holds at the
optimal solution of (). As p is driven to zero in the course of a sequence of
iterations, the vectors @ and s partition into zero and nonzero components. In
each ITPM iteration, a search direction is computed by applying the Newton
method to optimality conditions (2)):

A0 0| [Az ép b— Ax
0AT I, | |Ay| = |€q| = |c— ATy —s]| . (3)
S 0 X| [As &n ue — X Se

By using the sets of equations in (@) to eliminate first As, and then Az, the
following symmetric positive definite normal equations system is obtained

(A6AT) Ay = g, (4)
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where ©® = XS~! is a diagonal matrix. Since the normal equations matrix
AOAT is symmetric and positive definite, its LLT Cholesky decomposition may
be formed. In IPM, this is the usual means of solving directly for Ay and hence,
by reversing the elimination process, Az and As. However, the density of AGAT
may be significantly higher than A, and the density of L may be higher still. For
some large LP problems, the memory required to store L may be prohibitive.
Following [6] test problems which exhibit this behaviour are given in Table [Il
The first two problems are larger instances of quadratic assignment problems
(QAP) [10] whose solution is one of the great challenges of combinatorial op-
timization. The remaining problems are part of a calculation from Quantum
Physics of non-classicality thresholds for multiqubit states, and were provided
to us by Jacek Gruca [7]. As problem size increases, the memory requirement of
the Cholesky decomposition prevents them from being solved via standard IPM
and the simplex method is seen not to be a viable alternative.

Table 1. Prohibitive cost of solving larger QAP problems and qubit problems using
Cplex 11.0.1 TPM and dual simplex

Dimensions IPM Simplex
Problem Rows Columns  Nonzeros Cholesky Nonzeros Time Time
nug20 15,240 72,600 304,800 38 x 10° 1034 s 79451 s
nug30 52,260 379,350 1,567,800 459 x 10°  OoM >28 days
1kx1k0 1,025 1,025 34,817 0.5x10° 0.82s 0.38 s
4kx4k0 4,097 4,097 270,337 8 x 108 89 s 11s
16kx16k0 16,385 16,385 2,129,921 128 x 10° 2351 s 924 s
64kx64k0 65,537 65,537 16,908,289 2048 x 10°  OoM 111 h

For some LP problems the constraint matrix may not be known explicitly
due to its size or the nature of the model, but it may nonetheless be possible
to evaluate Az and ATy. Alternatively, for some problems there may be much
more efficient means of obtaining these results than evaluating them as matrix-
vector products. For such problems, Gondzio [0] is developing matriz-free IPM
techniques in which systems of equations are solved by iterative methods using
only the results of Ax and ATy. However, the present work is concerned with
LPs for which which A is known explicitly but solution via standard IPM and
the simplex method is impractical. This is the case for the problems given in
Table 1

Since the normal equations matrix A@AT is symmetric and positive definite,
the method of conjugate gradients can, in theory, be applied. However, its con-
vergence rate depends on the ratio between the largest and smallest eigenvalues
of AOAT | as well as the clustering of its eigenvalues [§]. Recall that since there
will be many indices j for which only one of x; and s; goes to zero as the opti-
mal solution is approached, there will be a very large range of values in ©. This
ill-conditioning means that conjugate gradients is unlikely to converge. Within
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matrix-free IPM, the ill-conditioning of A@ AT is addressed in two ways: by mod-
ifying the standard IPM technique and by preconditioning the resulting normal
equations coefficient matrix.

The optimization problem is regularized by adding quadratic terms =7 R,z
and y” Rgy to the primal and dual objective in (), respectively. Consequently,
the matrix in the normal equations () is replaced by

Ggr = A(@_l + Rp)_lAT + Ry, (5)

in which R, guarantees an upper bound on the largest eigenvalue of Gr and Ry
guarantees that the spectrum of G is bounded away from zero. Therefore, for
appropriate R, and R4 the condition number of G is bounded regardless of the
conditioning of 6.

The convergence properties of the conjugate gradient method are improved
by applying a preconditioner P which approximates the partial Cholesky decom-
position of G

C[Lw V[pe V(L5 L3] _,  [Lu ][Ds L{, L3,
Gr = [L21 I} [ S} { 1 ~P= Loy I Ds I (6)

Namely, in the preconditioner P, the Schur complement S is replaced with its
diagonal Dg.

The number of nontrivial columns in the preconditioner is k& < m so, since
only the diagonal entries of S are ever computed, the preconditioner is vastly
cheaper to compute, store and apply than the complete Cholesky decomposition.
Each iteration of the preconditioned conjugate gradient (PCG) method requires
one operation with both P~! and Gg. Since Dy, Dg, ©, R, and R, are all
diagonal matrices, the major computational costs are the operations with the
nontrivial columns of P and the matrix-vector products with A and AT. It
is seen in Table [ that the cost of PCG dominates the cost of solving the LP
problem, and that PCG is dominated by the cost of operating with P~! and
calculating Az and ATy. For the QAP problems the cost of applying the pre-
conditioner is significant, but for the quantum physics problems the cost of the

Table 2. Proportion of solution time accounted for by preconditioned conjugate
gradients, operations with P~% and calculations of Az and ATy

Percentage of solution time

Problem PCG P! Az ATy

nug20 89 55 17 15
nug30 90 54 18 17
1kx1k0 62 41 12 11
4kx4k0 89 42 19 28

16kx16k0 87 30 30 29
64kx64k0 87 19 37 34
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matrix-vector products dominates the solution time for the LP problem, and this
effect increases for larger instances. Section B considers how the calculation of
Az and ATy may be accelerated by exploiting a many-core GPU and multi-core

CPU.

3 Accelerating Sparse Matrix-Vector Products

The constraint matrix of a large LP problem is usually sparse and structured,
and any competitive routine must take advantage of this fact. Sparse arithmetic
presents different challenges as compared to dense arithmetic. Although sparse
matrices of similar size to dense matrices can be multiplied much more quickly,
it is in general the case, on both contemporary CPUs and GPUs, that the rate
at which floating point operations are performed is lower; there are simply far
fewer such operations.
We will consider the acceleration of the following operations

y=Ax (rsax), xz=ATy (rsary), z=(40AT)y (rsaar) (7)

where A € IR™*™ is sparse, © € IR™*" is a diagonal matrix and, and the vectors
€ R", yc IR™ and z € IR™ are dense.

Memory bandwidth is a critical bottleneck for current generation CPUs. To
alleviate this, high-speed cache is available to store recently used, or soon to
be used, data. Caching is most beneficial when data items are re-used multiple
times in quick succession. For operations requiring O(n?) operations on O(n?)
data, such as matrix-matrix multiply, correct use of cache can give significant
gains. In the case of matrix-vector multiply, there are only O(n?) operations:
each data item is used once. Thus raw bandwidth determines performance on a
large dataset, and caching may be expected to be mostly ineffective.

Vectorisation can give a significant performance gain for dense arithmetic on
modern CPUs: identical operations are performed in parallel on a bank of data
items (two at once for SSE2; four at once for AVX). Unfortunately, in sparse
matrix-vector products, the elements of the vector corresponding to the non-zeroes
in a given matrix row are widely separated in memory, and this makes efficient
vectorisation difficult (in our tests, the packing costs outweighed the gains).

It has become typical for a CPU to contain multiple cores, independent exe-
cution units with some mutual dependencies, for example shared memory band-
width and some shared cache. For a task like sparse matrix-vector multiply,
which can be easily divided into a small number of independent pieces, there
are no great problems with exploiting multiple cores. The effectiveness of the
result though is less certain, given the essentially bandwidth limited nature of
the problem in the first place. It should be noted that we shall be using a dual
CPU system, so that double the bandwidth is available when all cores are used.

Current GPUs have large numbers of execution contexts, called threads, each
of which is significantly slower and less able than a CPU core. A GPU ben-
efits from potentially better memory performance and an explicitly managed
cache, but that memory performance depends critically on achieving coalesced
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accesses: adjacent threads must read adjacent memory locations. The challenge
in mapping sparse matrix-vector products to a GPU, then, is predominantly in
arranging for the task to be broken down into many small ones, and for those
threads to access memory appropriately to preserve performance.

3.1 GPU Kernels

A number of kernels have been proposed in the literature for sparse matrix-vector
products [2/4JT2]. We summarise some of the key ideas below.

Threads on a GPU can only synchronise in a limited context - synchronisation
within a warp is guaranteed, synchronisation within a block can be arranged.
This means that any one element of the final result must be calculated by no
more than a single block if the answer is to achieved without running the kernel
multiple times. In the context of sparse matrix-vector products, this means each
entry of the result vector may be calculated by at most one block.

If each thread calculates a row, then the data must be laid out so that the
data for neighbouring rows are interleaved: this will mean adjacent threads read
adjacent memory locations at each time step. This organisation has been called
ELLPACK [2]. In practice, having each thread calculate a row under-utilises the
device: insufficient parallelism is being identified.

An entire warp (thirty-two threads) can be used to calculate a row by first
performing all the multiplications and storing the result in cache (shared mem-
ory), then performing a parallel reduce. A warp is automatically synchronised
so there is no synchronisation overhead in this algorithm. If this is done with
variable run-length storage of the rows, the result is vector CSR [2].

When the lengths of the rows vary considerably, it can be a problem both for
load balancing, and for memory requirements. Pure ELLPACK is not practical
for matrices with dense rows. ELLR-T [I2] can eliminate some of this inefficiency
by storing the length of each row, but the need to reserve enough memory for
the matrix to be stored as fully dense remains. The HYB [2] kernel overcomes
this limitation by storing a core of the problem as ELL, and any extra elements
in long rows as COO (unstructured, sparse). Unfortunately, COO is not an
especially fast kernel.

If the constraint matrix has dense blocks which can be identified, data blocking
can give significant speedup [4].

Our target problems have rows and columns of mostly identical length, barring
a fully dense row and a fully dense column. They do not lend themselves to data
blocking. The kernels discussed below were optimized for these problems.

We considered three families of kernel. Firstly, dense-hybrid ELL (DHELL)
in which dense rows are extracted for treatment by a block of their own, and the
remainder are stored in ELL format. Secondly, vector CSR as discussed by [2].
Finally, dense-hybrid transpose ELL (DHTELL), in which the matrix of indices
and coefficients is transposed relative to that encountered in ELL. It can be seen
also as CSR with a fixed row length. This kernel is novel.

As for [12], we considered using different numbers of threads per row. The ELL
format (equivalently, ELLR-T) hampers such explorations, because an entire
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half-warp must read adjacent memory locations. Thus the maximum number
of threads per row is the same as the number of half-warps per block, usually
sixteen. For both CSR and TELL formats, an entire block can be brought to
bear on a row (256 threads), but the minimum number of threads per row falls
to sixteen.

The best performing kernel was DHTELL with a half-warp per row (sixteen
threads) and a block devoted to any dense part. Although this level of parallelism
could be matched in the DHELL kernel, the former was marginally faster. There
is little to choose between any of the vectorised kernels, when compared to the
basic CSR or ELL kernels.

Note that the constraint matrix is stored twice on the GPU, once row-wise
and once column-wise, to allow operations with the transpose. Any naive imple-
mentation of the alternative would require impractical amounts of memory in
which to accumulate partial results.

The only significant optimization for this platform which has not been consid-
ered, that we are aware of, is use of the texture cache to store the input vector.
Results presented for band diagonal matrices in [2] suggest this as a possible
future enhancement.

3.2 Results

The following results are obtained from a test system having two AMD Opteron
2378 (Shanghai) quad-core processors, 16 GiB of RAM and a Tesla C2070 GPU
with 6 GiB of RAM. Note that the processors are relatively slow in serial, though
the NUMA configuration of the memory bus gives high parallel memory perfor-
mance. The GPU is a significantly more highly powered unit, making raw speed
characterisations of less interest than the potential for improvement with a given
investment.

Table 3. Comparison of accelerated matrix-free IPM codes. All times include data
transfer.

Solve time (s) SpMV time (s)
Problem Serial 8 core GPU Serial 8 core GPU
nug20 2.19 1.18 1.60 1.49 0.495 0.945
nug30 20.5 15.8 154 15.1 9.69 9.45
1kx1k0 0.244 0.177 0.217 0.0360 0.0128 0.0506
4kx4k0 3.03 2.06 2.15 1.06 0.218 0.336
16kx16k0 24.9 18.4 13.5 13.1 6.70 1.72
64kx64k0 170.0 109.0 74.0 115.0 47.4 12.2
96kx128-0  137.0 71.1 58.8 93.4 28.6 15.3

256x256-0  866.0 283.0 222.0 699.0 119.0 56.4
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Speed-up of sparse matrix-vector kernels using all eight cores of the test system
is between two and six times, giving at most a threefold speed-up of the IPM
solution time. Using the high powered GPU, speed-up of these same kernels can
approach ten times, though overall solution time is reduced by no more than a
factor of four. Clearly significant speed-up of matrix-free interior point, whether
by many-core or multi-core parallelism, is possible.

4 Conclusions

The matrix-free approach shows promise in making some of the most difficult
classes of problem tractable by interior point methods. Its focus on a small core
of sparse operations makes highly optimized implementations using state of the
art hardware possible without excessive difficulty.

The particular choice of many-core or multi-core acceleration depends on the
hardware available. As has been noted elsewhere [I3], a GPU can provide per-
formance essentially equivalent to a small number of multi-core processors in the
context of sparse problems.
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