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Abstract 

The species which presently comprise the Burkholderia cepacia complex (Bcc) have multiple roles which 

include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first 

description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study focused on 

growth on onion tissue to investigate the “natural phenotype” of these organisms. Many Bcc isolates, which 

were previously considered to be nonmucoid, produced copious amounts of exopolysaccharide (EPS) when 

onion tissue was provided as the sole nutrient. EPS production was not species-specific, was observed in 

isolates from both clinical and environmental sources and did not correlate with the ability to cause 

maceration of onion tissue. Chemical analysis suggested that the onion components responsible for EPS 

induction were primarily the carbohydrates sucrose, fructose and fructans. Additional sugars were 

investigated, and all alcohol sugars tested were able to induce EPS production, in particular mannitol and 

glucitol. Representatives of the B. cenocepacia ET12 lineage did not produce EPS under any growth 

conditions investigated. This finding correlated with the presence of an 11 bp deletion in the bceB gene which 

encodes a glycosyltransferase responsible for the catalysis of the first step of the assembly of the EPS repeat 

unit. These novel and surprising insights into EPS biosynthesis highlight the metabolic potential of the Bcc 

and show that a potential virulence factor may not be detected by routine laboratory culture. Our results also 

highlight a potential hazard in the use of inhaled mannitol as an osmolyte to improve mucociliary clearance in 

individuals with cystic fibrosis. 

 

Introduction 

The genus Burkholderia includes three closely-related microbial species that highlight diverse evolutionary 

adaptation to different niches and hosts. Burkholderia mallei is a soliped-specific pathogen which only 

occasionally infects humans. B. pseudomallei is a free-living soil microbe and the causative agent of the sub-

tropical human disease melioidosis. The species which presently comprise the Burkholderia cepacia complex 

(Bcc) have multiple roles which include soil and water saprophytes, rhizosphere parasites, bioremediators, 

plant growth promoters and plant, animal and human pathogens. Bcc are particularly associated with life-

threatening respiratory infections in patients with chronic granulomatous disease (CGD), and are the most 

potentially virulent, transmissible and inherently resistant microbes to have emerged as cystic fibrosis (CF) 

pathogens in recent decades (Govan, 2006; Mahenthiralingam et al., 2005). 

Although most species within the Bcc produce a variety of putative virulence factors, the role of these factors 

in the pathogenesis of human infection is unclear (Mahenthiralingam et al., 2005). Evidence from various 

model systems (mouse, rat, plant and nematode) suggests that the importance of individual virulence factors, 

or combinations of factors, depends on the infection model used (Bernier et al., 2003). In addition, studies of 

Bcc infections in CF patients also suggest a key role of host/pathogen interactions since clinical outcome in 
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individual patients cannot be predicted even during epidemic outbreaks when multiple patients are infected by 

the same strain (Govan et al., 1993). The first description of pathogenicity in the Bcc was based on sour skin 

rot of onion bulbs (Burkholder, 1950). In this study, we returned to this plant host to investigate the onion-

associated phenotype of the Bcc, and reveal a link between growth conditions and exopolysaccharide (EPS) 

production.  

Exopolysaccharide is a putative Bcc virulence factor which is involved in persistence of the bacteria in CF 

lungs (Conway et al., 2004), interactions with antimicrobial peptides (Herasimenka et al., 2005) and the 

formation of biofilms (Cunha et al., 2004). The EPSs of Burkholderia species have recently been 

comprehensively reviewed (Goldberg, 2007). Recent studies (Zlosnik et al., 2008) have also challenged the 

previous belief that mucoid, EPS-producing colonial morphotypes of Bcc are rare in both environmental and 

clinical isolates (Govan & Deretic, 1996). Other studies have shown that mucoid Bcc isolates mostly 

synthesise one type of EPS, with a highly branched heptasaccharide repeating unit, which was named 

cepacian (Moreira et al., 2003; Sist et al., 2003). EPS production has been shown to increase when the Bcc are 

grown in mannitol-rich yeast extract medium (MYEM) (Sage et al., 1990; Zlosnik et al., 2008).  

Here we report the novel observation that many Bcc isolates, found to be nonmucoid on typical culture media, 

produce copious amounts of EPS when onion tissue is provided as the sole nutrient. Chemical and molecular 

analyses suggest that EPS biosynthesis is strain-specific and that the plant compounds responsible are 

primarily sugars and sugar alcohols. We show that the EPS phenotype on onion media is associated with the 

previously described bce cluster (Moreira et al., 2003), thought to be involved in cepacian biosynthesis. 

 

Methods  

Bacterial strains and culture conditions. Bcc isolates used in this study are described in Table 1 and include 

16 isolates from the two published Bcc strains panels (Coenye et al., 2003; Mahenthiralingam et al., 2000). 

Additional Bcc strains investigated included Burkholderia pyrrocinia BTS7, Burkholderia cenocepacia BTS2, 

as well as 19 Burkholderia multivorans, 14 Burkholderia cenocepacia IIIA and 11 Burkholderia cenocepacia 

IIIB isolates from our collection. Isolates were recovered from storage at -80 ˚C by subculture on nutrient agar 

(NA; Columbia base agar, Oxoid) and subsequently grown on media composed of 1.5% (w/v) bacteriological 

agar (Oxoid) containing 2% (w/v) sugars and fractions from various isolation methods below. 

Sugars and other related chemicals were purchased from: Sigma-Aldrich, BDH AnalaR, MP Biochemicals, 

Fluka BioChemika, or Acros Organics. 
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Table 1. Exopolysaccharide biosynthesis of Burkholderia cepacia complex species when grown on agar 

supplemented with various substrates. 

Species Strain Source YE Onion Glucose Sucrose Fructose Inulin Glycerol Mannitol Glucitol Ribitol Inositol Mannose 

B. cepacia ATCC25416 Onion - ++ - ++ +++ - +++ +++ +++ +++ +++ + 

B. cepacia CEP509 CF - - - + ++ + ++ ++ + + + - 

B. 

multivorans 
C1576 CF - ++ - + +++ + ++ +++ +++ +++ +++ - 

B. 

multivorans 

ATCC 

17616 
Soil  - ++ - + +++ + ++ +++ +++ +++ +++ - 

B. 

cenocepacia 
J2315* CF - - - - - - - - - - - - 

B. 

cenocepacia 
K56-2* CF - - - - - - - - - - - - 

B. 

cenocepacia 
BC7* CF - - - - - - - - - - - - 

B. 

cenocepacia  
PC184 CF - ++ - + ++ + + ++ + + + - 

B. 

cenocepacia 
BTS2 CF - ++ - + ++ + + ++ ++ + ++ - 

B. stabilis LMG14294 CF - - - - + - - + - - - - 

B. 

vietnamiensis 
LMG10929 Rice - +++ - ++ +++ + +++ +++ + - +++ ++ 

B. 

vietnamiensis 
PC259 CF - ++ - + +++ + ++ +++ + - - - 

B. dolosa E12 CF - ++ - - +++ - ++ ++ - + +++ - 

B. ambifaria AMMD Soil - +++ - + +++ + +++ +++ +++ +++ +++ - 

B. anthina W92T Soil - +++ - - +++ + +++ +++ +++ +++ +++ ++ 

B. anthina C1765 CF - + - - +++ - +++ +++ - +++ + + 

B. pyrrocinia BTS7 CF - +++ - + +++ +++ +++ +++ +++ +++ +++ + 

B. pyrrocinia C1469 CF - ++ - ++ ++ + ++ +++ +++ +++ ++ - 

All strains tested are from the two published Bcc panels (Coenye et al., 2003; Mahenthiralingam et al., 2000) 

except BTS2 and BTS7 that were donated by Paola Cescutti. EPS production was scored on a scale from – (no 

EPS) to +++ (very mucoid). Mucoid growth described as +++ is shown in Figure 1b. *ET12 isolates. YE, 

yeast extract agar.  

 

 

 

Figure 1. Growth of B. ambifaria AMMD on (a) nutrient agar (non-mucoid); (b) onion agar (mucoid), and (c) 

comparison of AMMD bceB mutant (left) and AMMD wild-type (right) on mannitol agar. 
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Onion maceration. White onion slices were placed in Petri dishes and inoculated with stationary phase Bcc 

cultures (10
6
 cfu) that had been cultured overnight in 2.5% (w/v) nutrient broth No 2 (Oxoid) with 0.5% (w/v) 

yeast extract. The onions were left at 30 °C for 5 days. The results were assessed by eye, and onion 

maceration recorded as positive or negative. 

Onion extract agar. Peeled white onions (1 kg) were chopped, homogenised in a blender at room 

temperature, and filtered through muslin. The filtrate was filter-sterilized through a 0.22 μm filter and 

lyophilised to give a yellow sticky powder (typical yield 62 g). Twenty grams of lyophilised onion extract and 

15 g bacteriological agar were made up to 1 litre distilled H2O, then autoclaved at 121 °C for 15 min. Strains 

were subcultured onto onion agar and incubated for 72 hours at 30 °C. Mucoidy was recorded on a scale 

ranging from nonmucoid (-) to very mucoid (+++). 

Sugar agar. Sugar agar contained 20 g of the sugar of interest, 2 g yeast extract, and 15 g bacteriological agar 

dissolved in 1 litre distilled H2O (Sage et al., 1990). The sugars used were as follows: D-fructose, D-galactose, 

D-mannitol, D-glucose, glycerol, lactose, L-rhamnose, D-mannose, maltose, sucrose, myo-inositol, ribitol 

(adonitol), and D-glucitol (sorbitol). The fructan polysaccharide inulin was also tested. 

As a control isolates were grown on bacteriological agar containing 0.2% (w/v) yeast extract alone. 

Reverse-phase chromatography. Twenty millilitres of onion extract, 2% (w/v) in distilled H2O, was loaded 

onto a pre-packed C8 column (10 g/60.0 ml, Varian, Anachem) and bound material was eluted stepwise using 

3 concentrations of methanol (20% (v/v), 50% (v/v) and 80% (v/v); Fisher Scientific). Each fraction was 

lyophilised, dissolved in distilled H2O and incorporated into 1.5% (w/v) bacteriological agar.  

Ethyl acetate partitioning. To separate any lipids, non-polar, non-acidic and polar compounds, the 

resolubilised onion extract was brought to pH 7.0 using NaOH and partitioned against ethyl acetate (Fisher 

Scientific) at 1:1 (v/v). The phases were separated, and the aqueous phase was brought to pH 2.0 using HCl 

and the extraction was repeated. Following both extractions, the organic and aqueous layers were evaporated 

or lyophilised respectively, and then redissolved in distilled H2O, pH adjusted to 7.0, and incorporated into 

1.5% (w/v) bacteriological agar. 

Acid hydrolysis. The aqueous phase residue of the ethyl acetate partitioned onion extract was redissolved in 

distilled H2O (50 mg ml
-1

) and was hydrolysed in 2 M TFA (trifluoroacetic acid; Sigma) at 60 ˚C or 120 ˚C 

for 1 h.  

Paper electrophoresis. To fractionate the extract based on the presence or absence of functional groups, the 

freeze-dried aqueous phase of the onion extract was weighed and resuspended in distilled H2O to a final 

concentration of 50 mg ml
-1

. One millilitre was loaded at a centre origin of a Whatman No.1 paper (57×42 

cm). The following standards were added in the margins of the paper: glucose 6-phosphate, glucose, 
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glucosamine, methyl green (Sigma) and orange G (BDH). Electrophoresis was conducted at 1 kV for 20 min, 

in volatile buffers at pH 2.0 or 6.5 with white spirit or toluene as coolant (Fry, 2000). 

Paper chromatography. One millilitre aliquots of each of the redissolved aqueous phase of the onion extract 

and the TFA hydrolysed samples (50 mg ml
-1

) were chromatographed on Whatman No1 paper alongside 

markers [ferulic acid, rhamnose, glucose, lactose, mannose, galactose, fructose, mannitol, and glycerol] in 

butan-1-ol:acetic acid:water (12:3:5) for up to 60 h. 

Staining and elution methods. Electrophoretograms and chromatograms were stained with silver nitrate 

(Fry, 2000) to reveal monosaccharides, oligosaccharides, alditols, saccharinic acids and phenols, and with 

aniline hydrogen phthalate to reveal monosaccharides and reducing disaccharides. The paper strips of interest 

from both methods were eluted by a syringe method with distilled H2O (Eshdat & Mireman, 1972). The eluted 

material was incorporated into 1.5% (w/v) bacteriological agar with 0.2% (w/v) yeast extract. 

High-performance anion-exchange chromatography with pulsed amperometric detection (HPAE–

PAD). Twenty microlitres each of the aqueous phase of the onion extract and the TFA-hydrolysed samples 

(0.1 mg ml
-1

) were analysed by HPAE–PAD (Dionex). The system consisted of an AS3500 autosampler, 

GP40 gradient pump, ED40 electrochemical detector, and PC10 pneumatic controller. The amperometry 

detector cell contained a gold electrode and a pH-Ag|AgCl combination reference electrode. CarboPac MA-1, 

PA-1, and PA-100 columns and guard columns were used for the separation of alditols, monosaccharides, and 

oligosaccharides respectively. Eluents, degassed by bubbling with helium, were as follows. MA-1: 600 mM 

NaOH at 0.4 ml min
-1

 (isocratic); PA-1: 20 mM NaOH for 3 min, then H2O for 32 min, then a 0200 mM 

NaOH gradient over 10 min (all at 1.0 ml min
-1

 with post-column addition of base); PA-100: 100 mM NaOH 

throughout, supplemented with a 0200 mM NaOAc gradient over 30 min, then 200800 mM NaOAc over 

10 min (all at 1.0 ml min
-1

). Analytes were identified by comparison of retention times to those of standards 

and quantified by integration of peak area with Chromeleon software (Dionex). 

Investigation of conserved EPS gene clusters in Bcc species. Genome sequences representing five Bcc 

species were examined to determine if two previously published EPS gene clusters within B. cenocepacia 

J2315, the bce gene cluster (Moreira et al., 2003) and the wcb gene cluster (Parsons et al., 2003), are 

conserved across the Bcc. The amino acid sequences for every open-reading frame (ORF) within each of the 

two gene clusters within B. cenocepacia J2315 (genome sequence available at the Wellcome Trust Sanger 

Institute; http://www.sanger.ac.uk/) were used to search by TBLASTN the following Bcc genome sequences: 

B. ambifaria AMMD, B. vietnamiensis G4, B. multivorans ATCC17616, Burkholderia sp. 383. (all sequences 

are available at the US Department of Energy Joint Genome Institute; http://www.jgi.doe.gov/) and B. dolosa 

AU0158 (available at The Broad Institute; http://www.broad.mit.edu/). TBLASTN searches were performed 

using default parameters (BLOSUM 62, Word size 3). 
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RT-PCR analysis of EPS biosynthetic gene clusters. The EPS-producing strain, B. ambifaria AMMD, was 

cultured in 0.2 % (w/v) yeast extract with or without supplementation with 2 % (w/v) mannitol. RNA was 

extracted from mid-log phase cultures (RNeasy Protect Bacteria Mini Kit; Qiagen) and DNase I-treated 

(RNase-free DNase set; Qiagen), prior to reverse transcription with 1.5 μg RNA template, random primers 

and SuperScript III Reverse Transcriptase (Invitrogen). cDNAs and corresponding non-RT controls were used 

as template in PCR reactions specific for two distinct wza homologues (Bamb_5549 and Bamb_3621) located 

within two separate putative EPS biosynthetic gene clusters. Primer sequences are available upon request. 

PCR analysis of bceB gene. Using the bceB gene sequence of B. cenocepacia J2315, bceB homologues were 

identified within the publicly-available genome sequences of B. ambifaria AMMD, B. cepacia sp. 383, B. 

cenocepacia AU1054, B. cenocepacia HI2424, B. cenocepacia PC184, B. vietnamiensis G4 and B. dolosa 

AU0158. The eight gene sequences were aligned, and PCR primers flanking the location of the previously 

described 11-bp deletion in B. cenocepacia J2315 (Moreira et al., 2003) were designed based on conserved 

regions across the eight aligned sequences (For 5’-TGAAGGCGGT[G/C]GCGATCGTC; Rev 5’-

TCGAT[G/C]CGCACGTCGTCGAG). For preparation of genomic DNA, 1-2 bacterial colonies were 

resuspended in 20 μl lysis solution [0.25% (w/v) SDS, 0.05 M NaOH] and incubated at 95 ºC for 15 min. 

After brief centrifugation, 180 μl sterile water was added and centrifugation performed at 13,000 g for 5 min. 

Two microlitres of supernatant containing genomic DNA was used as template in PCR assays. PCR reactions 

were performed in a 50 μl volume containing 300 nM forward and reverse primer, 1.5 mM MgCl2, 260 μM of 

each dNTP, 4% (v/v) DMSO, 1 U Taq polymerase (Invitrogen) and appropriate manufacturer’s reaction 

buffer. Thermal cycling was performed on a GeneAmp PCR System 9700 (Applied Biosystems) with the 

following parameters: 94 ºC 3 min; 40 cycles of 94 ºC (30 s), 60 ºC (30 s) and 72 ºC (30 s); 72 ºC 10 min. 

PCR products were electrophoresed on a 4 % E-Gel (Invitrogen) and visualised by UV illumination. The B. 

cenocepacia J2315 bceB gene sequence harbouring the 11-bp deletion yields a PCR product of 140 bp, 

compared to 151 bp from the wildtype sequence found in B. cenocepacia IST 432 (Videira et al., 2005). 

PCR analysis of BCESM and cblA gene. Genomic DNA was prepared as described above. PCRs were 

performed as described previously (Mahenthiralingam et al., 1997; Sajjan et al., 1995). 

Insertional inactivation of bceB in B. ambifaria AMMD. Insertional inactivation of bceB was performed 

using the pGPΩTp suicide vector, essentially as described previously (Flannagan et al., 2007). In brief, a 300-

bp fragment internal to the bceB ORF of B. ambifaria AMMD and flanked by XbaI and EcoRI sites was PCR-

amplified and ligated into the corresponding sites in pGPΩTp following appropriate restriction. Resulting 

plasmids were transformed into E. coli GT115 competent cells (InvivoGen, San Diego USA) and 

subsequently introduced into B. ambifaria AMMD by triparental mating. Resulting exconjugants were 

selected using gentamicin (50 mg l
-1

) and trimethoprim (100 mg l
-1

), and mutants identified by PCR using a 

chromosomal-specific primer in conjunction with the vector-specific primer RSF1300 (Flannagan et al., 

2007). 
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Results 

Exopolysaccharide production on onion agar 

When a lyophilised onion extract was incorporated into agar at 2% (w/v) as the sole nutrient, members of the 

Bcc were not only able to grow, but a majority of isolates also produced copious amounts of 

exopolysaccharide as typified by B. ambifaria AMMD (Fig. 1 (a) and (b)). This phenotype is not observed 

when the Bcc are cultured on Burkholderia cepacia media (Mast Diagnostics), nutrient agar and other 

common laboratory media. Induction of EPS biosynthesis on onion agar was observed in all Bcc species 

investigated, but was not observed in all strains within a species (Table 1 and Supplementary Tables 1, 2 and 

3). The exception was the single strain of B. stabilis available for testing. Of particular interest was the failure 

of the well-characterised B. cenocepacia ET12 representatives J2315, K56-2 and BC7 to produce EPS on 

onion agar. In addition, there was no correlation between induction of Bcc EPS on onion agar and the ability 

of individual Bcc strains to cause maceration of onion bulbs (data not shown). 

 

The onion factor  

Attempts were made to identify the “onion factor” responsible for inducing EPS biosynthesis by use of 

standard biochemical methods for extracting and fractionating phytochemicals. The causative factor was 

retained on drying in vacuo, and remained in the aqueous phase after partition with ethyl acetate at pH 7.0 and 

pH 2.0. When further physiochemical analyses discounted the role of proteins and lipids, attention was turned 

to the carbohydrate content of onion extract. After preparative paper electrophoresis in buffers at pH 2.0 and 

6.5, the only biological activity recovered from paper strips co-migrated with the standard glucose, indicating 

the absence of ionisable functional groups such as phosphate, acid or amine (data not shown). Analytical 

paper chromatography and HPAE-PAD identified the major carbohydrate components as sucrose, glucose, 

fructose and fructans (Fig. 2). The HPAE-PAD chromatograms in Fig. 2 show characteristic peaks of glucose, 

fructose and sucrose. Sucrose breaks down to fructose and glucose upon mild hydrolysis, as do the fructans to 

fructose. Fructose breaks down under complete hydrolysis as expected for a ketose sugar, whilst the aldose 

sugar glucose remains stable. The ability of these and related compounds to stimulate EPS biosynthesis in Bcc 

was then investigated (Table 1). Glycerol and mannitol were included as these sugar alcohols have previously 

been noted to enhance EPS biosynthesis in Pseudomonas aeruginosa (Whitchurch et al., 1996) and the Bcc 

(Sage et al., 1990; Zlosnik et al., 2008). Glucitol was included because of its close degradative relationship 

with fructose and mannitol (Allenza et al., 1982). These experiments showed that within a particular Bcc 

species, EPS biosynthesis was strain-specific and that the most potent inducers of EPS were fructose and all 

alditols tested, most significantly mannitol and glucitol, as well as the cyclitol myo-inositol. Importantly, the 

profile of EPS biosynthesis production with these sugars was similar to that observed with onion extract 



Page 8 of 17 

(Table 1). EPS biosynthesis was not observed on agar containing yeast extract alone, nor in the presence of 

glucose (Table 1), galactose, lactose or maltose (data not shown) with any Bcc strains tested. 

 

 

Figure 2. HPAE-PAD chromatograms: Carbopac PA-100 column separation of sugars in onion extract. (a) 

Crude onion extract; (b) onion extract hydrolysed by 2 M TFA 60 °C 1 h; (c) onion extract hydrolysed by 2 M 

TFA 120 °C 1 h. Glucose, fructose and sucrose peaks were clearly identified based on standards (not shown), 

and hydrolysis pattern. Peaks with retention times between 12 and 36 min appear to be oligosaccharides of 

fructose based on their degradation to fructose under mild hydrolysis. 

 

Investigation of the molecular basis for EPS biosynthesis 

With the exception of the single B. stabilis strain tested, all Bcc species were shown to be capable of 

producing EPS when grown on onion agar (Table 1 and Supplementary Tables 1-3), suggesting the presence 

of a conserved EPS biosynthetic gene cluster. Consequently, genome sequences representing five Bcc species 

(B. ambifaria, B. multivorans, B. vietnamiensis, B. dolosa and Burkholderia sp. 383) were examined to 

determine if two putative EPS gene clusters within B. cenocepacia J2315, the bce gene cluster (Moreira et al., 

2003) and the wcb gene cluster (Parsons et al., 2003), are conserved across the Bcc. The wcb gene cluster was 

found to be poorly conserved, with between one-third and one-half of J2315 ORFs having no direct 
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homologues within the species examined (data not shown). Notably, within the EPS-producing B. ambifaria 

AMMD strain, over half of the J2315 wcb-associated ORFs have no homologues, and the remaining 

homologous ORFs are not organised within a gene cluster. In contrast, the bce gene cluster was conserved 

across all species examined, both in terms of sequence homology and organization of ORFs (Supplementary 

Figure 1). In the course of these genome comparisons, a third putative polysaccharide biosynthetic gene 

cluster was observed on chromosome 2 of B. cenocepacia J2315. This cluster encodes two putative EPS 

transporter proteins (BCAM1330 and BCAM1331), an acyltransferase (BCAM1333), several 

glycosyltransferases (BCAM1335, BCAM1337, BCAM1338), a polysaccharide biosynthesis protein 

(BCAM1336) and a mannose-6-phosphate isomerase (BCAM1340). This cluster is conserved amongst several 

Bcc species, albeit to a lesser extent than the bce gene cluster (data not shown). In the EPS-producing B. 

ambifaria AMMD, this gene cluster maps to ORFs Bamb_3621 through to Bamb_3629. 

To investigate which polysaccharide gene cluster is induced by growth on mannitol, the expression of 

representative genes from two distinct EPS gene clusters was assessed in B. ambifaria AMMD grown in the 

presence and absence of mannitol. The genes studied each encode homologues of the Wza EPS export protein: 

Bamb_5549 of the bce gene cluster (equivalent to bceE, BCAM0858 of B. cenocepacia J2315), and 

Bamb_3621 of the novel putative polysaccharide gene cluster described above (BCAM1330 of B. 

cenocepacia J2315). As shown in Figure 3, expression of Bamb_3621 was not observed under either growth 

condition. In contrast, expression of the bceE homologue (Bamb_5549) was clearly induced by the presence 

of mannitol. Consequently, we focused on the bce gene cluster to investigate why some Bcc isolates, most 

notably those of the B. cenocepacia ET12 lineage, failed to produce EPS under any growth conditions. 

 

 

Figure 3. Induction of the bce gene cluster by mannitol. RT-PCR analysis was performed to assess the 

expression of two distinct wza homologues (bceEand Bamb_3621) of B. ambifaria AMMD in the absence and 

presence of mannitol. The bceE gene (Bamb_5549) is located within the bce gene cluster, whilst Bamb_3621 
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is located within a distinct putative EPS biosynthetic gene cluster. Expression was assessed in yeast extract 

(YE) and yeast extract supplemented with 2 % (w/v) mannitol (YE+Man). Expression of Bamb_3621 was not 

detected in YE or YE+Man. In contrast,bceE expression was strongly induced by growth in YE+Man. For 

each sample, RT and non-RT reactions (+/−) are shown alongside each other. Genomic DNA positive controls 

are shown for each gene (bceE +ve, 3621+ve). 

 

A PCR assay was designed to screen isolates for an 11-bp deletion in the bceB gene which has been suggested 

to be responsible for loss of EPS production in the CF isolate B. cenocepacia J2315 (Moreira et al., 2003). Of 

the panel of strains shown in Table 1, only the B. cenocepacia ET12 isolates J2315, K56-2 and BC7 harbour 

the 11-bp deletion (data not shown). This result prompted us to test a panel of B. cenocepacia IIIA strains 

containing both ET12 and non-ET12 isolates. There was a clear correlation between the 11-bp deletion and 

the presence of both cblA (cable pilus) and BCESM (B. cepacia epidemic strain marker), indicating this 

deletion is a conserved feature within the ET12 lineage (Fig. 4). In our study, with the exception of strain 

E3051, the presence of the deletion correlated with the lack of EPS production in all B. cenocepacia IIIA 

isolates examined (Fig. 4; Supplementary Table 1). Furthermore, the 11-bp deletion in the bceB gene was not 

observed in any B. cenocepacia IIIB or B. multivorans isolates studied (see Supplementary Tables 2 and 3). 

 

 

Figure 4. bceB PCR analysis of representative B. cenocepacia IIIA isolates. For each isolate, EPS production 

is indicated as mucoid (M) or non-mucoid (NM) alongside PCR analysis of bceB, and the epidemic strain 

markers cblA and BCESM. All PCR products are pictured alongside the 1 kb Plus DNA Ladder (Invitrogen). 

NTC, no template control. The bceB PCR assay yields a 151 bp product from wild-type sequence and a 140 
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bp product from sequence harbouring an 11 bp deletion (as previously reported within J2315). With one 

exception (E3051), lack of EPS production within B. cenocepacia IIIA isolates correlated with the 11 bp 

deletion within bceB. This deletion was only observed within strains that were positive for both cblA and 

BCESM, indicating it to be a conserved feature of the ET12 lineage. The bceBdeletion was not observed in a 

strain harbouring just one of the two epidemic strain markers (E1001). 

 

Using proven methods for the complementation of gene function in B. cenocepacia (Ortega et al., 2005), 

attempts were made to complement BceB function within B. cenocepacia K56-2 by introducing a wildtype 

bceB ORF amplified from B. cenocepacia PC184. Whilst expression of 6His-tagged BceB was detected in E. 

coli C41(DE3) cells, previously shown to support expression of membrane-bound proteins (Miroux & Walker, 

1996), we were unable to detect expression within B. cenocepacia K56-2 (data not shown). Consequently, we 

chose to disrupt the bceB ORF of an EPS-producer. Insertional inactivation of the bceB gene resulted in loss 

of EPS production in B. ambifaria AMMD when grown mannitol agar (Fig.1 (c)) and on onion agar (data not 

shown). 

 

Discussion  

In the present study, we returned to the original Bcc host and report that Bcc isolates previously considered 

nonmucoid produce copious amounts of EPS when onion tissue is provided as the sole nutrient, highlighting 

the metabolic potential of this group of organisms. This novel and surprising observation is not species-

specific, and is exhibited by isolates of both clinical and environmental origin. The onion components 

responsible for EPS induction are primarily the carbohydrates sucrose, fructose and fructans. Additionally, all 

alcohol sugars tested are able to induce EPS production, in particular mannitol and glucitol. 

The reasons why EPS biosynthesis is readily induced by onion extracts and, in particular, by fructose and the 

hexitol sugars mannitol and glucitol require further investigation. An ability to respond to inulin was confined 

to certain strains, all of which responded well to fructose. This suggests that the fructan polysaccharide was 

only active in bacteria that can hydrolyse it to fructose. The ability of one strain (BTS7) to respond 

particularly strongly to inulin could possibly be due to its enhanced ability to hydrolyse inulin to fructose. 

Interestingly, the similar profile of EPS induction shown by fructose and alcohol sugars agrees well with a 

previous study which showed that the initial steps of utilisation of these sugars in the Bcc differ from those in 

most other pseudomonads. Growth of Bcc on fructose involves active transport followed by fructokinase 

conversion to fructose 6-phosphate then degradation via the Entner–Doudoroff (Allenza et al., 1982). Growth 

on mannitol and glucitol also requires this pathway following active uptake and intracellular oxidation to 

fructose.  
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The role of Bcc EPS as a putative virulence factor is unclear. The influence of mannitol and other alcohol 

sugars on EPS production suggests that the prevalence of EPS in the Bcc may have been underestimated. In 

addition, given the variety of human, animal, plant and other models studied, the role of EPS may be 

influenced by the host involved and the route of administration. EPS has been associated with altered Bcc 

clearance in a mouse model of infection (Conway et al., 2004), and EPS-deficient Bcc mutants displayed 

reduced mortality within a CGD mouse model (Sousa et al., 2007). Similarly, a role for EPS in persistence in 

human airways is suggested by its capacity to scavenge reactive oxygen species and inhibit neutrophil 

chemotaxis (Bylund et al., 2006). In our study, EPS biosynthesis did not correlate with the ability to cause 

onion rot, which is perhaps to be expected since pectinases rather than EPS are likely to play the major role in 

the maceration of plant tissue. Cunha and colleagues (2004) did not observe a clear correlation between EPS 

biosynthesis in vitro and the ability of Bcc strains to establish chronic infections within the CF lung. Recent 

evidence, however, suggests a subtle and unexpected role for Bcc EPS in CF lung infection. Consistent with 

our findings, Zlosnik and colleagues (2008) reported that isolates of B. cenocepacia, the most virulent Bcc 

species, are most frequently nonmucoid. They also observed a mucoid to nonmucoid conversion in sequential 

isolates of Bcc from chronically infected CF patients. This apparent loss of mucoidy in vivo, and its absence in 

the virulent B. cenocepacia ET12 lineage, provides an intriguing contrast with the characteristic nonmucoid to 

mucoid conversion observed with alginate-producing P. aeruginosa. Zlosnik and colleagues suggest that Bcc 

EPS could be responsible for the persistence of Bcc in CF airways whilst loss of EPS leads to increased 

disease severity. 

In our investigation of EPS biosynthesis determinants, we focussed on the highly conserved bce gene cluster. 

Previously described by Moreira and colleagues (2003), the bce gene cluster has had several of its encoded 

proteins characterized (Ferreira et al., 2007; Sousa, 2007; Videira et al., 2005) and is thought to be involved in 

cepacian biosynthesis. In the present study, we demonstrated induction of the bce gene cluster by mannitol, 

and found a clear correlation between the inability of representatives of the B. cenocepacia ET12 lineage to 

produce EPS and the presence of an 11-bp deletion within the bceB gene, originally described within the 

genome sequence of B. cenocepacia J2315 (Moreira et al., 2003). Consistent with this correlation, insertional 

inactivation of bceB, which encodes a glycosyltransferase, resulted in the loss of EPS production by B. 

ambifaria AMMD when grown on onion media. Combined, these observations highlight the pivotal role of 

the bce gene cluster in onion-induced EPS biosynthesis, and suggest that the observed EPS is cepacian. 

However, mutations elsewhere within the bce gene cluster, or in other EPS-related gene clusters, must be 

responsible for the lack of EPS biosynthesis in B. cenocepacia strain E3051 (Supplementary Table 1), and in 

other EPS-negative Bcc strains in our study which lack the 11-bp deletion in bceB (Supplementary Tables 2 & 

3).  

The ability of hexoses and hexitols, in particular mannitol, to enhance EPS biosynthesis in the B. cepacia 

complex has disturbing implications for therapeutic intervention in CF. Recent attempts to improve airway 
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clearance with hypertonic saline 5% (w/v) have been handicapped by the problem of salty taste and the salt-

sensitive nature of many antimicrobial peptides. Thus, attention has turned to the use of non-ionic osmolytes, 

including inhaled mannitol (Daviskas et al., 2008; Robinson et al., 1999; Wills, 2007), which is marketed as 

Bronchitol
TM 

(Pharmaxis). Robinson and colleagues acknowledged that the majority of P. aeruginosa and Bcc 

isolates are able to utilise mannitol as a carbon and energy source. However, they felt that the nutritional 

influence of mannitol as a therapeutic osmolyte would be minimal given the abundance of other nutrients 

already present in CF respiratory secretions. On a cautionary note, they state that this potential problem would 

need to be confirmed by quantitative microbiology. The potential induction of virulence determinants during 

osmolyte therapy has to our knowledge not been considered. Our results also provide justification for the 

continued exclusion of CF individuals known to be infected with Bcc from ongoing trials of inhaled mannitol 

(ClinicalTrials.gov identifier NCT00117208 and NCT00251056). 
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