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A gene on the HER2 amplicon, C35, is an oncogene in breast
cancer whose actions are prevented by inhibition of Syk

E Katz*,1, S Dubois-Marshall1, AH Sims1, D Faratian1, J Li2, ES Smith2, JA Quinn3, M Edward3, RR Meehan1,4,
EE Evans2, SP Langdon1 and DJ Harrison1

1Breakthrough Research Unit and Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh
EH4 2XU, UK; 2Vaccinex Inc., 1895 Mt Hope Avenue, Rochester, NY, USA; 3Section of Dermatology, Division of Cancer Sciences, Faculty of Medicine,
University of Glasgow, Glasgow, UK; 4MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh
EH4 2XU, UK

BACKGROUND: C35 is a 12 kDa membrane-anchored protein endogenously over-expressed in many invasive breast cancers. C35
(C17orf37) is located on the HER2 amplicon, between HER2 and GRB7. The function of over-expressed C35 in invasive breast
cancer is unknown.
METHODS: Tissue microarrays containing 122 primary human breast cancer specimens were used to examine the association of C35
with HER2 expression. Cell lines over-expressing C35 were generated and tested for evidence of cell transformation in vitro.
RESULTS: In primary breast cancers high levels of C35 mRNA expression were associated with HER2 gene amplification. High levels of
C35 protein expression were associated with hallmarks of transformation, such as, colony growth in soft agar, invasion into collagen
matrix and formation of large acinar structures in three-dimensional (3D) cell cultures. The transformed phenotype was also
associated with characteristics of epithelial to mesenchymal transition, such as adoption of spindle cell morphology and
down-regulation of epithelial markers, such as E-cadherin and keratin-8. Furthermore, C35-induced transformation in 3D cell cultures
was dependent on Syk kinase, a downstream mediator of signalling from the immunoreceptor tyrosine-based activation motif, which
is present in C35.
CONCLUSION: C35 functions as an oncogene in breast cancer cell lines. Drug targeting of C35 or Syk kinase might be helpful in treating
a subset of patients with HER2-amplified breast cancers.
British Journal of Cancer (2010) 103, 401–410. doi:10.1038/sj.bjc.6605763 www.bjcancer.com
Published online 13 July 2010
& 2010 Cancer Research UK

Keywords: breast cancer ; C35; HER2; epithelial to mesenchymal transition; ITAM; Syk kinase

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The gene C35 (C17orf37) is located within the smallest region of
amplification of the HER2 amplicon, between HER2 and GRB7. It is
a 12 kDa membrane-anchored protein over-expressed in 40– 50%
of invasive breast cancers (Evans et al, 2006). C35 has recently
been implicated in conferring invasive potential in prostate
cancer cell lines (Dasgupta et al, 2009). It contains a canonical
immunoreceptor tyrosine-based activation motif (ITAM; Evans
et al, 2006), a motif common in receptors of the immune system
(Underhill and Goodridge, 2007), which has been associated with
cell transformation through the activation of downstream Syk
signalling. This raises the possibility that C35 can function as a
transforming oncogene. The ability of ITAM-containing proteins
to transform non-haematopoietic cells was previously shown using
viral glycoproteins, such as the murine mammary tumour virus
envelope protein (MMTV Env; Katz et al, 2005). Other examples of
non-haematopoietic transformation by ITAM-containing proteins
include latent membrane protein 2A of Epstein– Barr virus in skin
keratinocytes (Lu et al, 2006) and K1 protein of Kaposi’s sarcoma-
associated herpes virus in endothelial cells (Wang et al, 2006).

Particularly relevant were the observations that ITAM-containing
proteins contribute to mammary epithelial cell (MEC) transforma-
tion and development of mammary carcinomas (Katz et al, 2005;
Grande et al, 2006; Ross et al, 2006).

Using the ITAM-containing envelope protein of MMTV Env and
a chimeric B-cell receptor protein, many researchers have made
several key observations (Katz et al, 2005; Grande et al, 2006; Ross
et al, 2006): (1) ITAM-containing protein expression can transform
immortalised normal MECs in three-dimensional (3D) culture;
(2) ITAM-induced transformation is dependent on its tyrosine
phosphorylation and is associated with downstream Src and Syk
kinase activation and (3) mutation of the ITAM tyrosines reduces
tumour induction markedly by MMTV in vivo and influences its
genomic integration. Therefore, ITAM-containing protein expres-
sion can switch on an intrinsic transformation programme in
MECs. This programme is closely associated with epithelial to
mesenchymal transition (EMT). Whereas epithelial markers such
as E-cadherin and keratin-18 are down-regulated, mesenchymal
markers such as N-cadherin and vimentin are up-regulated
(Katz et al, 2005; Grande et al, 2006).

In this study, we determined the co-expression of C35 and HER2
proteins in human breast cancers. High levels of C35 expression
were shown to induce invasion mediated by EMT in vitro 3D
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cultures using cell lines. Mutation of ITAM of C35 (or downstream
Syk inhibition) was sufficient for the reversal of C35-induced
transformation. Syk inhibition in combination with anti-HER2
therapy was shown to be effective in BT474 cell line model, offering
a possible therapeutic approach to treat HER2þ tumours.

MATERIALS AND METHODS

Tissue microarray construction and AQUA analysis

The population characteristics of the trastuzumab-treated cohort
are summarised in Supplementary Table S1. HER2 gene amplifica-
tion status was confirmed by fluorescence in situ hybridisation
(FISH) according to the manufacturer’s recommendations (HER2
FISH PharmDx; Dako, Ely, Cambridge, UK). The use of this cohort
was approved by the Lothian Research Ethics Committee
(08/S1101/41). After H&E sectioning of representative tumour
blocks, tumour areas were marked for TMA construction and
0.6 mm2 cores were placed into three separate TMA replicates for
each sample, as previously described (Kononen et al, 1998).

Immunofluorescence was carried out using methods previously
described (Camp et al, 2002). Pan-cytokeratin antibody was used
to identify infiltrating tumour cells and normal epithelial cells,
DAPI counterstain to identify nuclei and Cy-5-tyramide detection
for target (C35, 1 : 500 dilution; Vaccinex, Rochester, NY, USA) for
compartmentalised (tissue and subcellular) analysis of tissue
sections. Monochromatic images of each TMA core were captured
at � 20 objective using an Olympus AX-51 epifluorescence
microscope (Olympus, Southend-on-Sea, UK), and high-resolution
digital images analysed by the AQUAnalysis software (HistoRx
Ltd., Branford, CT, USA). Briefly, a binary epithelial mask was
created from the cytokeratin image of each TMA core. Similar
binary masks were created for cytoplasmic and nuclear compart-
ments on the basis of DAPI staining of nuclei. C35 expression was
quantified by calculating the Cy5 fluorescent signal intensity on a
scale of 0–255 within each image pixel, and the AQUA score was
computed by dividing the sum of Cy5 signal within the epithelial
mask by the area of the cytoplasmic compartment.

AQUA scores were averaged from replicate cores. If the tumour
epithelium comprised o5% of total core area, the core was
excluded from analysis. To determine the cut-point value for C35
expression in Kaplan–Meier analysis (Altman et al, 1994), we used
X-Tile (Yale University New Haven, CT, USA), which allows
determination of an optimal cut point while correcting for the use
of minimum P statistic (Camp et al, 2004). Overall survival was
subsequently assessed by Kaplan–Meier analysis with log-rank for
determining statistical significance. Comparison of differences in
means of C35 according to HER2 status was carried out using the
Student’s t-test. All calculations and analyses were two tailed where
appropriate using SPSS 14.0 for Windows (SPSS Inc., Chicago,
IL, USA).

Immunohistochemistry

The following antibodies were used: C35, an affinity-purified
rabbit polyclonal antibody 78.2 (Vaccinex) at 0.42 mg ml�1;
cytokeratins 5/6 (CK5/6), rabbit polyclonal antibody (Dako) at
1 : 50 dilution; E-cadherin, mouse monoclonal (BD Biosciences,
Oxford, UK) at 1 : 450 dilution; Twist, mouse monoclonal (Abcam,
Cambridge, UK) at 1 : 100 dilution and claudin-7, rabbit polyclonal
(Abcam) at 1 : 100 dilution.

Antigen retrieval for C35, E-cadherin and claudin-7 was carried
out using sodium citrate buffer (18mM citric acid, 82 mM sodium
citrate, pH 6.0). Antigen retrieval for Twist was carried out using
Tris/EDTA buffer (1 mM EDTA, 10 mM Tris-HCl base, pH 8.0).
Standard immunohistochemistry protocol was carried out using
the REAL EnVision mouse/rabbit kit (Dako), according to the

manufacturer’s instructions. For C35, comparative staining
showed that automated AQUA immunofluorescence and manual
immunohistochemistry scores correlated as follows: o100 : 0;
100– 200 : 1þ ; 201– 300 : 2þ and 4300 : 3þ .

HER2 immunohistochemistry was carried out using HercepTest
(Dako), according to the manufacturer’s instructions; with antigen
retrieval at 961C for 40 min. Staining was carried out on
Autostainer (Dako). HER2 assessment was carried out according
to the ASCO/CAP guidelines (Wolff et al, 2007). HER2 tumours
were defined as positive only when the immunohistological score
was 3þ and HER2 amplification was subsequently verified
by FISH.

Cell lines, transfection and foci formation

The BT474, T47D, MBA-MD-231 and SKBr3 cell lines were
obtained from the American Type Culture Collection. BT474,
MBA-MD-231 and SKBr3 cells were cultured in RPMI 1640
(Invitrogen, Paisley, UK) supplemented with 10% donor bovine
serum, 50 U ml�1 penicillin and 50 mg ml�1 streptomycin. T47D
cells were cultured in DMEM (Invitrogen) supplemented with 10%
donor bovine serum, 50 U ml�1 penicillin and 50 mg ml�1 strepto-
mycin.

H16N-2 is an immortalised cell line derived from normal breast
epithelium that does not over-express C35 (a kind gift from
Dr V Band; Band and Sager, 1991). H16N-2 cells were cultured in
DFCI media (Evans et al, 2006) or commercial MEGM (Lonza,
Slough, UK) supplemented with 5% serum. The culture media were
supplemented with 0.5 mg ml�1 G418 for vector selection. For
detection of foci formation, we stained confluent monolayers with
crystal violet (0.1% crystal violet, 20% ethanol) for 5 min, followed
by de-stain rinse with water.

C35 and ITAM mutants through transfection

The coding region for human C35 protein was cloned into plasmid
vector pIRESneo3 (Clontech, Mountain View, CA) at BsiWI and
BamHI restriction sites. Plasmid DNA encoding wild-type (wt),
Y39F/Y50F ITAM mutant or empty vector was transfected into
host cells using Lipofectamine 2000 (Invitrogen) in OptiMem
transfection medium following the manufacturer’s protocol.
Transfection medium was replaced with growth medium after
6 h. Transfectants were selected on G418, 48 h after transfection.
Bulk transfected lines were cloned using cloning discs.

C35 recombinant cells by retroviral transduction

The coding region for human C35 protein (Evans et al, 2006) was
cloned into retroviral vector pLXSN. To make a stable retrovirus
producing line, we transfected pLXSN encoding wt C35 or empty
vector into PA317 cells. Viral supernatants were collected, filter
sterilised (0.45 mM) and titrated in the range of approximately 105

PFU per ml. H16N-2 were seeded at 3- to 5� 106 cells in a T75 flask
and incubated with 3 ml of viral supernatant and 2 mg ml�1

polybrene at 371C for 6 h. Infection media were replaced with
DFCI growth media and 0.5 mg ml�1 G418 was added at 48 h after
infection. Bulk transduced lines were cloned by limiting dilution.
Cell lines were assessed for C35 expression by western blot and/or
immunofluorescence staining with C35 mouse monoclonal anti-
body (clone 1F2.4.1; Vaccinex) on fixed and permeabilised cells.

Soft agar colony formation assays

Triplicate wells of a six-well plate were seeded with uniform
H16N-2 or MDA-MB-231 cell suspension diluted in DFCI, 0.33%
agar (4� 103 cells per well), which was layered over a bottom layer
containing 0.625% agar. Plates were incubated up to 5 weeks at
371C, fresh media were added to each well every week to replenish
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nutrients and moisture. Presence of colonies was detected under
light microscope and visual inspection, at which point
colonies were stained with P-iodonitrotetrazolium violet dye
(Sigma-Aldrich, Gillingham, UK). Iodonitrotetrazolium violet
stock (dissolved in 95% ethanol at 20 mg ml�1) was diluted to
1 mg ml�1 in PBS and 0.25 ml was added to each well. After
overnight incubation at 371C, visible colonies were counted in each
well; counts from three wells were averaged. The number of
colonies was normalised by multiplying the average number of soft
agar colonies by the ratio of attached growth colonies normal to
attached growth colonies transfectant. The attached growth assay
was carried out at the same time as the soft agar assay, where 1/100
of each soft agar dilution was seeded into 100 mm dish. At 10– 12
days after seeding, the dishes were stained with crystal violet and
colonies were counted (Foos et al, 1998). Similar results were
obtained in three independent experiments.

Collagen invasion assays

To characterise the mode of invasion of C35-expressing cells, we
carried out collagen invasion assays essentially as previously
described (Amjad et al, 2007). These assays are different from
traditional Boyden chambers in several aspects: (1) the material
used is a mixture of collagen and fibroblasts, generating a lattice of
stroma-like substance; (2) the presence of live fibroblasts allows
for continuing interaction with the epithelial cells; (3) importantly,
the cells are examined as they invade the collagen lattice, not only
measuring the number that have invaded right through the
material.

Briefly, rat collagen I solution was mixed with 105 human breast
fibroblasts (obtained from reduction mammoplasty, referenced in
Amjad et al, 2007) per lattice and left to contract in fibroblast
media (DMEM (Invitrogen) supplemented with 10% serum,
50 U ml�1 penicillin and 50 mg ml�1 streptomycin) for 4–7 days.
When the lattices were of the required size (approximately four-
fold contraction), 3� 105 H16N-2 cells from the desired lines were
seeded on top of the lattices and incubated as submerged cultures
for 3 –4 days in H16N-2 media. To induce invasion, we raised the
lattices to the air/liquid interface and incubated for further 7 days
before the they were fixed in 10% phosphate-buffered formalin and
embedded in wax.

RNA extraction and RT– PCR

RNA was extracted by RNeasy Mini kit (Qiagen, Crawley, UK),
evaluated on Agilent (South Queensferry, UK) Bioanalyzer
(RIN49.5) and labelled using Illumina TotalPrep RNA amplifica-
tion kit (Applied Biosystems/Ambion, Austin, TX, USA) according
to the manufacturers’ instructions. Triplicate samples from whole
invasion assays (1500 ng cRNA each) were hybridised to Illumina
BeadChips, according to the manufacturer’s instructions. Whole-
genome gene expression analysis was performed using Illumina
HumanRef-8 v3 Expression BeadChip and BeadArray Reader.
Microarray data were analysed using packages within Bioconductor
(Gentleman et al, 2004; http://www.bioconductor.org) implemen-
ted in the R statistical programming language (http://www.
r-project.org/). The gene expression data were normalised using
quantile normalisation within the bead array package (Dunning
et al, 2007) and differential gene expression was assessed using
significance analysis of microarrays (SAM; Tusher et al, 2001)
using the siggenes package. The data set of Herschkowitz et al
(2007) was downloaded from the UNC Microarray Database
(https://www.genome.unc.edu/).

Confirmation of gene expression patterns from biological
triplicates of invasion assays was carried out using the QuantiTect
SYBR Green kit (Corbett/Qiagen, Crawley, UK) on a Corbett
Rotor-Gene 3000. Primers for CDH1 were: forward 50-CGGAGAA
GAGGACCAGGACT-30, reverse 50-GGTCAGTATCAGCCGCTTTC-30;

for CLDN7: forward 50-AAAATGTACGACTCGGTGCTC-30, reverse
50-AGACCTGCCACGATGAAAAT; for TBP: forward 50-GGGGA
GCTGTGATGTGAAGT-30, reverse 50-CCAGGAAATAACTCTGG
CTCA-30; for ACTB: forward 50-CCTTCCTGGGCATGGAGTCCT-
30, reverse 50-GGAGCAATGATCTTGATCTT-30. QuantiTect Primer
Assays (Qiagen) were used for KRT8, MAL2, TACSTD1 and
SPINT2. PCR programme was identical for all genes: 951C, 15 min
(941C, 15 s; 561C, 30 s; 721C, 30 s) � 50 cycles; 721C, 5 min.
Standard reference human cDNA was from Clontech (catalogue
no. 639654), random primed, B50 ng RNA equivalent per ml was
used for quantification of mRNA expression. Final normalisation
as shown in Figure 4 was performed against the geometrical mean
of ACTB and TBP levels.

Flow cytometry

shRNA constructs were cloned into Open Biosystems/Thermo-
Fisher, Huntsville, AL) lentiviral inducible system; cell lines
generated using non-silencing and shRNA-598 (agagagacactctc
catgaaca) were evaluated for both C35 and Her2 expression. FACS
analysis: cells were cultured in complete medium in the presence or
absence of 0.5mg ml�1 doxcycline for at least 7 days, collected with
trypsin and re-suspended in FACS buffer (PBS (pH 7.2), 1% BSA).
For HER2 staining, cells were incubated with 2mg ml�1 biotinylated
Herceptin or Remicade as human IgG1 isotype control, for 20 min on
ice, followed by washing and incubation with 2mg ml�1 strepta-
vidin–APC. For C35 staining, cells were fixed and permeabilised
according to the manufacturer’s instruction using Invitrogen
Fixation and Permeabilization kit GAS-004, and stained with
0.5mg ml�1 C35 monoclonal antibody 1F2 or mouse IgG (BD
Biosciences, catalogue no. 557732) conjugated to Alexa 647 for
45 min at room temperature. Cells were washed in FACS buffer and
analysed on FACSCalibur. Samples were run in triplicate and
averaged; ratio of median fluorescence intensity was plotted.

Three-dimensional cultures

Three-dimensional cultures have been used to study the behaviour
of MECs in the presence of reconstituted basement membrane
(Debnath and Brugge, 2005). This assay is particularly useful in
observing oncogenic potential, by measuring morphological
changes of the acinar structures formed in the culture. Such
changes include enlarged acinar structures, local invasion and lack
of lumen formation (Debnath and Brugge, 2005). We previously
studied the effects of ITAM-containing proteins using 3D cultures
(Katz et al, 2005; Grande et al, 2006), accurately predicting their
contribution to tumour formation in vivo (Ross et al, 2006).

Cells (5� 103 cells per chamber) were cultured on Matrigel (BD
Biosciences) cushions following the precise protocol published
previously (Debnath et al, 2003) using the usual cell culture media
with the addition of 2% Matrigel. The structures were analysed, at
a magnification of � 20, on a Leitz (Microscope Co., Glasgow, UK)
Dialux 20 equipped with an Insight 4 video camera and SPOT
software (Diagnostic Instruments, Sterling Heights, MI, USA).
Quantification of structure size was carried out using a 10� 50 mm
grid reticule (Fisher Scientific, ThermoFisher, Huntsville, AL,
USA), with 20–50 structures counted from each chamber. The
inhibitors BAY61-3606 and piceatannol (Merck, Nottingham, UK)
and trastuzumab/Herceptin (Roche Diagnostics, Penzberg,
Germany) were added as follows (Figures 5 and 6):

(5a) T47D cells treated for 14 days with the Syk inhibitors
BAY61-3606 (100 nM) or piceatannol (1 mg ml�1) (added twice: at
days 8 and 11).

(5b) BT474 cells treated for 13 days with trastuzumab
(20mg ml�1) and/or BAY61-3606 (50 nM) (twice: at days 7 and 10).

(6b) Y39F/Y50F ITAM mutant or wt C35-expressing cell lines
were treated for 14 days with the Syk inhibitor BAY61-3606 (50 nM,
twice: at days 8 and 11).
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For siRNA experiments, 105 cells were plated 48 h before the 3D
culture. After 24 h, the cells were transfected with 100 nM non-
targeted or Syk siRNA SmartPOOLs (Dharmacon, Cramlington,
UK), using Lipofectamine (Invitrogen). At 24 h after the transfection
cells were collected, counted and seeded on Matrigel as described
above. The effectiveness of the SmartPOOLs vs single siRNA was
measured by qPCR (all reagents from Dharmacon) after 48 h on
plastic (Supplementary Figure S3).

Statistical analysis

For comparisons of means of structure diameters, two-tailed
unpaired t-test was used. P-values were as follows:

(3c) C35, null vs C35pool: o0.0001; C35pool vs C35hi: 0.0041.
E-cadherin, C35: null vs C35pool: o0.0001; C35pool vs C35hi:
o0.0001.

(5a) None vs piceatannol: 0.0343; none vs BAY61-3606: 0.0119.
(5b) None vs trastuzumab/Herceptin: not significant; none vs

BAY61-3606: 0.0356; none vs trastuzumab þBAY61-3606:
o0.0001; BAY61-3606 vs trastuzumab þBAY61-3606: 0.0005;
trastuzumab vs trastuzumab þBAY61-3606: o0.0001.

(5d) Non-targeted siRNA vs C35 siRNA: o0.0001; non-targeted
siRNA vs HER2 siRNA: 0.0329; non-targeted siRNA vs Syk siRNA:
0.0104.

(6a) Neo vs Y39F/Y50F C35: not significant; neo vs wt C35:
0.0053; Y39F/Y50F C35 vs wt C35: 0.0026.

(6b) Y39F/Y50F C35 vs wt C35: 0.0111; Y39F/Y50F C35, none vs
BAY61-3606: not significant; wt C35, none vs BAY61-3606: 0.0111.

(6c) Neo non-targeted vs Syk siRNA: not significant; neo non-
targeted vs C35 non-targeted: 0.0011; C35 non-targeted vs Syk:
0.0018.

RESULTS

C35 protein is co-expressed with HER2 in human breast
cancer cells

C35 protein expression was analysed by quantitative immuno-
fluorescence using the HistoRx AQUA image analysis system
(Camp et al, 2002) (1) to determine whether it is co-expressed with
HER2 in the same cancer cells and (2) to investigate whether level
of expression of protein was associated with therapeutic response
to trastuzumab (Herceptin) in a retrospective clinical cohort of 122
treated patients, 32 of which were found later to be HER2 negative
(Faratian et al, 2009). Pre-treatment C35 protein levels measured
by immunofluorescence were significantly associated with HER2
copy number amplification assessed by FISH (Figure 1A and B;
mean AQUA score HER2 not amplified¼ 47.8 (s.d. 55.2; range
17.4– 327.7), mean AQUA score HER2 amplified¼ 255.2 (s.d.
170.9; range 40.1–1014.9); Mann– Whitney U-test, Po0.0001).
In cancers with no HER2 amplification expression of C35
was uniformly low in all but two cases, with AQUA scores of less
than 100.

We next sought to establish whether quantitative C35 expression
was associated with response to trastuzumab as measured by the
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Figure 1 Clinical profile of C35 expression in human breast cancer. (A) Distribution of C35 immunofluorescence according to HER2 amplification status,
as determined by fluorescence in situ hybridisation (***Po0.001). (B) representative examples of C35hi and C35lo immunofluorescence. Green: epithelial
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overall survival time. In univariate analysis high C35 expression
(cut point AQUA score 304; minimum P-value method) was
associated with worse overall survival (Figure 1C; log-rank test
P¼ 0.0285), along with stage, ER status and chemotherapy regimen
(Supplementary Table S1). However, only stage was associated
with overall survival in a Cox regression multivariate analysis.
Analysis of C35 expression in HER2-amplified tumours similarly
did not yield a significant association with survival (Figure 1C).

Over-expression of C35 leads to EMT-mediated
cell invasion

We carried out colony formation assays in soft agar to test whether
C35 can induce MEC transformation. For this purpose, the normal
MEC line H16N-2, which has been used previously for cell
transformation assays (Burwell et al, 2007; Rhodes et al, 2009), was
retrovirally transduced with wt C35. Colonies expressing high
levels of C35 consistently formed enlarged structures in soft agar,
whereas empty vector-expressing controls did not (Figure 2A). In
contrast to the C35 transfectant pool, two of H16N-2 clones

expressing high levels of wt C35 protein also showed foci
formation when grown on plastic (Figure 2B; data not shown).
In the breast cancer cell line MDA-MB-231, which normally
expresses very low levels of C35, similar to those in the H16N-2
parental line (Evans et al, 2006), C35 expression was able to
transform the MDA-MB-231 cell line at levels exceeding the
transforming potential observed in the H16N-2 cell line
(Figure 2C).

We previously reported that ITAM-containing proteins such as
MMTV Env can induce an invasive phenotype in human MECs
(Katz et al, 2005), likely to be caused by an EMT (Katz et al, 2005;
Grande et al, 2006). It has also been shown that C35 promotes
migration and invasion in prostate cancer cell lines (Dasgupta
et al, 2009). To determine whether C35 expression also results in a
similar behaviour in MEC, we used an invasion assay that used
collagen lattices closely resembling breast stroma in vivo (Amjad
et al, 2007; data not shown). The stroma-like lattices were
generated by rat collagen I, contracted by seeding breast
fibroblasts into the collagen gel. After the lattices contracted,
MECs were seeded on top and invasion was induced by a nutrient
gradient (Figure 3A). Although vector only (null) cells did not
significantly invade the lattice, expression of C35 induced invasion.
The C35 transfectant pool, which had variable levels of C35
expression, invaded mostly in large clusters of cells (Figure 3B).
Three high-expressing clones showed complete transition to
spindle cell phenotype, with single cells invading deep into the
lattice (Figure 3B; Supplementary Figure S2). We chose one high-
expressing clone, C35.C3, for further molecular characterisation
(Figure 3C). Gradual loss of E-cadherin was apparent, occasionally
in the C35-expressing pool and entirely within the C35hi clone
(Figure 3B and C). Finally, all three major transcription factors
known to be involved in EMT were examined. Slug expression was
not detected and the level of Snail expression did not change in any
C35-expressing cells. In contrast, Twist protein expression
correlated positively with C35 expression (data not shown).

We carried out whole-genome expression array analysis to
examine which transcripts correlate with C35 expression in the
collagen invasion assays (raw gene expression files are publicly
available from the caBIG-supported Edinburgh Clinical Research
Facility Data Repository: https://www.catissuesuite.ecmc.ed.ac.uk/
caarray/). Of the top 100 ranked differentially expressed genes by
SAM (Tusher et al, 2001), the majority of the genes were down-
regulated (62 of 98 probes, 63%, excluding a duplicate and a
discontinued probe). First, we examined using KEGG analysis
pathways activated or deactivated by C35 expression. The KEGG
pathway that was most significantly over-represented by the most
consistently differentially expressed genes by SAM analysis was
cell communication (P¼ 4.33E�08, FDR¼ 5.43E�05). The genes
responsible were KRT15, GJB2, COL17A1, DSG3, KRT13, KRT6A,
KRT6B, KRT14, KRT16, KRT8 and LAMA3. Using the DAVID
Bioinformatics database (Huang et al, 2009), we found that the
processes highlighted by this pathway are cell–cell contact
(adherens junctions, tight junctions, desmosomes) and ECM–
receptor interactions, including focal adhesions. Interestingly, gene
expression of PLAU (uPA), MMP9, VEGFA and VEGFB did not
correlate with C35 levels. This suggests involvement of a different
set of activated signalling pathways in MECs compared with
prostate cancer cells (Dasgupta et al, 2009).

When the most consistently differentially expressed genes were
compared with those identified in two molecular subtypes of
breast cancers linked recently to EMT, claudin low (Herschkowitz
et al, 2007) and metaplastic breast cancers (Hennessy et al, 2009),
a number of interesting results were discovered. Of the 23
commonly changed genes, 5 (22%) were among most changed
by C35 expression: E-cadherin (CDH1), claudin-7 (CLDN7), MAL2,
EpCAM (TACSTD1) and HAI-2 (SPINT2). Validation by quanti-
tative PCR confirmed that all five genes were down-regulated by
high expression of C35 in the invasion assays (Figure 4). Cells
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expressing high levels of C35 also down-regulated eight cytokeratin
genes (out of 98 top ranked, 8%), also consistent with loss of
epithelial phenotype. These included keratin-8 (KRT8, Figure 4),
which is often down-regulated in EMT-like breast tumours
(Herschkowitz et al, 2007; Hennessy et al, 2009). Both loss of
cell–cell contact and down-regulation of cytokeratins have been
linked with EMT and are thought to enable cancer cell invasion
(Levayer and Lecuit, 2008).

C35-induced cell transformation is dependent on the
function of its ITAM

Previous studies have used 3D cell culture, in which MECs are
grown on reconstituted basement membrane (Matrigel) and form
spherical structures resembling the terminal ductal lobular units in
the breast. These cell cultures show many in vivo properties of
MECs. This model has been extensively used to study oncogenic
phenotypes (Debnath and Brugge, 2005). C35 contains an ITAM, a
motif found in glycoproteins of oncogenic retroviruses, that is
linked to epithelial cell transformation through the protein
tyrosine kinase Syk (Katz et al, 2005; Lu et al, 2006; Wang et al,
2006). Syk binds to the ITAM through its tandem SH2 domains
and activates multiple growth signalling pathways, including PI3K,
PLCg, Ras/MAPK and NFkB, among others (Underhill and
Goodridge, 2007).

We determined the C35 and HER2 status of three breast cancer
cell lines, as well as Syk expression. BT474 and SKBr3 lines
harbour HER2 and C35 gene amplification and show high levels of
mRNA expression of these genes (Supplementary Figure S4). T47D
cells have no HER2 gene amplification and they express moderate

levels of C35 (21-fold less than SKBr3 cells, 4-fold more than
MCF10A cells). T47D cells are sensitive to Syk inhibition, by
piceatannol or BAY61-3606 treatment (Yamamoto et al, 2003;
Figure 5A), similar to that of the H16N-2 C35-expressing line in 3D
culture (Figure 6B). Therefore, the response of HER2-amplified
cells to Syk inhibition was determined. BT474 cells were chosen as
they form non-polarised but well-defined ‘mass’ 3D structures
(Kenny et al, 2007), similar to those generated by T47D cells.
Treatment with Syk inhibitors, or Syk siRNA, reduced the size of
BT474 3D structures (Figure 5D). This effect was unlikely due to
changes in HER2 expression (Figure 5C). Syk inhibition combined
with Herceptin (trastuzumab) resulted in even smaller
structures, similar in size to those seen with immortalised, but
non-transformed, cell lines (Figure 5B).

We generated H16N-2 cell transfectant pools expressing the wt
C35 protein or its Y39F/Y50F ITAM mutant. When grown in
reconstituted basement membrane (3D culture), MECs expressing
ITAM-containing proteins showed a transformed phenotype. This
phenotype included enlargement of the acinar structures and was
dependent on functional ITAM in these proteins (Katz et al, 2005;
Grande et al, 2006). Consistent with these previous observations,
when cultured in 3D, C35-expressing cells formed enlarged
structures in comparison to empty vector-expressing cells (t-test,
P¼ 0.0053). Immunoreceptor tyrosine-based activation motif
mutant C35-expressing cells formed similar structures to those
of vector-expressing cells (Figure 6A).

Growth of C35-expressing H16N-2 cells was sensitive to Syk
inhibition in 3D culture (Figure 6B) similar to other cell lines
expressing ITAM-containing proteins (Katz et al, 2005; Grande
et al, 2006). This was confirmed by siRNA knockdown for both Syk
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Figure 5 Inhibition of C35 and Syk reduces mammary epithelial cells acinar structure size. (A) Quantification of 3D structure size in T47D cells at day 14
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and C35 (Figure 6C). We also observed down-regulation of Syk
mRNA in H16N-2 expressing the Y39F/Y50F ITAM mutant,
compared with those expressing wt C35 (data not shown). This
observation supports the view that Syk interacts with functional
ITAM-containing C35.

DISCUSSION

HER2/ErbB2 amplification is a frequent and well-studied event in
breast and other cancers. The genetic fragment being amplified is
commonly known as the HER2 amplicon. The smallest region of
amplification of the HER2/ERBB2 amplicon on human chromo-
some 17q12 contains 14 core genes, of which STARD3, TCAP,
PNMT, PERLD1, ERBB2, GRB7, GSDML and C17orf37/C35 are
over-expressed when amplified (Kauraniemi and Kallioniemi,
2006; Marchio et al, 2008). The function of HER2, in breast cancer
in particular, has been subject to intense research efforts,
culminating in the design of both small molecule inhibitors and
monoclonal antibodies in treatment of HER2þ patients (Bublil
and Yarden, 2007). Recent efforts have concentrated on under-
standing how co-amplification of HER2 with the non-core
amplicon gene Topoisomerase II (TOP2A) may affect response to
chemotherapy (Pritchard et al, 2008). Much less is known about
the functional importance of the core genes co-amplified with
HER2. One of the best studied of these core genes is GRB7.
Co-expression of Grb7 and HER2 facilitates HER2 signal
transduction and functions synergistically for tumour formation
(Stein et al, 1994; Bai and Luoh, 2008). Tumours co-expressing
high levels of Grb7 and HER2 have a worse outcome than those
with only higher levels of HER2 (Nadler et al, 2010), in line with
the clinical data presented here. Both GRB7 and another core gene,
STARD3, contribute to the growth of HER2-amplified cell lines
in vitro (Kao and Pollack, 2006).

Here, we show that primary breast cancers have high levels of
C35 protein expression when harbouring HER2 gene amplification,
and that over-expression of C35 and HER2 protein is correlated in
both breast cancer cell lines and primary tumours, in agreement
with previous findings (Evans et al, 2006). It is estimated that
tumours can express 70– 100 times the normal breast tissue C35
transcript level (Evans et al, 2006). Cell lines expressing high levels
of C35 showed high invasive behaviour in vitro. The overall
phenotype is consistent with EMT, including down-regulation of
E-cadherin and up-regulation of Twist. Interestingly, more gene
transcripts were down-regulated than up-regulated among the 100
most changed transcripts. This raises the possibility of common
suppression mechanism of transcription, downstream of C35
expression. A study in a pancreatic cancer cell line has suggested
that the protein inhibitor specific for HGF activator-1 (HAI-1), an
HAI-2 homologue, may activate an EMT programme in these cells
by up-regulating the transcription factor SIP-1/ZEB-2 and conse-
quently repressing E-cadherin (Cheng et al, 2009).

We found that tyrosine mutation in the ITAM of C35, or Syk
kinase inhibition, is sufficient to abolish the potential of C35
protein to cause enlargement of acinar structures in 3D cell
culture. Studies in DLBCL lines have shown that some, but not all
tumours, expressing ITAM-containing proteins may respond to
Syk inhibition (Chen et al, 2008). Evidence in this study using
C35-expressing MEC lines has supported this strategy in vitro. Syk
expression and activation are also modulated by extracellular
matrix, through integrin signalling (Zhang et al, 2009). Syk
promotes cell– cell contact on plastic (Zhang et al, 2009) and its
genetic knock-down promotes cell mobility and invasion (Sung
et al, 2009; Zhang et al, 2009). Syk may also have a tumour
suppressor function in breast cancer through its kinase activity in
the nucleus (Coopman et al, 2000; Sung et al, 2009). A plausible
mechanism is that the interaction of C35 with Syk mimics global
knock-down of Syk by changing its localisation away from
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Figure 6 C35 expression in normal mammary epithelial cells leads to cell transformation in 3D cultures. (A) H16N-2 acinar structures (at day 11)
expressing empty vector (Neo), Y39F/Y50F ITAM mutant or wild-type (wt) C35 protein. (B) Quantification of structure diameter in Y39F/Y50F ITAM
mutant or wt C35-expressing cell lines at day 14 after treatment with the Syk inhibitor BAY61-3606 (50 nM, twice: at days 8 and 11). (C) Quantification of
structure size of Neo and wt C35-expressing H16N-2 cells treated with non-targeted, Syk siRNA, at day 6 of 3D culture.
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integrins (Zhang et al, 2009) or the nucleus (Coopman et al, 2000).
When activated in the cytoplasm, Syk functions as a promoter of
cell growth (Zhou and Geahlen, 2009), consistent with the function
postulated in this study. Our study results indicate that recently
described Syk inhibitors (Braselmann et al, 2006; Chen et al, 2008)
may be effective in C35 over-expressing breast cancer cells and
thus have therapeutic value.

Other therapeutic approaches may be developed to take
advantage of these findings in the treatment of human breast
cancer, including the development of inhibitors of C35 interaction
with proteins other than Syk, such as the novel ITAM-interacting
protein Shb (Matskova et al, 2007). The Src kinase Lyn is unlikely
to be involved in C35-induced EMT, because Lyn mRNA levels are
reduced by approximately five-fold in C35hi cells, in comparison
with both null and C35 transfectant pool cells.

In conclusion, we show here that the HER2 amplicon contains a
second oncogene, C35, in the context of breast cancer. Our
observations suggest that targeting C35 as well as HER2 may be
beneficial for patients with HER2-amplified breast cancers.
C35/C17orf37 has recently been included in an expression
signature predicting metastatic risk in node-negative breast cancer
after chemotherapy (Jezequel et al, 2009). This signature does not

include HER2, therefore suggesting a possible autonomous role for
C35, and warrants further investigation.
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