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Abstract 

ZIF-8 is a zeolitic imidazole-based metal-organic framework with large cavities interconnected by narrow 

windows. Because the small size of the windows, it allows in principle for molecular sieving of gases such as 

H2 and CH4. However, the unexpected adsorption of large molecules on ZIF-8 suggests the existence of 

structural flexibility. ZIF-8 flexibility is explored in this work combining different experimental techniques 

with molecular simulation. We show that the ZIF-8 structure is modified by gas adsorption uptake in the same 

way as it does at very high pressure (i.e. 14,700 bar) due to a swing effect in the imidazolate linkers, giving 

access to the porosity. Tuning the flexibility, and so the opening of the small windows, has further impact on 

the design of advanced molecular sieving membrane materials for gas separation, adjusting the access of 

fluids to the porous network. 

 

Main text 

Zeolitic imidazolate frameworks (ZIFs) have emerged as a very promising family of microporous metal-

organic frameworks (MOFs).
1, 2

 They combine the advantages of MOFs (i.e. high porosity and surface area, 

transition metal centers and tailored linkers) with high stability and framework diversity. Their adsorption 

properties can be tuned through chemical modification of the linker making them promising candidates for gas 

storage applications.
3, 4

 Furthermore, many ZIFs exhibit large cavities interconnected by small windows which 

allows in principle for shape- and size- selective separations. 

ZIF-8 is a prototypical structure with sodalite (SOD) topology that has been studied as a molecular sieve for 

the purification of hydrogen due to the narrow size of the 6-ring windows (~3.40 Å) that connect the large 

cavities (~11.6 Å of diameter).
5, 6

 Because of the small window size, ZIF-8 is expected to separate hydrogen 

(2.89 Å kinetic diameter) from larger molecules including methane (3.80 Å) and nitrogen (3.60 Å). However, 

it has been observed experimentally that molecules which are theoretically too large to pass through the 

windows of the framework (i.e. in terms of the LJ collision diameter and the assumption that the framework is 

rigid), such as methane and nitrogen, are adsorbed in the material.
1, 7

 In addition, predictions of the diffusivity 

of molecules in the rigid ZIF-8 structure
8
 show fundamental discrepancies to experimental data.

5, 6
 The 

unexpected adsorption of large molecules and their relatively high diffusivity implies flexibility during the 

adsorption process. This flexibility in ZIF structures is fundamentally important since it modifies the 

diffusivity of gases through the porous network. A thorough understanding of this behavior is a pre-requisite 

to exploit this phenomenon in adsorption technology. In this work, we explore structural flexibility in ZIF-8 

using different experimental techniques (gas adsorption, high pressure X-ray diffraction (XRD) and in situ 

synchrotron XRD), combined with grand canonical Monte Carlo simulations (GCMC). 



Page 2 of 8 

Previous work demonstrated the effect of pressure up to 1.47 GPa or 14,700 bar on structural changes of ZIF-

8.
9
 Though this pressure is far from a typical adsorption pressure (i.e. generally below 0.01 GPa or 100 bar), 

the structural changes observed in the diamond anvil cell experiments provide a first indication about the 

nature of the framework flexibility induced by adsorption at much lower pressures. At 1.47 GPa, a new phase 

was observed which we refer to as ZIF-8HP. This high-pressure phase maintained the I43m space-group 

symmetry of ZIF-8, but showed a reorientation of the imidazolate linkers, increasing the accessible pore 

volume and the size of the 6-ring windows. The structural change was found reversible after decreasing the 

pressure. 

The experimental adsorption isotherm of N2 at 77 K shows two steps occurring at 2×10
-3

 and 2×10
-2

 P/P0 or 

0.002 and 0.02 bar (Figure 1); the desorption process was completely reversible and no hysteresis was found. 

The fitting of the BET equation to both steps revealed the uptake of N2 for the first and second step, 

corresponding to 36.9 and 49.4 molecules per unit cell, respectively (Supporting information, Table S1). This 

corresponds to an increase of 26 % in uptake going from the first to the second step. This two-step isotherm, 

which has also been observed in two other ZIFs with SOD topology (ZIF-90, ZIF-91),
10

 was previously 

interpreted as a result of a reorganization of the adsorbed nitrogen molecules during the adsorption process, 

rejecting the existence of structural changes.
11

  

 

 

 

Figure 1. Semi-log plot of N2 adsorption on ZIF-8 at 77 K: experimental, circles; and simulated data on 

ambient pressure structure, ZIF-8, closed triangles and high-pressure structure, ZIF-8HP, open triangles.  
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To investigate the step in the isotherm further and to relate it to possible changes in the structure of the ZIF-8, 

we conducted GCMC simulations of nitrogen at 77 K using both the ZIF-8HP structure and the structure of 

the conventional ZIF-8 (hereafter referred to as ZIF-8AP) following a similar approach as was used previously 

in, for example, the study of CO2 adsorption in the flexible MOF MIL-53.
12

 In contrast to the experimental 

curve, a standard Type I isotherm (i.e. without any step) was found in ZIF-8AP. The isotherm simulated in 

this structure fits the experimental isotherm in the low pressure range very well, correctly describing the 

Henry constant, which is a direct measure of the strength of the interactions. However, the prediction deviates 

from the experimental data when the pressure is higher than 2×10
-4

 P/P0. In this case, the maximum uptake 

determined with the BET equation from the simulated isotherms corresponds to 35.8 molecules per unit cell, 

close to the first step of the experimental isotherm, but far below the second step. The differences between the 

experimental and the simulated isotherm at low and high pressures, together with the non-existence of steps in 

the simulation, indicate that the rigid model for ZIF-8AP is not able to describe fully the experimental 

behaviour.  

When running the simulations on the ZIF-8HP phase previously observed at 1.47 GPa, the isotherm deviates 

from the experimental at low pressure, but predicts the step-shape of the experimental isotherm after 5×10
-4

 

P/P0 correctly. Here, the maximum uptake determined from the BET equation corresponds to 47.7 molecules 

per unit cell, similar to the experimental uptake after the step. This maximum uptake corresponds to a 33.4 % 

increase compared to the simulation on ZIF-8AP. The combination of both simulated adsorption isotherms on 

ZIF-8AP and ZIF-8HP before and after 2×10
-4

 P/P0, respectively, is able to match the experimental isotherm 

indicating that ZIF-8 is undergoing the same structural changes on adsorption as observed in the diamond-

anvil cell experiments under much higher pressures. 

We further studied the structural change of ZIF-8 calculating geometrically the free pore volumes and 

accessible surface areas, and comparing them with those obtained from BET. Whereas the difference in the 

amount adsorbed before and after the step in the experimental isotherm (25.7 %) and in the simulated 

maximum adsorbed in two different structures (33.4 %), respectively, is substantial, no significant difference 

in either the free pore volumes or surface areas was observed (Table 1). This result seems counterintuitive at 

first, as an increase in the maximum uptake should be related to an increase in the pore volume. However, a 

detailed analysis of the molecular simulation results shows that the situation is more complicated. First, at 1.5 

×10
-2

 P/P0, the N2 molecules fill the same 36 positions of the nanocage as determined by Yildirim and co-

workers from neutron powder diffraction experiments for the adsorption of CH4 (Figure 2 and S2).
13

 A further 

pressure increase does not affect greatly the uptake. In the case of ZIF-8HP, N2 molecules fill positions similar 

to the ones observed in ZIF-8AP before reaching the step in the adsorption isotherm. After the step, the subtle 

changes in the pore structure of ZIF-8HP compared to ZIF-8AP allow additional molecules to be 

accommodated leading to a more efficient packing through the rearrangement of previously adsorbed 

molecules and the insertion of new ones close to the 4- ring windows, a situation that does not arise in the case 
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of ZIF-8AP. Here, the linear shape of the N2 molecules plays an important role in the packing during the 

adsorption process. 

 

Table 1. Pore volume and surface areas for the different structures using GCMC  

 Free Pore Volume 

[Å
3
/uc]

 [a]
 

Accessible Surface Area 

[Å
2
/uc] 

Accessible Surface Area 

[m
2
/g]

 [b]
 

BET Surface 

Area [m
2
/g] 

ZIF-8AP  2918 606 1332 1279 

ZIF-8HP 3034 598 1296 1706 

[a] Obtained using a probe molecule with a diameter of 0 Å. [b] Obtained using a probe molecule with a 

diameter of 3.681 Å (i.e. N2 molecule diameter used in the BET analysis). 

 

In order to confirm that the ZIF-8HP structure is indeed observed at high nitrogen loadings, in situ powder 

XRD measurements at 77 K were conducted on station I11 at the Diamond light source on a fully evacuated 

sample of ZIF-8 and a separate sample which was loaded with N2 at a relative pressure of 0.4 (i.e. after the 

step). Rietveld refinements were carried-out using TOPAS-A. Both the evacuated and N2 loaded samples were 

refined from the ambient pressure coordinates from Moggach et al.
9
 in order to not bias the final model. 

On comparing the N2 containing ZIF-8 structure with ZIF-8HP, little difference is observed between the 

structures, with the N2 loaded ZIF-8 (collected at several orders of magnitude lower in pressure) showing the 

same reorientation of the imidazolate linkers (Figure 3). This confirms the existence of a change in the 

structure caused by a swing effect of the imidazolate linker.  

 

 

Figure 2. Snapshots of N2, blue-green spheres, adsorption on ZIF-8HP, grey spheres, at 77 K (left) before and 

(right) after the step. Extra adsorbed N2 molecules are represented by red spheres where their size has been 

scaled-down for an easier visualisation. 
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Figure 3. Overlay of ZIF-8 loaded with N2 (blue) and ZIF-8HP (red). 

 

In conclusion, we have shown that the ZIF-8 structure is modified by gas adsorption in the same way as at 

very high pressure in diamond anvil cell high-pressure experiments. Thus, the step in the nitrogen adsorption 

isotherm for ZIF-8 is caused by a structural change, which is also responsible for the non-expected adsorption 

of large molecules in ZIF-8 due to the enlargement of the windows size. In turn, the enlargement of the 

window size provokes faster diffusivity of molecules through the porous network.
5, 6

 The addition of further 

molecules during the adsorption process close to the 4-ring windows is only possible due to a swing effect of 

the imidazolate rings. Compared to the high pressure experiments, the driving force that causes the change 

upon N2 adsorption is the additional interaction the structure gets when adsorbing extra molecules. In turn, 

temperature, fluid-solid and fluid-fluid interactions play also an important role in the structural change and in 

the shape of the adsorption isotherm.
14-16

 Our results demonstrate that two conformations of ZIF-8 are needed 

to describe adsorption in this material: one derived from the crystal structure of the as-synthesized material, 

the other one obtained from high pressure XRD experiments. Thus, a correct description of the flexibility and 

structural changes of ZIF-8 is essential to precisely describe the adsorption performance over the whole range 

of pressure. Here, the diamond anvil cell experiments prove their usefulness for applications at much lower 

pressure since they are able to overcome any kinetic barrier between configurations in the same way as 

adsorbed fluid molecules do but are easier to carry out than in situ XRD experiments which require 

synchrotron radiation access.  
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The study of ZIF flexibility opens a new direction in the design of new porous solids. It has already been 

shown that ZIF-90 is suitable for post synthesis modification and keeps the SOD topology when other 

functional groups are introduced in the framework.
2,10

 The understanding of the role of the different building 

blocks and functional groups on the flexibility phenomena is of fundamental importance. Tuning this effect, 

and so the opening of the windows between cavities by changing the functional group in the imidazolate 

linker will directly affect the diffusivity of fluids through the porous network, which has fundamental impact 

on the performance of ZIFs as advanced molecular sieving membrane materials. 
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