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Nematode parasites are of major importance in human health and agriculture, and free-living species
deliver essential ecosystem services. The genomics revolution has resulted in the production of many
datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species,
but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally anno-
tated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal para-
sites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available
ESTs for each species into a high-quality set of putative transcripts. These transcripts have been trans-
lated to produce a protein sequence resource and each is annotated with functional information derived
from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nem-
atode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein
family assignment for each translation. The data are presented in an openly accessible, interactive data-
base. To demonstrate the utility of NEMBASE4, we have used the database to examine the uniqueness of
the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may
underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique
protein families that may be developed as drug targets.

� 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Nematode genomics has thrived in the decade following the
sequencing of the complete genome of the free-living rhabditid
Caenorhabditis elegans in 1998 (The C. elegans Genome Sequencing
Consortium, 1998). The genome sequences of two additional free-
living species (Caenorhabditis briggsae (Stein et al., 2003) and Pris-
tionchus pacificus (Dieterich et al., 2008)) and four parasitic species
(Brugia malayi (Ghedin et al., 2007), Meloidogyne incognita (Abad
et al., 2008), Meloidogyne hapla (Opperman et al., 2008) and Trich-
inella spiralis (Mitreva et al., 2011) have since been published, and
many additional nematode genomes are ‘in progress’ (see http://
www.nematodegenomes.org/). These genome sequences have as-
sisted in defining the genetic toolkit that underpins nematode biol-
ogy and, in the case of C. elegans, also fostered forward and reverse
genetic investigations of basic biological processes such as ageing
and embryogenesis. The complete sequencing of animal-parasitic
(B. malayi and T. spiralis) and plant-parasitic (M. incognita and M.
hapla) nematode genomes was undertaken in order to identify
the particular genetic adaptations these species have made to the
sitology Inc. Published by Elsevier
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).
parasitic mode of life, and thus better inform efforts to control or
eradicate the diseases they cause. However, identification of the
key genes and genetic processes that permit a parasitic mode of life
is difficult with so few genomes available for comparison (Blaxter,
2003).

To overcome this constraint of limited diversity of whole gen-
ome sequences and due to the experimental complexity and cost
of the generation of a whole genome sequence for a target species,
many research programmes have instead used the expressed se-
quence tag (EST) approach (Wasmuth et al., 2008). ESTs are sin-
gle-pass reads derived from cDNA representing the expressed
genes of an organism (or tissue or cell type). Surprisingly, despite
having haploid genomes of up to 10 gigabases (Gb) or more, the
transcriptome represented in mature mRNAs of most Metazoa is
derived from only 20 to 50 megabases (Mb) of the genome. The
EST approach samples only this subset of the genome and avoids
complex bioinformatic issues of gene prediction (identification of
coding exons amongst the 75–99% of non-coding DNA). From a
non-normalised cDNA resource the frequency at which a particular
gene transcript is sampled also reports on its steady-state mRNA
concentration and thus on the level of expression of the gene.
Therefore, for a small investment a research programme can gener-
ate a sequence dataset that represents many of the expressed
genes of the target organism and a first estimate of the pattern
of expression of these genes.
Ltd. All rights reserved.
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The EST approach has its limitations. Because cDNA fragments
are selected at random for sequencing, an EST dataset cannot be
guaranteed to identify all of the 15,000–25,000 transcription
units present in a genome. Indeed, for transcripts expressed at
low levels (e.g. one transcript per cell), the number of randomly
selected ESTs required to guarantee their identification is very
large. Also, because some genes are expressed only in very re-
stricted circumstances such as in early development or in re-
sponse to particular environmental challenges, an EST approach
would have to sample many cDNA preparations from different
life stages, tissues and environments to identify these condition-
ally expressed genes. Analysis of ESTs can also be problematic.
Because ESTs are single-pass DNA sequencing reads, they may
contain errors. Assembly of the individual ESTs into putative
transcripts or ‘unigenes’ requires careful attention to the kinds
of errors possible, and downstream functional annotation of
these assembled ESTs must also consider residual errors (Parkin-
son et al., 2004a; Parkinson and Blaxter, 2004; Wasmuth and
Blaxter, 2004).

More than one million ESTs for over 60 species have been
generated (Supplementary Table S1). Most of these EST datasets
have been generated and analysed individually, using a range of
tools and analytical parameters. These individual analyses are of-
ten tours de force of extraction of maximal biological informa-
tion and insight from limited resources (Blaxter et al., 1996;
Daub et al., 2000; McCarter et al., 2003; Harcus et al., 2004;
Mitreva et al., 2004a,b, 2005), and have played significant roles
in promoting modern molecular genetic research on nematode
parasites in particular. However, the large datasets now available
for nematodes are a rich substrate for data mining across the
diversity of the phylum. By comparing across species, we can
identify genes putatively unique to a species or species group
and associate these with features of the species’ biology or path-
ogenesis. Comparative analyses of assembled EST datasets across
species also permit identification of biochemical or regulatory
pathways uniformly present or absent in groups of species and
thus estimation of the physiology of the nematodes and their
likely sensitivity or resistance to particular drugs. The partial
nature of EST collections means conclusions concerning the ab-
sence of genes or pathways must remain conditional (absence
of evidence is not the same as evidence of absence), but cross
species correlation of patterns of presence/absence can lend sup-
port to hypotheses of loss.

Previously we (Parkinson et al., 2004b,c; Wasmuth et al.,
2008) and others (Martin et al., 2009) have compared a limited
number of species’ EST datasets and thereby identified novel
families of parasite-specific genes and biochemical pathways
with the potential for drug disruption. These data have been
made openly accessible to researchers through web portals into
the NEMBASE3 (Wasmuth et al., 2009) and Nematode.net (Martin
et al., 2009) databases. The technologies of DNA sequencing are
now undergoing a further revolution with the introduction of
ultra-high throughput instruments that generate data at a very
small fraction of the cost of traditional Sanger capillary EST
sequencing. This revolution has been rapidly exploited by
nematode genome researchers, and the coming years will see a
flood of ultra-deep transcriptome sequencing and whole genome
sequencing from nematodes. Here we present NEMBASE4, an
analysis of the current Sanger sequencing-derived EST data. We
have updated the core NEMBASE3 with all current publicly avail-
able EST datasets and a set of previously unpublished datasets.
NEMBASE4 includes nearly 700,000 ESTs and 240,000 putative
transcripts. Proteins derived from fully sequenced nematode
genomes are also included for comparative purposes. A stream-
lined interface and updated functional analyses facilitate data
mining and identification of new research targets.
2. Materials and methods

2.1. Programs and databases

We used updated versions of the PartiGene suite of programs to
assemble and annotate these data. PartiGene (Parkinson et al.,
2004a) version 3.0.6 (M. Blaxter and R. Schmid, unpublished data)
was used for sequence clustering and databasing. prot4EST (Was-
muth and Blaxter, 2004) version 3 (Wasmuth, unpublished data)
was used for derivation of peptide translations from consensus se-
quences. annot8r (Schmid and Blaxter, 2008) version 3.1 was used
for Gene Ontology (GO), Enzyme Commission (EC) and Kyoto Ency-
clopaedia of Genes and Genomes (KEGG) annotation. The updated
versions of these scripts are available from http://www.nema-
todes.org/. Sequence similarity comparisons were performed using
BLAST version 2.18 (Altschul et al., 1997) and the NCBI non-redun-
dant protein database (ftp://ftp.ncbi.nlm.nih.gov/blast/db/; July
2009) and the EBI UniProt database (http://www.ebi.ac.uk/uni-
prot/; UniRef100; July 2009). C. elegans (version WS172), C. briggsae
(version WS172) and B. malayi (version 1) protein datasets and
annotations were downloaded from WormBase (Harris et al.,
2010). Identification of protein domains was achieved using Inter-
ProScan (Zdobnov and Apweiler, 2001) and the InterPro database.
Protein tribes were inferred using TRIBE-MCL (Enright et al.,
2002). The web interface was built in Hypertext Mark-up Language
(html) and PHP:Hypertext Preprocessor (PHP) language using the
Postgres database management tool, Apache server and custom
PHP and Common Gateway Interference (CGI) scripts (see http://
www.nematodes.org/NEMBASE4/).

2.2. Nematode EST sequence data

Core data were taken from the NEMBASE3 database (Wasmuth
et al., 2008). New nematode EST sequence data were downloaded
from EMBL/GenBank/DDBJ in January 2009 (Supplementary
Table S1) using custom Perl scripts. For each nematode species in
the public nucleotide sequence databases, the number of EST se-
quences was ascertained and all species with more than 15 se-
quences were selected for analysis (Supplementary Table S1).
Each species’ ESTs were filtered for length (sequences <100 bases
were discarded) and for quality (eliminating sequences with bio-
logically unfeasible sequence patterns that more likely resulted
from Sanger sequencing technology errors, such as long runs of
alternating polynucleotides). For species already present in NEM-
BASE3, only ESTs submitted since the last update of that database
were added.

2.3. EST clustering

ESTs were clustered using CLOBB (Parkinson et al., 2002) within
the PartiGene package (Parkinson et al., 2004a). CLOBB yields un-
ique identifiers for each cluster and as these identifiers are main-
tained between updates, for species in NEMBASE3 the existing
set of cluster identifiers was retained and added to. In the Parti-
Gene schema, each derived consensus sequence has a two letter
species identifier, followed by C for nucleotide consensus (replaced
by P for the derived peptide sequence), and a unique five-digit
number. As each cluster can result in more than one consensus
(in the case of alternative splicing, for example), the resultant con-
sensuses are indicated by an underscore and a number following
the five-digit identifier.

2.4. Derivation of protein translations

We translated the cluster consensus sequences using the error-
correcting routines built into prot4EST (Wasmuth and Blaxter,

http://www.nematodes.org/
http://www.nematodes.org/
http://www.ebi.ac.uk/uniprot/
http://www.ebi.ac.uk/uniprot/
http://www.nematodes.org/NEMBASE4/
http://www.nematodes.org/NEMBASE4/
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2004). Briefly, prot4EST uses a tiered application of BLAST similar-
ity matches, identification of coding phase by use of optimised
models of codon use and identification of longest open reading
frames (ORFs) to both correct frameshifts and other simple substi-
tution errors and derive a best-estimate translation of error-prone
EST consensuses. We call this peptide resource NEMPEP4.
2.5. Transcriptome annotation

Consensus and protein sequences derived from each set of clus-
tered ESTs were annotated using BLAST searches of nematode and
other databases, and decoration with protein domain, GO, EC clas-
sifiers and KEGG pathway functional information using InterPro-
Scan (Zdobnov and Apweiler, 2001) and annot8r (Schmid and
Blaxter, 2008). For each species, the cDNA libraries from which
the ESTs were derived were also identified and these data added
to the PartiGene database.
2.6. Protein tribes

We added the complete proteomes of C. elegans, C. briggsae, Cae-
norhabditis remanei, Caenorhabditis brenneri, Caenorhabditis japon-
ica, P. pacificus and B. malayi to NEMPEP4, deleting all consensus-
derived peptides that were equivalent to entries in the whole pro-
teome data. Some EST-consensus derived peptides were retained,
particularly for B. malayi, because the genome annotation for spe-
cies is not always complete. Protein tribes were inferred using all-
against-all BLAST comparisons between all of the derived protein
translations and genome-derived proteomes parsed by TRIBE-
MCL. We used nine inflation values within TRIBE-MCL to identify
proteins that formed highly similar (inflation value 5) to less sim-
ilar (inflation value 1.1) groups. Protein tribe membership was
mapped across a phylogenetic tree of the species analysed and
tribes limited to particular clades were identified. Peptide se-
quences were also compared using BLAST (Johnson et al., 2008),
with a version of the NCBI protein database that excluded all nem-
atode proteins, to identify any that had significant similarity to
non-nematode proteins. These similarities were used to identify
tribes that also had members outside the Nematoda.
2.7. User interface to NEMBASE4

NEMBASE4 data were stored in a relational (Structured Query
Language; SQL) database using the Postgres database management
system. The web interface to NEMBASE4 was written in PHP and
CGI. These scripts facilitate and automate the formulation of que-
ries against the underlying Postgres database and format results
for browsing across the internet. For pathway analysis we made
use of the tools of the KEGG database, linked through EC number
annotations of NEMPEP4 protein entities and KEGG Application
Programming Interface (API) scripts.
2.8. Example analyses

2.8.1. Sequence alignment
Sequences downloaded from NEMBASE4 were aligned by eye.

Similar sequences identified by BLAST searches using the NCBI
interface were aligned using their COBALT tool (Papadopoulos
and Agarwala, 2007) or ClustalX (Thompson et al., 1997). The
alignments used are available as Supplementary data S1, S2 and
S3. WebLogos showing conservation of residues across the aligned
sequences were developed using the University of Berkley, USA,
WebLogo service (http://weblogo.berkeley.edu/) (Crooks et al.,
2004).
2.8.2. Phylogenetic analyses
Phylogenies were estimated from the alignments using

MrBayes version 3.1.2 (Ronquist and Huelsenbeck, 2003) (with
parameters ‘‘prset aamodelpr = mixed; mcmc printfreq = 1000
samplefreq = 100 nchains = 4 savebrlens = yes;’’). For the nanos
analysis, 10,000,000 generations were analysed, for the RDRP anal-
yses, 5,000,000 generations were used, and for the HemH/FC anal-
yses, 1,000,000 generations were used. Each analysis was checked
using Tracer 1.4 (http://tree.bio.ed.ac.uk/software/tracer/), and the
last �60% of generations after stationarity used for estimation of
the consensus tree and posterior probability support for nodes.
Trees were visualised using FigTree 1.3.1 (http://tree.bio.ed.ac.uk/
software/figtree/).
3. Results

3.1. Summary

The number and diversity of nematode EST datasets has contin-
ued to rise since our last compendium published in 2008 (Was-
muth et al., 2008). We have assembled 679,480 raw ESTs from
62 species (Fig. 1) into 233,295 clusters (Supplementary
Table S1). Individual species have from 17 ESTs and 17 clusters
(Globodera mexicana) to 78,935 ESTs and 25,911 clusters (Ancylos-
toma caninum), and an average of 10,959 ESTs and 3,763 clusters
(Fig. 2). Due to the partial nature of ESTs and the likely heterozy-
gosity present in the populations of nematodes sampled for
sequencing, some clusters that we were unable to assemble may
have been derived from the same transcription unit, inflating the
estimated number of distinct gene objects. The magnitude of these
effects is unknown, but it has been estimated to be in the region of
10% over-estimation (Wylie et al., 2004). Nevertheless, these data
represent a major portion of the expected 15,000–22,000 protein
coding genes expected (The C. elegans Genome Sequencing Consor-
tium, 1998; Blaxter et al., 2004; Ghedin et al., 2007; Abad et al.,
2008) from the best-sampled of these nematode species.

We have extensively annotated these EST clusters. They were
first translated to protein sequence using prot4EST, a tool that uses
available evidence to identify the most biologically likely ORF and,
where possible, correct sequencing error. Using prot4EST, 99.4% of
the 237,181 clusters yielded a translation (Fig. 2). The EST clusters
were then annotated using annot8r, yielding a total of 378,557 GO
annotations, 35,753 EC annotations and 97,148 KEGG pathway
annotations. Overall 38.2% of the clusters (38.4% of those with pro-
tein translations) had GO, EC or KEGG annotations. In total,
107,209 clusters (45.2%) were decorated with 318,376 protein do-
main annotations.

We also performed extensive BLAST searches against custom
databases to add 944,803 similarity annotations to the data. Nota-
bly 22,239 clusters had BLAST similarity matches but were not
annotated with domain, GO, EC or KEGG annotations. A collection
of protein tribes was built using TRIBE-MCL to cluster translated
protein sequences from the EST clusters and the genome-sequenc-
ing derived proteomes of C. elegans, C. briggsae, and B. malayi (a to-
tal of 377,839 proteins) based on BLAST similarity data. We
extracted tribes using a range of inflation values, generating tribes
with high between-sequence similarity (inflation value 5) to lower
between-sequence similarity (inflation value 1.1). There is no one
best inflation value that captures all protein families, thus report-
ing the results across this biologically relevant span facilitates
identification of even distant relationships and rapidly evolving
families, as well as highly conserved, slowly evolving ones. At an
inflation value of 2.5, we defined 130,892 tribes, 17.8% of which
had more than one sequence and 15.5% of which contained se-
quences from more than one species (Figs. 1 and 3). Compared

http://weblogo.berkeley.edu/
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with our previous analyses of 37 nematode species in NEMBASE3,
we identified 7,249 additional multi-species tribes and converted
14,344 singletons or single-species tribes into multi-species tribes.
Thus including the 25 additional species and additional data for
existing species has significantly improved our estimates of shared
and private protein sequence diversity in the Nematoda. As pre-
dicted from NEMBASE3 (Wasmuth et al., 2008), the dimensions
of nematode protein sequence diversity space are very large and
still only poorly estimated even with over 250,000 protein
sequences.

3.1.1. The NEMBASE4 interface: mining the nematode transcriptomes
NEMBASE4 is stored in a Postgres relational database and is

thus amenable to complex querying through use of the SQL lan-
guage. For custom data mining, we make an SQL file of the data-
base openly available through the project website (http://
www.nematodes.org/downloads/databases/NEMBASE4/). We also
make NEMBASE4 accessible through a web interface at http://
www.nematodes.org/NEMBASE4. Using PHP scripting, we assist
the user in constructing and executing selected queries over the
database (Fig. 4).

The Welcome Page summarises the data available and presents
the user with a set of options for searching and browsing. The user
can review all of the data in the database by species and then re-
trieve all of the clusters for a single species. Alternatively the user
can retrieve single clusters through their unique name or the
accession number of one of their constituent sequences. The user
can search the annotation data that decorates each cluster by
searching the definition lines of BLAST-match hits or the GO, EC,
KEGG and InterPro domain annotations. Each of these searches
can be limited to custom selections of species using a systematic
tree-based, interactive menu. Each EST sequence is derived from
a particular library and we offer the ability to search by EST library
sets, grouped by the lifecycle stage or tissue from which they de-
rive, and by relative abundance of ESTs per library. This abundance
search facilitates identification of clusters under- or over-ex-
pressed in particular stages or tissues. These searches each result
in a list of clusters that match the selected query criteria.

To search the tribe information, we offer a phylogenetic tree-
based interface that permits selection of tribes restricted to differ-
ent subclades of the Nematoda, and at different inflation values in
TRIBE-MCL. Individual tribes can be viewed on a Tribe page, reveal-
ing a list of the member sequences.

From lists of clusters, the user can navigate to a Cluster page
that summarises key data about each cluster, including the number
of constituent sequences, the libraries from which they derive, the
consensus sequence(s), a map of the alignment of each sequence to
the consensus and a selection of annotation data. The Cluster page
is linked to the Protein page, which reports on the protein se-
quence derived and annotations that have been made on that se-
quence. Additionally the Protein page lists the tribes of which the
protein sequence is a member and shows links to the most closely
related sequences in other nematodes in the NEMBASE4 dataset.

The Pathways page permits the selection of pathways from the
KEGG-defined set and target species based on a minimum BLAST E-
value match and then requests from the KEGG servers a pathway
diagram decorated with indications of which pathway components
are represented in the chosen data.

http://www.nematodes.org/downloads/databases/NEMBASE4/
http://www.nematodes.org/downloads/databases/NEMBASE4/
http://www.nematodes.org/NEMBASE4
http://www.nematodes.org/NEMBASE4
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Users can also search the database for expression patterns of
clusters using the Lifecycle Stage and Gender search pages. As each
EST is derived from a specific library, if the library has a lifecycle
stage and sex attributed to it, the gene represented by the cluster
is expressed in that stage. The interface allows users to place
numerical cutoffs on the numbers of ESTs per stage to facilitate
identification of stage-biased rather than simply stage-specifically
expressed genes.

We also allow users to search the nucleotide consensus and
protein sequence data using the BLAST algorithms and a query se-
quence of their choice. The NEMBASE4 database and sequence data
files derived from it are available for download.

3.2. NEMBASE4 in action

To illustrate how the NEMBASE4 database might be employed
in hypothesis generation and testing, we here present use-cases
where the web interface and other online and freely available tools
have been used to investigate questions of interest to nematode
parasitologists. In each case we defined a hypothesis or open ques-
tion that might be part of a wider research programme and one re-
searcher spent one day per question exploring NEMBASE4 to
address and answer these questions.

3.2.1. Cataloguing genes with signatures of horizontal gene transfer
(HGT) in Tylenchina

In analysis of the host–parasite interface between sedentary
phytoparasitic tylenchines and their hosts, a series of plant cell-
wall degrading and modifying enzymes that are secreted by the
nematodes have been identified. Intriguingly, some of these en-
zymes have the hallmarks of horizontal gene transfer into the nem-
atode genome, as their closest homologues are not in other
nematodes or even in other Metazoa but in plants, and plant fungal
and bacterial symbionts and pathogens. It is thus hypothesised
that the plant parasitic nematodes have acquired these genes from
other organisms in their local environments due to the adaptive
advantage they offer. These candidate horizontally-transferred
genes are fully integrated into the nematode genome and have ac-
quired spliceosomal introns (Blaxter, 2007). Previous surveys have
identified sets of candidate horizontally transferred genes in tylen-
chine nematodes and suggest that these acquisitions occurred in a
remote ancestor of extant species (Scholl et al., 2003; Ledger et al.,
2006; Mitreva et al., 2009). The enzymes encoded by these genes
are good targets for nematicides as they are distinct from those
of the plant hosts and of humans and other animals in the food
chain.

We therefore posed the question: Which tylenchine genes other
than cellulases have signatures of horizontal gene transfer?

Putative horizontal transfer events can be highlighted in NEM-
BASE4 by identifying protein tribes from the group of interest (e.g.
plant parasitic tylenchine nematodes) that have no counterparts in
other nematodes (i.e. the tribes are restricted to tylenchines), but
do have significant BLAST similarity matches to non-nematode
taxa. There are 55 such tribes in NEMBASE4 within the Tylenchina
(Supplementary Table S2). The non-nematode species matched in-
clude Metazoa, Protozoa, Fungi, Bacteria, Viridlantae and viruses.
The matches to Metazoa were on average poorer (mean negative
exponent of E-value 10.2, S.D. 5.9) than matches to Viridiplantae
(mean 21.0, S.D. 21.8), Bacteria (mean 41.1, S.D. 25.2), Fungi (mean
71.5, S.D. 85.6) and Protozoa (mean 19). The single match to
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viruses had an E-value exponent of �35. The metazoan matches
are mostly to unnamed protein products defined by genome pro-
jects and are suggestive of weak, but significant, similarities to dee-
ply conserved protein domains. The highly-significant matches to
plant, fungal and bacterial matches include similarities to proteins
with roles in cellulose and other cell wall degradation, and choris-
mate biochemistry, as expected from published surveys (Scholl
et al., 2003). Additional enzymes putatively involved in thiamine
synthesis and lipid metabolism, and several tribes that have
high-scoring matches to plant and bacterial proteins of no known
function, are of obvious interest: are these mediators of additional
nematode–plant interactions? This list of tribes will complement
efforts to understand and model the acquisition of genes by lateral
transfer in plant parasitic nematodes (Mitreva et al., 2009).

This search for HGT candidates also illustrated the wealth of
discoveries still to be made in these EST datasets. One tribe
(inf11-10477) had closest matches to virally-derived proteins.
Could its members derive from nematode viruses? Viruses have
been conspicuous by their absence from the roster of nematode
pathogens, with a single instance recently reported (Felix et al.,
2011).

The two members of tribe inf11-10477 (Heterodera schachtii
HSC00105 and Globodera pallida GPC02272) encode proteins highly
similar to viral RNA-directed RNA polymerases (RDRP) from Picor-
navirales, single-stranded, positive strand RNA viruses with no
DNA stage. Picornavirales include pathogens of wasps and other
arthropods, vertebrates and plants. The bee virus (Cox-Foster
et al., 2007) to which the nematode sequences are most similar
is a member of Dicistroviridae. We identified the 50 most-similar
RDRP proteins in GenBank, selected individual representatives of
each major virus species (from the Dicistroviridae (arthropods),
Iflaviridae (arthropods), and Secoviridae (plants)), and aligned
them (Supplementary Data S1). Phylogenetic analysis of this align-
ment shows that the nematode RDRP sequences form a clade dis-
tinct from other Picornaviridae (Fig. 5). The sequences do not
obviously derive from a host plant virus, as viruses from related
hosts (beans and peas for H. scachtii’s host, soybean, and tomato
for G. pallida’s host, potato) are quite distinct. These plant parasitic
nematodes do not have arthropod vectors and there is no closely
related arthropod-derived sequence. The cDNA libraries from
which the sequences were derived were constructed on different
continents by different teams, so laboratory contamination seems
unlikely. We therefore conclude that these sequences are the first
evidence of a virus naturally infecting tylenchine nematodes. This
has exciting prospects for development of control measures for
these devastating parasites.

3.2.2. Are there conserved genes underpinning parasitism in
Strongylida?

Ancestors of tylenchine nematodes acquired genes from their
environment that are likely to promote their survival as plant par-
asites. The analysis of taxon-restricted tribes can also reveal genes
that underpin the unique biology of other clades of nematode. The
Strongylida are a monophyletic clade of vertebrate-parasitic spe-
cies within Clade V (Fig. 1). They have radiated rapidly to parasitise
most land and many marine vertebrates. The genetic tricks that
underpin this successful radiation might include interference with
or evasion of host immune recognition or effector systems, or



Fig. 4. The web interface to NEMBASE4 at http://www.nematodes.org/NEMBASE4. The cartoon illustrates the structure of the web interface to NEMBASE4, showing the
different paths available to the user for querying and browsing the underlying data. (A) The Home page and other subsequent pages all carry a left-side strap of links to
analysis pages. (B) Selecting ‘‘Annotation’’ brings up a page that facilitates text- and other metric-based searches of NEMBASE4. The radio buttons allow a choice amongst
searching the BLAST search match definition lines, Gene Ontology (GO) descriptions, Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway names, Enzyme
Commission (EC) codes and domain names. All of these searches can be limited by species or a group of species using a drop-down interactive tree (as can many other
searches of NEMBASE4). (C) The results of searching the BLAST annotation with the term ‘globin’. Matching cluster identifiers are shown together with description lines. (D)
Selecting one cluster identifier brings up the Cluster page, where the user can browse. (E) The BLAST matches for the cluster sequences in UniRef100 and to Caenorhabditis
elegans, and to the representation of different libraries in the Expressed sequence tags (ESTs) making up this cluster. (F) Any functional annotations available for the cluster
are displayed. (G) The individual ESTs making up the cluster are hyperlinked to the EMBL database. (H) An illustration of the alignment of the ESTs with reference to the
consensus (this can be viewed in base-level detail in a new window); and (I) the consensus sequence for the cluster. (J) From the cluster page (D) the user can jump to the
protein translation page that includes, in addition to functional annotations; (K) the predicted protein sequence; (L) the best BLAST matches between this sequence and
others in NEMBASE4, highlighted according whether the match is a reciprocal best BLAST match (and thus more likely to be a true orthologue) or just a top hit; and (M) the
protein Tribes of which that the protein is a member. Tribes are shown for each of the nine inflation (or stringency) levels analysed. (N) The user can select a single tribe and
be shown all of its members, sorted by species. Each member is hyperlinked back to its protein description page. The user can search NEMBASE in many other ways including:
(O) by protein domain identifier (where the user is interested in a particular known domain from one of the 10 databases supported); (P) by the stage specificity of expression
(using the stage-specificity metadata attributed to each EST library; users can also search by gender of expression, or for expression in a specific library); (Q) by phylogenetic
restriction of the protein tribes (see Fig. 1). (R) By picking a node on the model tree relating all of the taxa studied, the user is shown a table of the numbers of tribes at each of
the nine inflation values that are restricted to that node and only present in Nematoda (i.e. those which have no matches in UniRef100 that are not nematodes) or are also
found outside Nematoda (i.e. those which have significant matches in UniRef100 that are from taxa other than Nematoda). Users can also search the KEGG pathway
annotations directly, or search the sequences in the database using a local BLAST server.
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tissue invasion systems that permit traversal of epithelia and
basement membranes. Was horizontal gene transfer also a part
of Strongylid evolution?

We thus pose the question: What protein tribes are unique to
strongyles, are they potential targets for intervention, and do they
show evidence of horizontal transfer into this parasitic clade?

There were 180 tribes at inflation 1.1 restricted to Strongylida
(node 37 in Fig. 1 and Table 1), and 370 tribes at inflation 5. As
would be expected, the number of tribes that were Strongylida-re-
stricted increases as the stringency of clustering is increased, but
the proportion of these that have matches to non-nematode se-
quences increases to nearly 20% of tribes defined with an inflation
value of 5. This counter-intuitive pattern is the result of these
tribes containing members that have significant matches to se-
quences from patent applications, where the species of origin is
noted as ‘‘unknown’’. In fact, many of these tribes match patents
describing hookworm vaccine candidate antigens. From this we
conclude that all of these tribes are reasonable candidates for
exploration as vaccine components or drug targets.
To answer the question concerning horizontal transfer, the four
tribes at inflation 1.1 that had matches in non-nematodes were
examined in more detail (Table 2). One matches the lacZ alpha pep-
tide from cloning vectors and likely derives from poor trimming of
sequences, and another has a single marginally significant match
to a peptide predicted from marine metagenomic data with no
functionally-informative matches or annotations.

Tribe inf11-1399 contains 30 sequences from six species. One
has a marginally significant match to a late embryogenesis abun-
dant (LEA)-like protein from the arthropod Polypedilum vanderp-
lanki. LEA proteins are proteins of unordered structure that are
found in many anhydrobiotic organisms, including plant seeds
(where they were first identified) and nematodes, such as Aphelen-
chus avenae. LEA-like proteins have been found in the Caenorhabdi-
tis genome sequences and may be part of the ability of many
nematodes to resist desiccation and freezing. NEMBASE4 does con-
tain clusters with LEA-like sequence, but one characteristic of LEA
protein sequences is their low complexity and in this case the
match may be uninformative.

http://www.nematodes.org/NEMBASE4
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Fig. 5. Phylogenetic analysis of Picornavirus-like RNA-directed RNA polymerase genes identified in tylenchine nematodes. The unrooted phylogeny, developed in MrBayes,
shows distinction between the arthropod-infecting Dicistrioviridae (taura syndrome, Drosophila C and the hymenopteran viruses) and Iflaviridae (represented by sacbrood
virus), and the plant-pathogenic Secoviridae (all viruses to the right of the dotted line). The nematode sequences from Globodera pallida and Heterodera scahchtii form a clade
distinct from these two groups. Branches with Bayesian posterior probabilities (pp) of 0.98 < pp < 1.00 are highlighted in bold.

Table 1
Tribes unique to the Strongylida within Nematoda at all inflation values.

Inflationa Total number of
tribes

Nematode-specific
tribes

Non-nematode-
specific tribes

1.1 180 176 4
1.5 226 212 14
2 263 237 26
2.5 299 261 38
3 319 270 49
3.5 335 280 55
4 350 288 62
4.5 360 294 66
5 370 299 71

a Inflation values used in TRIBE-MCL (Enright et al., 2002) analyses.

Table 2
Non-nematode-specific tribes at inflation 1.1 unique to Strongylida within Nematoda.

Tribe Number of members Members that hit non
nematode sequences

Minimum E-val

inf11-1399 30 1 6e-07
inf11-4078 9 1 2e-07
inf11-6393 4 3 4e-12
inf11-8606 2 2 6e-12

a GI: NCBI unique identifier.
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Tribe inf11-806 contains peptides derived from only two clus-
ters, Dictyocaulus viviparus DVC03184 and A. caninum ACC12960,
that have significant similarity to a NANOS-like protein from the
crustacean Parhyale hawaiiensis. NANOS is a key player in the ante-
rior–posterior patterning of animal zygotes, and has deeply con-
served functions in the determination of the germline. NANOS
functions through the binding of RNA, and NANOS proteins contain
a distinct, conserved zinc-finger domain of �55 amino acids (de-
fined in Pfam05741, http://pfam.janelia.org/family/zf-nanos). The
vast majority of NANOS proteins have a single zf-nanos domain,
with only P. hawaiiensis NANOS having two. NANOS has been iden-
tified in species across the Metazoa including Cnidaria, Lophotro-
chozoa, Ecdysozoa and Deuterostomia but not previously from
nematodes. The complete genomes of C. elegans and C. briggsae
contain loci tagged as nanos-like, but the zinc finger domains they
ue Top non-nematode hit description (species of origin) GIa of top hit

PvLEA1 protein (Polypedilum vanderplanki; arthropod) 90,959,527
Hypothetical protein (marine metagenome; unknown) 134,777,650
lacZ alpha peptide
nanos (Parhyale hawaiensis; arthropod) 161,898,489

http://pfam.janelia.org/family/zf-nanos
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contain are poorly described by the zf-nanos model, and include
deletions that are likely to be functionally significant. ACC12960
has two zf-nanos domains. DVC03184 has a single zf-nanos do-
main, but is a truncated sequence, matching only the 50 (N-termi-
nal) zf-nanos domain and flanking sequence of ACC12960.
Alignment and phylogenetic analysis of representative NANOS
and NANOS-like proteins (see Supplementary data S2) using
Bayesian inference revealed a clade of vetebrate nanos-1 zf-nanos
domains, a clade of non-vertebrate domains and a third more di-
verse clade that included vertebrate NANOS-2 and NANOS-3 do-
mains, as well as Caenorhabditis, B. malayi and P. hawaiiensis
domains (Supplementary Fig. S1). The ACC12960 and DVC03184
zf-nanos domains were most closely related to each other (with
the two A. caninum domains apparently a recent duplication) but
these three sequences were not robustly placed in either the NA-
NOS-1 or NANOS-2/3 clade. The highest BLAST-based match, to P.
hawaiiensis, was likely because this was the only other sequence
in the database that has two tandem zf-nanos domains, rather than
close relationship between the P. hawaiiensis and strongylid genes.

The presence of these NANOS-like proteins in D. viviparus and A.
caninum is intriguing. The lack of high similarity to vertebrate NA-
NOS does not support a model of recent horizontal transfer from a
vertebrate host, implying that they have long been resident in
nematode genomes. The absence of zf-nanos domain genes in the
fully sequenced genomes of P. pacificus and the Meloidogyne spp.
must be due to multiple, independent losses, which might be
thought unlikely a priori. However, if the nematode (and P. hawaii-
ensis) NANOS-like genes have been derived from NANOS-2/3-like
ancestors, and subjected to rapid divergent evolution, this might
explain both the extreme branch lengths in this part of the phylog-
eny, and the failure to recover a gene tree that matches the ex-
pected species tree. We searched the emerging genome sequence
data from two strongylid nematodes for sequences matching these
zf-nanos domains and identified highly similar sequences (45 of 50
residues identical) in Heligmosomoides polygyrus (from the Blaxter
laboratory; http://www.nematodegenomes.org) and Nippostrongy-
lus brasiliensis (from the Wellcome Trust Sanger Institute; http://
www.sanger.ac.uk/resources/downloads/helminths/nippostrongy-
lus-brasiliensis.html). This gene is thus part of strongylid nema-
tode genomes. It will be informative to investigate the roles of
these NANOS-like proteins in strongylid biology (where an
involvement in germline development would suggest ancient
retention). Interrupting the binding of these strongylid-restricted
NANOS homologues might be a viable route to chemical abbrevia-
tion of infections.

We investigated only four of the 180 Strongylida-unique tribes
in this limited exploration of NEMBASE4 and identified a potential
developmental genetic novelty. There is a rich seam of additional
tribes to be investigated for this group and indeed across the phy-
lum. However, we found no evidence for horizontal gene transfer
playing a significant role in strongylid nematode evolution and
can provisionally reject horizontal gene transfer as a source of no-
vel phenotypes in this group.

3.2.3. The evolution of heme auxotrophy in filarial nematodes
Many filarial nematodes contain an obligate endosymbiotic

bacterium, Wolbachia (Fenn and Blaxter, 2004). This relationship
has been utilised in recent efforts to identify drug targets in bio-
chemical pathways absent from the nematode and present in Wol-
bachia, such as heme biosynthesis (Rao et al., 2005; Slatko et al.,
2010). The genome of the Wolbachia from B. malayi has been se-
quenced (Foster et al., 2005), and heme biosynthesis identified as
a possible essential part of the symbiotic relationship. Heme is
an essential component of many proteins. The heme biosynthesis
pathway (Fig. 6A), part of the KEGG ‘porphyrin and chlorophyll
metabolism’ pathway, is believed to be completely missing from
nematodes (and many other animals), except for the enzyme
HemH or ferrochelatase (HemH/FC), which catalyses the terminal
step of the pathway, the conversion of protoporphyrin IX to heme
by inserting the Fe atom. The reliance on Wolbachia for heme is a
promising drug target (Slatko et al., 2010) and might have resulted
in changes in the nematodes’ heme processing abilities. We thus
formulated the following research question: Do Wolbachia-con-
taining filarial nematodes differ from other species in their heme
biosynthesis pathway?

Of the nine filarial nematodes present in NEMBASE4, seven are
known to contain Wolbachia (B. malayi, Brugia pahangi, Dirofilaria
immitis, Litomosoides sigmodontis, Onchocerca ochengi, Onchocerca
volvulus and Wuchereria bancrofti) and two are not (Loa loa and
Onchocerca flexuosa). We used the KEGG pathways search facility
from the web interface to NEMBASE4 and identified clusters corre-
sponding to four enzymes in the pathway (Table 3). Three enzymes
are each present in only one, non-filarial species. Closer inspection
of the two A. caninum proteins (the HemB-like ACP10593_1 and
HemF-like ACP18701_1) revealed that both are closely related to
enzymes from fungi. We were not able to identify similar genes
in the emerging H. polygyrus, Haemonchus contortus and N. brasili-
ensis genomes, suggesting they may derive from a contamination
event. The HemE-like MPP01279_1 from Meloidogyne paranaensis
is most similar to HemE-like proteins from other metazoans, sug-
gesting it may be a nematode gene, but we were unable to detect
homologues in the M. hapla or M. incognita genomes.

We identified HemH/FC homologues in the filarial nematodes L.
loa and O. volvulus, and in the Clade IV nematode Strongyloides ratti
(Fig. 6A). The tribe associated with these clusters (tribe inf11-
5740) also includes two genomic B. malayi HemH/FC-like proteins.
The sequences from this tribe are most closely related to HemH/FC
proteins from alphaproteobacteria and not metazoans, in agree-
ment with previous findings (Slatko et al., 2010). We also searched
the NEMBASE4 for ‘ferrochelatase’ annotations and identified pro-
teins belonging to another tribe (inf11-3019) containing 15 pro-
teins from 11 species. These sequences were related to other
metazoan HemH/FC and we were able to identify homologues in
many nematodes (Table 4; Supplementary data S3). Filarial nema-
todes thus contain up to three HemH/FC, two in the nuclear gen-
ome and one in the Wolbachia genome. We screened the
emerging draft genome sequences from filarial nematodes (L. sigm-
odontis and D. immitis from the Blaxter laboratory (http://
www.nematodegenomes.org/), and W. bancrofti, L. loa and O. volvu-
lus from the Filarial Worms Sequencing Project, Broad Institute of
Harvard and MIT, USA (http://www.broadinstitute.org/)) and con-
firmed the presence of two nuclear HemH/FC in L. loa, D. immitis
and L. sigmodontis. The absence of the alphaproteobacterial
HemH/FC in Clade V nematodes, despite the deep sampling of their
transcriptomes by ESTs and the availability of several Caenorhabdi-
tis sp. genomes, suggests that this enzyme is not present in Clade V.
While one member of the alphaproteobacterial-type enzymes was
identified in Clade IV (S. ratti), neither extensive EST collections nor
the complete genomes of M. hapla and M. incognita encode similar
proteins. Thus, contrary to Slatko et al. (2010), HemH/FC is not ab-
sent from non-filarial nematodes, but an alphaproteobacterial-like
isoform has limited distribution in the phylum, including filaria
and Strongyloides.

We aligned nematode, Wolbachia and representative other
HemH/FC proteins (Supplementary data S3) and analysed those
using Bayesian phylogenetics (Fig. 6B), revealing that the ancestry
of HemH/FC across the nematodes is more complex than previ-
ously thought. The Wolbachia-derived sequences are grouped with
HemH from Anaplasma and Ehrlichia, as would be expected. The
‘metazoan-like’ HemH/FC sequences from nematodes (tribe
inf11-3019) form an isolated clade that is weakly associated with
other metazoan HemH/FC enzymes. One extraordinarily divergent
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sequence from C. briggsae may be a misprediction and this may
have masked support for the nematode-other metazoan link. Final-
ly the filarial and S. ratti HemH/FC sequences nest robustly within a
clade of alphaproteobacterial (Rhizobium, Roseibium) sequences.
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Fig. 6 (continued)

Table 3
Heme biosynthesis pathway enzymes: HemA–HemH pathway enzymes.

Enzyme EC number Common name Clade IIIa Clade IVa Clade Va

HemA 1.2.1.70 Glutamyl-tRNA reductase
HemB 4.2.1.24 Porphobilinogen synthase ACP10593_1
HemC 2.5.1.61 Hydroxymethylbilane synthase
HemD 4.2.1.75 Uroporphyrinogen-III synthase
HemE 4.1.1.37 Uroporphyrinogen decarboxylase MPP01279_1
HemF 1.3.3.3/1.3.99.22 Coproporphyrinogen oxidase ACP18701_1
HemG 1.3.3.4 Protoporphyrinogen oxidase
HemH 4.99.1.1 Ferrochelatase LSP01092_1

OVP00158_1
SRP06613_1

EC: Enzyme Commission.
a Major nematode clades (see Fig. 1).
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Even with the limited genomic evidence it would appear that there
has either been a lateral gene transfer event in the last common
ancestor of Clade IV and III nematodes (with subsequent loss from
many taxa), or that there have been two independent acquisitions
of this alphaproteobacterial sequence in Strongyloidoidea and
Onchocercinae.

It has been demonstrated that C. elegans cannot use protopor-
phyrin IX for growth (Rao et al., 2005), implying that their meta-
zoan-type HemH/FC is non-functional. This may also hold true
for the homologues found in nematodes. The Wolbachia-type
HemH/FC has been shown to be functional (Wu et al., 2009). The
implications of these observations for drug target work focused
on the heme biosynthesis pathway are significant: if there are mul-
tiple, very divergent copies of HemC/FC within filarial nematodes,
designing drugs that target this step of the heme biosynthesis
pathway must assess all three potential targets.

4. Discussion

Nematode EST programmes have been successful in identifying
many genes of interest in target species, be they vaccine candidates,
drug targets or potential host–parasite interaction mediators. Here



Table 4
Heme biosynthesis pathway enzymes: HemH/ferrochelatase proteins in NEMBASE4 and draft genomes.

Species Metazoa-like Alphaproteobacteria-like Wolbachia-like

Clade IIIa

Brugia malayi BMP18270_1
BMG91588_1
BMG95511_1

BMG97471_1
BMG97474_1

58584976b

Litomosoides sigmodontis Yesc LSP01092_1 Yesc

Onchocerca volvulus [No]d OVP00158_1 [No]d

Loa loa 312070760b 312065474b Noe

Wuchereria bancrofti [No]d ADHD01000089b ADHD01000089b

Dirofilaria immitis DIP00940_1 Yesc Yesc

Clade IVa

Strongyloides ratti SRP06613_1

Clade Va

Ancylostoma caninum ACP06889_1 ACP09546_1
ACP12567_1

Caenorhabditis brenneri CBP02632_1
Caenorhabditis briggsae CGG84511_1
Caenorhabditis elegans CEG86868_1
Caenorhabditis japonica CJG89742_1
Caenorhabditis remanei CRG91700_1
Necator americanus NAP01725_1
Pristionchus pacificus PPP04518_1
Heterorhabditis bacteriophora HBP14973_1

a Major nematode clades (see Fig. 1).
b GenBank sequence identifiers from NCBI.
c Unpublished genome data from the Blaxter laboratory, Institute of Evolutionary Biology, The University of Edinburgh, UK (available at http://www.nematodege-

nomes.org/).
d Identified on the Filarial Worms Sequencing Project, Broad Institute of Harvard and MIT, USA (http://www.broadinstitute.org/) website; these sequences are partial, thus

the absence of a match may be due to the draft sequence.
e Loa loa does not contain a Wolbachia endosymbiont.

892 B. Elsworth et al. / International Journal for Parasitology 41 (2011) 881–894
we have shown that comprehensive analyses of the totality of
these data can yield additional information not evident in analyses
of single species. The reasons for this are many fold, and include
the partial nature of EST data (they cannot represent all of the
expressed genes of an organism), the power of cross-species com-
parisons (for sifting evolutionarily-conserved and thus interesting
patterns from the background of neutral variation) and the utility
of having collated data in one analysis environment.

NEMBASE4 offers significant data completeness and program-
ming improvements over NEMBASE3. Nematode.net (Martin
et al., 2009) offers an alternative assembly of nematode EST data.
Within Nematode.net one can also search for clusters by annota-
tion and view pathway information. However, Nematode.net cur-
rently collates data only for the core 37 taxa from NEMBASE3.
The additional species representation and phylogenetically-aware
searching of the protein tribes defined at different inflation values
extends the usefulness of the resource. More recently, Cantacessi
and colleagues (2010a) have introduced a transcriptome assembly
workflow that includes Roche 454 read handling capabilities and
used it for nematode data analysis, but this workflow processes
single species and does not include a public-facing database portal.

Our three example analyses show the power of the NEMBASE4
integrated comparative resource for hypothesis generation and
testing. We have added significantly to the roster of potentially lat-
erally-transferred genes in the plant parasitic Tylenchina, and in
addition identified a new virus family that is the first in these nem-
atodes. A search for genes with similar signatures of lateral transfer
in the Strongylida did not reveal any candidates, suggesting that
the tylenchine pattern of incorporation of environmentally-ac-
quired genes into the parasitic genome is not an universal feature
of nematode parasites. Since non-tylenchine plant–parasitic nem-
atodes have also been shown to incorporate laterally-acquired
genes into their genomes; lateral transfer is not a specialism of
the tylenchines. A fuller understanding of the dynamics of gene
acquisition will assist in development of models evaluating the
importance of this mechanism in evolution and in the develop-
ment of nematicidal interventions aimed at disrupting these novel
functions. Biochemical pathway analysis is facilitated by NEM-
BASE4, illustrated by the demonstration of patchy representation
of heme biosynthesis genes across the phylum. Interestingly, we
demonstrate that many filarial nematodes have three heme ferro-
chelatase enzymes (two from the nuclear genome and one from
their Wolbachia endosymbiont), emphasising the importance of
this druggable target for the nematodes. Obviously these findings
require further experimental verification and exploration, but the
power of NEMBASE4 for highlighting biological novelties is clear.

The era of Sanger dideoxy EST sequencing is probably approach-
ing its end. The next generation platforms can now sequence cDNA
(and genomes) for a tiny fraction of the cost and effort that clone-
based EST projects entail. In particular the Roche 454 Titanium
chemistry has replaced Sanger dideoxy sequencing for transcrip-
tome projects, as it offers reasonable read lengths (360–400 bases
average for cDNA) and massive production (1 million reads per
12 h run) for the same reagent cost as �5000 Sanger dideoxy ESTs.
De novo transcriptome assemblies from Roche 454 data (Kumar
and Blaxter, 2010) are being published (Cantacessi et al., 2010b,c;
Wang et al., 2010b). Illumina GAIIx and HiSeq 2000 instruments
deliver shorter reads (up to 150 bases) in vast numbers and tran-
script sequencing protocols (called RNASeq) are widely used for
transcript quantification in organisms with sequenced genomes
(Wang et al., 2009). The promise of Illumina technology for de novo
transcriptome sequencing has yet to be realised due to the difficul-
ties of assembling these short reads but first attempts show prom-
ise (Mizrachi et al., 2010; Wang et al., 2010a).

The challenge for resources such as NEMBASE4 is to scale our
analysis technologies to deliver integrated analyses of partial gen-
ome data for many more species and to integrate next generation
data with the existing Sanger dideoxy ESTs. The challenge for par-
asitologists is to exploit these data for directed research pro-
grammes and NEMBASE4 will assist in this goal.

http://www.nematodegenomes.org/
http://www.nematodegenomes.org/
http://www.broadinstitute.org/
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