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A Unification of Models of Tethered Satellites∗

K. Uldall Kristiansen†, P. Palmer†, and M. Roberts†

Abstract. In this paper, different conservative models of tethered satellites are related mathematically, and
it is established in what limit they may provide useful insight into the underlying dynamics. An
infinite dimensional model is linked to a finite dimensional model, the slack-spring model, through a
conjecture on the singular perturbation of tether thickness. The slack-spring model is then naturally
related to a billiard model in the limit of an inextensible spring. Next, the motion of a dumbbell
model, which is lowest in the hierarchy of models, is identified within the motion of the billiard model
through a theorem on the existence of invariant curves by exploiting Moser’s twist map theorem.
Finally, numerical computations provide insight into the dynamics of the billiard model.
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1. Introduction. Many applications have been proposed for spacecraft tether systems,
ranging from the mundane to the highly speculative [4, 9]. The first tether was used in space
in the late 1960s to stabilize attitude on the Gemini-12 spacecraft. More recently further
tether experiments have been carried out to study the feasibility of long tethered systems in
space. Examples include the SEDS-missions in 1993 and 1994 and the TiPS-mission launched
in 1996 [9]. Cartmell and McKenzie survey current interest with their recent comprehensive
review of space tether applications and experiments [9].

The tether literature presents a number of different tether models of varying complexity.
The models can be divided into two groups: massive tether models and massless tether models.
The massive tether models (see, e.g., [4, 16, 5]) couple a partial differential equation for the
motion of the tether with two ordinary differential equations for the motions of the spacecraft.
The spacecrafts are usually modeled as point masses. The massless tether models include the
slack-spring model and the dumbbell model [4]. The slack-spring model is a finite dimensional
model of tether dynamics wherein the tether is replaced by a spring connecting the satellites.
The spring is assumed to go slack whenever the satellites are closer than the natural length
of the tether. The dumbbell model, on the other hand, models the tethered system as a rigid
rod. Clearly, such a model can capture only motion in which the tether is taut and is not
adequate to describe the motion when the tether folds and bends. It is nonetheless widely
used, for example, in the analysis of electrodynamical tether dynamics [26] and in three-body
dynamics [12, 29].
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Motivated by the slack-spring model, Beletsky and Pankova [6] suggested modeling in-
extensible tether dynamics as a billiards problem. They do not give any derivation of the
model but do present a Poincaré mapping to study the dynamics. In another paper [30] the
billiards model is used to study the dynamics of a viscoelastic tether and the transient chaotic
oscillations of a tethered system. The viscoelasticity, or dissipation, due to the tether jerks,
is taken into account by billiards restitution factors.

Aims of the paper. The different tether models described above have been studied and
used in many references on orbiting tethered satellites. However, the relationships between
them have never been explored in detail. In this paper we begin the task of unifying the models
mathematically by showing how the simpler models can be derived rigorously from the more
complicated models, and how solutions of the former perturb to solutions of the latter. We
will mainly restrict our attention to the conservative models but will include discussions of
dissipative versions at appropriate places.

In section 2 the different models are presented. In section 3 we show that the classical
massive tether model is of mixed type, and it is argued that the model is ill-posed. We show
that the inclusion of resistance to bending regularizes the problem so that the system admits
a unique strong, local solution. We also show that noncollision and nonsingular parametrized
solutions exist for all time. In section 4 we present a conjecture which states that in the limit
of vanishing tether thickness, and for a large set of initial conditions, the solutions of the
massive tether model converge to solutions of the slack-spring model. In section 5.2 a billiard
model is then derived as the inextensible limit of the slack-spring model. This billiard model
is then studied in section 6 using a Poincaré map. In the case that the center of mass of the
system is moving on a circular orbit, we reduce this to a two dimensional symplectic map.
The dumbbell dynamics is identified as embedded within the billiard dynamics, and KAM
theory is used to show how it persists to the inextensible slack-spring model.

2. Tether models. In this section several mathematical models of tether dynamics are
presented. We consider two tethered satellites orbiting a spherical Earth; see Figure 1. The
tether is modeled using linear elasticity, and we neglect nonconservative forces such as drag
and viscoelasticity. Apart from the inclusion of bending resistance the equations obtained
below are well known in the tether literature; see, e.g., [4].

2.1. Massive tether. As indicated in Figure 1 the satellites are modeled as point masses
positioned at x and y with masses mx and my, respectively. The tether is parametrized by

r : [0, T ]× [0, l] � (t, s) �→ r(t, s) ∈ R
3,

l being the natural length of the tether. Letting ρl denote the line density, E Young’s modulus,
and A the cross-sectional area, we can derive the equations of the tethered system using a
Lagrangian approach. Assuming linear elasticity the Lagrangian of the usual massive tether
system considered in the literature is

L[w, ∂tw] = K[∂tw]− P [w],

where

w = (x,y, r) ,
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s
EARTH

r(t, s)

y(t)

x(t)

Figure 1. A tethered satellite system.

and K and P are the kinetic and the potential energies of the system:

K[∂tw] =
1

2
mx|dtx|2 + 1

2
my|dty|2 + 1

2
ρl

∫ l

0
|∂tr|2ds,(1)

P [w] = −μmx

|x| − μ
my

|y| − μρl

∫ l

0
|r|−1ds+

EA

2

∫ l

0
(|∂sr| − 1)2 ds,(2)

μ being the Earth’s gravitational constant [17].1,2,3 The last term on the right of (2) gives
Hooke’s law; see, e.g., [4]. We furthermore impose the boundary conditions

r(t, 0) = x(t) and r(t, l) = y(t).(3)

Hamilton’s principle states that the solution, satisfying

w|t=0 = w0 and w|t=T = wT ,(4)

is a critical path of the action S given by

S[w] =

∫ T

0
L[w, ∂tw]dt.(5)

Ifw is classical, i.e., continuously differentiable with r ∈ C2,2([0, T ]×[0, l]), then by Hamilton’s
principle w satisfies the Euler–Lagrange equations

mxd
2
tx = −μmx

|x|3x+ EA (a1(|∂sr|)∂sr) |s=0,(6)

myd
2
ty = −μmy

|y|3y− EA (a1(|∂sr|)∂sr) |s=l,(7)

ρl∂
2
t r = −μ ρl

|r|3 r+ EA∂s (a1(|∂sr|)∂sr) ,(8)

x = r|s=0, y = r|s=l,(9)

1We adapt the usual [·]-notation to highlight that the input is a function.
2dt =

d
dt

and ∂x = ∂
∂x

.
3| · | and ‖ · ‖ denote Euclidean norm and norms in infinite dimensional spaces, e.g., L2 or Sobolev norms,

respectively.
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where a1 is defined by

aζ : R\{0} � x �→ aζ(x) =
x− ζ

x
for every ζ > 0,(10)

with ζ = 1. The more general aζ , ζ > 0, will later appear in the discussion and analysis of
the slack-spring model. We shall discuss and analyze the assumption that w is classical in
section 3.

As we shall argue later, the equations are ill-posed. To regularize them we add the term

B[r] =
EI

2
‖K[r]‖2

to P [r] to account for resistance against bending. Here I is the moment area of inertia, which
for a circular cross-section is proportional to the fourth power of the diameter, and

K[r] =
|∂2sr× ∂sr|

|∂sr|3

is the geometrical curvature. Whenever r is unit-speed parametrized, K[r] = |∂2sr| (see, e.g.,
[28, pp. 24–25], and a Taylor expansion in |∂sr| about 1 gives

K[r] = |∂2sr| (1− 2 (|∂sr| − 1)) + · · · .
Therefore, by virtue of the linear elasticity assumption ||∂sr| − 1| � 1, we arrive at the
approximation

B[r] ≈ EI

2
‖∂2sr‖2.

From this approximation the inclusion of EI
2 ‖∂2sr‖2 in the potential gives rise to a linear

highest order differential operator in the Euler–Lagrange equations

mxd
2
tx = −μmx

|x|3x+ EA (a1(|∂sr|)∂sr) |s=0 −EI∂3s r|s=0,(11)

myd
2
ty = −μmy

|y|3y− EA (a1(|∂sr|)∂sr) |s=1 +EI∂3s r|s=l,(12)

ρl∂
2
t r = −μ ρl

|r|3 r + EA∂s (a1(|∂sr|)∂sr)− EI∂4s r,(13)

x = r|s=0, y = r|s=l,

now equipped with the natural boundary conditions

∂2sr = 0 for s = 0, 1.(14)

The natural boundary conditions correspond to the inability of the tether to transfer bending
to the hinged endpoints.

The equations (11), (12), (13) together with (3), (14) and initial conditions

w(0) = w0, ẇ(0) = ẇ0
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establish the initial boundary value problem with dynamical boundaries. We shall leave the
introduction of appropriate sets of initial conditions to section 3. The relative equilibria of
these models are not well studied, though a related problem is studied in [17].

To account for dissipation due to tether oscillations, the Kelvin–Voigt force [16, 4] can be
added to the equations. This term is simply included by replacing a1 by

ã1 = a1 + α|∂sr|−1∂t|∂sr| = a1 + α〈∂sr, ∂2str〉,(15)

where α ≥ 0 is a dissipation constant.

2.2. Massless tethers and the slack-spring model. In the slack-spring model the tether
inertia is neglected and the tether only affects the motion when it is taut and the distance
between the satellites is greater than the natural length l. The direction of the tether force
is directed along the relative position vector as an ideal spring with stiffness k = EA

l . The
equations are

mxd
2
tx = −μmx

|x|3x+ k âl(|y− x|)(y− x),(16)

myd
2
ty = −μmx

|y|3y+ k âl(|y− x|)(x− y),(17)

where

âl(p) = 1{p−l>0}al(p) for every p ≥ 0,(18)

and 1{p−l>0} is the Heaviside function.
Let M = mx+my be the total mass and μx = mx

M and μy =
my

M = 1−μx the mass ratios.
Writing the Lagrangian in terms of the center of mass and relative position coordinates

q = μyy+ μxx,

δq = y− x

(see Figure 2) and applying the Legendre transformation, we end up with the Hamiltonian

HST(q, δq,p, δp) =
1

2ξ
|p|2 + 1

2
|δp|2 − 1

μx

μ

|q+ μxδq| −
1

μy

μ

|q− μyδq|
+ κ1|δq|−l (|δq| − l)2 ,(19)

endowed with the symplectic form

ω = dq ∧ dp+ dδq ∧ dδp.
Here ξ = 1/(μxμy) and κ = kmymx/2M .

The Hamiltonian is SO(3)-invariant and therefore conserves angular momentum:

J = q ∧ p+ δq ∧ δp.

Relative equilibria of the slack-spring system are critical points of the Hamiltonian restricted
to the level sets of the momentum map. To study the planar equilibria it is beneficial to
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ORBIT

EARTH
θ

q

δq

ν

Figure 2. Tethered satellite system: The slack-spring approximation.

introduce the true anomaly ν and the shape coordinate θ, which is invariant under the action
of S1, together with the two radii r and δr; see Figure 2. In particular, we apply the following
symplectomorphism to symplectic polar coordinates:

q = r

(
cos ν
sin ν

)
, δq = δr

(
cos(ν + θ)
sin(ν + θ)

)
,

pν = rp · (− sin ν, cos ν) + δrδp · (− sin(ν + θ), cos(ν + θ)),

pθ = δrδp · (− sin(ν + θ), cos(ν + θ)),

pr = p · (cos ν, sin ν), pδr = δp · (cos(ν + θ), sin(ν + θ)).

Then ν becomes cyclic in the Hamiltonian,

HST(r, δr, ν, θ, pr , pδr, pν , pθ) =
1

2ξ
p2r +

1

2
p2δr +

1

2ξr2
(pν − pθ)

2 +
1

2δr2
p2θ

− 1

μx

μ√
r2 + μ2xδr

2 + 2μxrδr cos θ

− 1

μy

μ√
r2 + μ2yδr

2 − 2μyrδr cos θ

+ κ1δr−l (δr − l)2 ,(20)

and J = pν ∈ R. The study of relative equilibria and their stability becomes a straightforward,
though tedious, computation. This shows that there exist two different types of relative
equilibria: the tether can be either tangent or normal to the circular orbit on which the center
of mass moves; see Figure 3. Due to the inability of the slack-spring to be in compression
there do not exist any relative equilibria where the relative position between the satellites δq
is perpendicular to the plane in which the center of mass moves. Upon introducing elevation
coordinates z and δz to the direction of J = (0, 0, pν), the energy-momentum method [23] can,
for realistic tether lengths, l � r, be used to show that the relative equilibria with z = δz = 0
for which the system is aligned normal to a circular orbit are orbitally stable. On the other
hand, the tangential relative equilibria are unstable. For more details on the stability and
bifurcations when l = O(r), see [19, 7].
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Figure 3. Relative equilibria of the slack-spring model.

To account for dissipation in the slack-spring model we can replace al by ãl = al +
α|δq|−1dt|δq|. This is a slack-spring version of the Kelvin–Voigt model. This assumes that
the system does not dissipate energy when the spring is slack. Let us consider the effect of
this dissipation on an orbitally stable relative equilibrium where the system is normal to the
circular orbiting center of mass. Then the tether is stretched δr > l. We may therefore consider
a neighborhood of the equilibrium in which δr > l. Then in the coordinates introduced above,
the equations of motion with dissipation therefore coincide with Hamilton’s equations except
for the equation for pδr, which now reads

ṗδr = −∂δrHST − 2καpδr.

It follows that ḢST = −καp2δr ≤ 0. Furthermore, if pδr ≡ 0, then the system is in a relative
equilibrium. Therefore, HST is a strict Lyapunov function so that the relative equilibrium
perturbs to an asymptotically stable relative equilibrium.

2.3. The dumbbell model. In the dumbbell model the tether is replaced by a rigid rod.
The system is again Hamiltonian, now on T ∗Q, whereQ = (R3×S2

l )\C, S2
l = {q ∈ R

3||q| = l},
C being the closed collision set. The symplectic polar coordinates introduced above for the
slack-spring model are, upon fixing δr = l, also appropriate in the study of relative equilibria of
the dumbbell dynamics; cf. [18, 19]. There exist three relative equilibria: tangent and normal
to the circular orbiting center of mass, as seen in Figure 3, and, finally, an equilibrium for
which the dumbbell attitude is normal to the plane defined by the SO(3)-orbit. The dumbbell
model therefore has an additional relative equilibrium compared to the slack-spring model. A
comprehensive stability analysis is provided in [18, 19].

3. Well-posedness of the massive tether models. In section 2.1 it was assumed that the
critical point of the action, (5), was classical. More often than not, to establish existence in
variational problems and partial differential equations it is necessary to enlarge the set of the
admissible functions. With a bit of extra care, the derivation of the Euler–Lagrange equations
can be extended to these enlarged spaces.

In the following we shall investigate the well-posedness of the tether modeling including
and neglecting the resistance against bending, EI �= 0, respectively, EI = 0. Despite the
complete neglect of this term in the engineering literature, we shall see that, at least from a
mathematically point of view, its inclusion is essential.

3.1. EI �= 0. For simplicity we set all constants to 1 and introduce u = r− sy− (1− s)x
so the boundary conditions become homogeneous. Let f(z) = −z|z|−3, z ∈ R

3\{0}. The
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equations (11), (12), and (13) then take the form

∂2t u = −∂4su+ ∂s (a1(|∂sr|)∂sr) + h(u,x,y)(s),(21)

d2tx = f(x) + a1(|∂sr|)∂sr|s=0 − ∂3su|s=0,(22)

d2ty = f(y)− a1(|∂sr|)∂sr|s=1 + ∂3su|s=1,(23)

u = 0 = ∂2su for s = 0, 1,

with

h(u,x,y)(s) = f(r)− (
sd2ty+ (1− s)d2tx

)
= f(r)− s

(
f(y)− a1(|∂sr|)∂sr|s=1 + ∂3su|s=1

)
− (1− s)

(
f(x) + a1(|∂sr|)∂sr|s=0 − ∂3su|s=0

)
,(24)

together with a set of initial conditions

(25)

u|t=0 = u0 ∈ U, ∂tu|t=0 = u̇0 ∈ V,

x(0) = x0 ∈ R
3\{0}, ẋ(0) = ẋ0 ∈ R

3,

y(0) = y0 ∈ R
3\{0}, ẏ(0) = ẏ0 ∈ R

3.

Here we have introduced the spaces

U = {u ∈W 4((0, 1);R3)|u = 0 = ∂2su for s = 0, 1},
V =W 2((0, 1);R3) ∩W 1

0 ((0, 1);R
3).

Here W n is the nth Sobolev space. In particular, W n
0 is the completion of C∞

0 in the W n-
norm whose elements’ first n− 1 (weak) derivatives all leave zero trace on the boundary [25,
Theorem 9.16, p. 123]. For a comprehensive and very rigorous introduction to Sobolev spaces
see [1, 13]. For a less formal description see [11]. We equip U×V with aW 4×W 2-type norm:

‖(u,v)‖2U×V = ‖∂2sv‖2L2((0,1);R3) + ‖∂4su‖2L2((0,1);R3).

That this defines a norm on U × V follows from Poincaré’s inequality [11]. Let

Sτ = C2
L∞([0, τ);R3)× C0

L∞([0, τ);U) × C2
L∞([0, τ);R3)

× C1
L∞([0, τ);R3)× C0

L∞([0, τ);V )× C1
L∞([0, τ);R3)(26)

and

X = {(x0,u0,y0, ẋ0,v0, ẏ0)| |x0|, |y0|, |r0| > 0, |∂sr0| > 0, u0 ∈ U, v0 ∈ V } ,(27)

where r0 = u0 + sy0 + (1− s)x0. Local existence, uniqueness, and continuous dependence on
initial conditions may then be proved.

Theorem 1. The system of (21), (22), and (23) with initial conditions (25) admits a unique
strong solution in ST (26), for some T = T (w0) > 0, that depends continuously on the initial
conditions w0 ∈ X (27), within its interval of existence. If the solution satisfies

|∂sr|, |r| ≥ δ,(28)

for some δ > 0, then the solution exists globally so that T = ∞. Finally, the solution preserves
energy.
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Proof. The techniques involved are standard (see, e.g., [32, 31]), and we therefore aim only
to give a proof of the existence. The uniqueness, continuous dependence on initial conditions
and energy preservation will follow from estimates similar to those obtained below.

We will assume that (28) holds true for some (small) δ > 0 and that it holds true with
strict inequality at t = 0. In the following let Ci, i ∈ N, be constants that depend only upon
initial conditions and δ. We will prove the existence by a Galerkin approximation. For this
we will need to obtain a priori estimates. First, we note that from the energy conservation it
follows by (28) that

‖∂2su‖L2 ≤ C1.(29)

Next, we shall then show that this allows us to obtain a higher order a priori estimate of
(u, ∂tu) in L

∞([0, T ];U × V ). Here T > 0 is some fixed constant. Upon dotting the equation
for r by ∂t∂

4
su and integrating by parts, we arrive at4

1

2
∂t‖∂2sv‖2L2 +

1

2
∂t‖∂4su‖2L2 + 〈d2ty− f(y), ∂t∂

3
su|s=1〉 − 〈d2tx− f(x), ∂t∂

3
su|s=0〉

= 〈〈∂3s (a1(|∂sr|)∂sr), ∂t∂2su〉〉+ 〈〈∂2s f(r), ∂t∂2su〉〉,
where 〈·, ·〉 and 〈〈·, ·〉〉 are the Euclidean and L2((0, 1);R3) inner products, respectively, or
simply by (22) and (23)

(30)
1

2
∂t‖∂2sv‖2L2 +

1

2
∂t‖∂4su‖2L2 +

1

2
∂t|d2ty− f(y)|2 + 1

2
∂t|d2tx− f(x)|2

= 〈〈∂3s (a1(|∂sr|)∂sr), ∂t∂2su〉〉+ 〈〈∂2s f(r), ∂t∂2su〉〉
+ 〈d2ty− f(y), ∂t(a1(|∂sr|)∂sr)|s=1〉+ 〈d2tx− f(x), ∂t(a1(|∂sr|)∂sr)|s=0〉.

The equations (22) and (23) also give

1

2
dt|x|2 + 1

2
dt|ẋ|2 = 〈x, dtx〉+ 〈f(x), dtx〉+ 〈a1(|∂sr)∂sr|s=0 − ∂3su|s=0, dtx〉,

1

2
dt|y|2 + 1

2
dt|ẏ|2 = 〈y, dty〉+ 〈f(y), dty〉+ 〈−a1(|∂sr)∂sr|s=1 + ∂3su|s=1, dty〉,

which together with (30) upon consecutive applications of standard functional analytic in-
equalities guarantees the existence of C10 and C11 such that

1

2
∂t

(
‖∂2sv‖2L2 + ‖∂4su‖2L2 + |x|2 + |dtx|2 + |y|2 + |dty|2

+ |d2tx− f(x)|2 + |d2ty− f(y)|2
)

≤ C10 + C11

(
‖∂2sv‖2L2 + ‖∂4su‖2L2 + |x|2 + |dtx|2 + |y|2 + |dty|2

+ |d2tx− f(x)|2 + |d2ty− f(y)|2
)
.(31)

4Strictly upon extension by continuity.
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The main difficulty here is to obtain the required control of the term

〈〈∂3s (a1(|∂sr|)∂sr), ∂t∂2su〉〉.

However, by (28) and (29) it follows upon applying the Hölder inequality that

|∂3s (a1(|∂sr|)∂sr)| ≤ C2|∂2sr|3 + C3|∂2sr||∂3s r|+ C4|∂4sr|
= C2|∂2su|3 + C3|∂2sr||∂3su|+ C4|∂4su|,(32)

and therefore

〈〈∂3s (a1(|∂sr|)∂sr), ∂t∂2su〉〉 ≤ (using the Cauchy–Schwarz inequality in R
3)

≤ ‖|∂3s (a1(|∂sr|)∂sr)||∂t∂2su|‖L1

≤ (using (32) and Young’s inequality)

≤ 1

2
C2
2‖∂2su‖6L6 +

1

2
C2
3‖|∂2su||∂3su|‖2L2 +

1

2
C2
4‖∂4su‖2L2

+
1

2
(C2

2 + C2
3 + C2

4 )‖∂t∂2su‖‖2L2 .

To estimate the first term on the right-hand side of this inequality we use the Gagliardo–
Nirenberg inequality [22] to interpolate L6 between L2 and W 2 ∩W 1

0 :

‖∂2su‖6L6 ≤ C5‖∂2su‖5L2‖∂4su‖L2 ≤ (using (29)) ≤ C5C
5
1‖∂4su‖L2 .

For the second term we use the embedding W 4 ↪→ C3
L∞ :

‖|∂2su||∂3su|‖2L2 ≤ ‖∂2su‖2L2‖∂3su‖2L∞ ≤ (using (29)) ≤ C2
1‖∂3su‖2L∞ ≤ C6C

2
1‖∂4su‖2L2 .

It therefore follows that

〈〈∂3s (a1(|∂sr|)∂sr), ∂t∂2su〉〉 ≤ C7 + C8‖∂4su‖2L2 + C9‖∂2s∂tu‖2L2 .

Through Gronwall’s inequality, (31) gives(
‖∂2sv‖2L2 + ‖∂4su‖2L2 + |x|2 + |dtx|2 + |y|2 + |dty|2

+ |d2tx− f(x)|2 + |d2ty− f(y)|2
)

≤
(
2C10t+

(
‖∂2sv‖2L2 + ‖∂4su‖2L2 + |x|2 + |dtx|2 + |y|2 + |dty|2

+ |d2tx− f(x)|2 + |d2ty− f(y)|2
)
|t=0

)
exp(2C11t), t ∈ [0, T ).

Finally, from (21) it follows that ∂2t u ∈ L∞([0, T ];L2).
We are now ready to prove the existence of the solution. To do so we let {ei}∞i=1 be the

orthonormal basis in L2 generated by the eigenvectors of the self-adjoint operator ∂4s defined
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on the space U . Furthermore, we let ΠN be the orthoprojector to the first N eigenvectors
in L2, L2

N = ΠNL
2. We write uN = ΠNu and rN = uN + (1 − s)x + sy and consider the

approximation

∂2tΠNrN = −∂4srN +ΠN∂s (a1(|∂srN |)∂srN ) + ΠN f(rN ),(33)

d2tx = f(x) + a1(|∂srN |)∂srN |s=0 − ∂3suN |s=0,(34)

d2ty = f(y)− a1(|∂srN |)∂srN |s=1 + ∂3suN |s=1.(35)

This is now a finite dimensional system with smooth right-hand side, and the existence of the
solution of the approximation therefore follows. We recall the property

〈〈ΠNF,vN 〉〉 = 〈〈F,vN 〉〉(36)

for every vN ∈ L2
N and F ∈ L2. Furthermore, if zN = vN + f(s)w, vN ∈ L2

N , w ∈ R
3, and

f ∈ L2((0, 1);R), then

〈〈ΠNF, zN 〉〉 = 〈〈F,ΠNzN 〉〉
= 〈〈F, zN −wΠ⊥

Nf(s)〉〉
= 〈〈F, zN 〉〉 − 〈〈F,wΠ⊥

Nf(s)〉〉,

and

〈〈F,wΠ⊥
Nf(s)〉〉 ≤ ‖F‖L2 |w|‖Π⊥

Nf(s)‖L2

≤ 1

2
‖Π⊥

Nf(s)‖L2

(‖F‖2L2 + |w|2) .
Here the right-hand side approaches 0 uniformly for N → ∞. The estimates above can then
with little effort be repeated to conclude that

‖∂t∂2suN‖L2 , ‖∂4suN‖L2 , ‖∂2t uN‖L2 ≤ C,

with C independent of N . In fact (31) extends identically due to (36). We can then pass to the
limit N → ∞ to conclude weak-* convergence to a ξ = (u, ∂tu) in L

∞([0, T ];U ×V )∩{∂2t u ∈
L∞([0, T ];L2)}. However, by the compactness of the embedding

L∞([0, T ];U × V ) ∩ {∂2t u ∈ L∞([0, T ];L2)} ⊂ C0
L∞([0, T ];V × L2)

(see, e.g., [31]), we may actually conclude strong converge to ξ in C0
L∞([0, T ];V × L2). To

show that this limit solves the equation, we have to pass to the limit in the nonlinear term:

∂s (a1(|∂srN |)∂srN ) = M(∂srN )∂2suN → M(∂sr)∂
2
su,(37)

where

M(p) = a1(|p|)I+ ppT

|p|3 ∈ R
3×3, p ∈ R

3.(38)
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To do so we first recall that W 2((0, 1);R3) ⊂ C1
L∞([0, 1];R3) and therefore MN → M by (28)

in C0
L∞([0, 1];R3). We write MN = M+ εN with εN → 0 in C0

L∞([0, 1];R3) so that

‖MN∂
2
suN −M∂2su‖L2 ≤ ‖M (

∂2suN − ∂2su
) ‖L2 + ‖εN‖L2‖∂2suN‖L2 → 0

for N → ∞. Therefore, it has been shown that MN∂
2
suN → M∂2su in L2 and ξ is there-

fore a solution. By repeating the arguments in [32] it can actually be established that
ξ ∈ C0

L∞([0, T ];U × V ).
Now, recall that (28) was assumed to hold true with strict inequality at t = 0. Then by

the continuity of r and ∂sr it follows that (28) still holds true for T sufficiently small. This
completes the proof of the local existence and also the global existence when the singularities
are not encountered.

3.2. Well-posedness with Kelvin–Voigt dissipation. The addition of the dissipative
Kelvin–Voigt term (replacing a1 by ã1 (15)) complicates this analysis. The Galerkin method
relies on an a priori U × V -estimate similar to the one established above. Upon multiplying
the equations by ∂t∂

4
su

T and integrating by parts we end up with (30) but with a1 replaced
by ã1 (15). However, the term 〈〈∂3s (ã1(|∂sr|)∂sr), ∂t∂2su〉〉 cannot be controlled in U × V as
a term including ∂4sv appears. We need U × V -estimates to control the traces appearing in
the boundary equations (22) and (23). There is a lack of two derivatives. These issues could
certainly be circumvented by the addition of a term ∂t∂

4
sr due to bending dissipation. As we

have mainly restricted our attention to conservative models, this shall not be pursued further
in this research.

3.3. EI = 0. For simplicity we set μ = 0 and all other constants to 1. The equations
(6), (7), and (8) then become

d2tx = (a1(|r|)∂sr) |s=0,

d2ty = − (a1(|r|)∂sr) |s=1,

∂2t r = ∂s (a1(|∂sr|)∂sr) ,
x = r|s=0, y = r|s=1.

In the following we demonstrate that in this case the hope of obtaining existence of a strong
solution is futile. The problem is quasi-linear, which follows from the computation in (37).
The matrix M(p) (38) is symmetric, and it is therefore diagonalizable for every p �= 0 with real

eigenvalues and orthogonal eigenspaces. We furthermore notice that b(p) = ppT

|p|3 is singular

with kerb(p) = p⊥. Let v ∈ kerb(p); then

M(p)v = a1(|p|)v,

showing that v is an eigenvector of M(p) with eigenvalue a1(|p|) = |p|−1
|p| . It follows that

spanp is an eigenspace, and we easily show that

M(p)p = p,
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and 1 is the corresponding eigenvalue. We have shown that λ is an eigenvalue of M(p) if and
only if

λ =

{
1, algebraic multiplicity = 1,

|p|−1
|p| , algebraic multiplicity = 2,

(39)

with corresponding eigenspaces

E(1) = span (p),

E
( |p|−1

|p|
)
= p⊥ = {v ∈ R

3|v · p = 0}.(40)

The matrix M(p) is therefore positive definite if and only if |p| > 1 and, in particular, the
system of equations changes type when |∂sr| = 1. It is hyperbolic when |∂sr| > 1, whereas it
will have components that are elliptic when |∂sr| < 1. The Euler–Tricomi equation [27] is a
linear system that exhibits a similar change of type in part of the phase space, and in general
one expects loss of regularity, a shock, when |∂sr| moves through the unit circle.

This qualitative analysis suggests the ill-posedness of the classical tether equations. This
ill-posedness will particularly hamper numerical integration. One can, for example, not expect
conservation of energy through a shock. A drift in energy is indeed observed in the numerical
computations in [20, 21] along with apparent tether discontinuities. In [15] we investigate
the effect of the regularization in numerical integration for similar parameter values. The
experiments show that using the regularization we can produce a more reliable integrator
without a secular energy drift.

In the following section we conjecture that the slack-spring model is a limit of the massive
tether model as the diameter of a stiff tether goes to 0. This will also force EI → 0.

4. The vanishing thickness limit. Tethers are thin and longitudinally stiff. It therefore
seems relevant to study the limit of vanishing thickness together with an assumption on the
stiffness. Let h denote the diameter of a tether with constant circular cross-section such that
A = π

4h
2, ρl =

π
4h

2ρ, and I = π
64h

4. Then (13) may be written as

π

4
h2ρ∂2t r = −μπ

4
h2ρ|r|−3r+

π

4
Eh2∂s (a1(|∂sr|)∂sr)− π

64
Eh4∂4sr.

Now, if we assume that E = Êh−2 and normalize appropriately, we have

h2
(
∂2t r+ ∂4sr

)
= ∂s (a1(|∂sr|)∂sr) + h2f(r)(41)

together with

(42)

d2tx+ f(x) = (a1(|∂sr|s=0|)∂sr) |s=0 − h2∂3sr|s=0,

d2ty+ f(y) = − (a1(|∂sr|s=1|)∂sr) |s=1 + h2∂3sr|s=0,

r|s=0 = x, r|s=1 = y,

∂2sr|s=0,1 = 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
The assumption that E = O(h−2) is appropriate since the boundary terms

(a1(|∂sr|s=0,1|)∂sr) |s=0,1
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are explicitly independent of h. For any other polynomial relation these terms would either
vanish or diverge upon equating h = 0. By Theorem 1, this system admits a unique local
solution for every h > 0. As mentioned, we can guarantee global existence only if singularities
are not encountered. To avoid having to deal with the possibility that the solution in general
exists only locally, we shall in the following replace f and a1 by smooth mollifications fmol(z) =
χδ(|z|)f(z) and amol

1 (z) = χδ(z)a1(z), respectively, where χδ : [0,∞) → [0, 1] is a smooth
function satisfying

χδ(z) = 1 whenever z ≥ δ

and

χδ(z) ≤ 1 whenever δ/2 ≤ z ≤ δ,

χδ(z) = 0 whenever 0 ≤ z ≤ δ/2

for some (small) δ > 0.
The limit h → 0 is singular. Our hope is that as h → 0 the solution of (41) and (42)

will converge to some sort of weak solution. The full weak solution will not be well defined;
indeed, we lose all possible W 4-estimates on r as h→ 0. Nonetheless, we conjecture that the
behavior of the boundaries is well defined and in particular that for certain initial conditions
it converges as h→ 0 to that of the solution of the slack-spring problem.

Conjecture 1. For h > 0 let xh and yh solve the boundary equations of (41) and (42) with
initial conditions

(x(0),y(0)) = (x0,y0) ∈ R
6\{0},(43)

(ẋ(0), ẏ(0)) = (ẋ0, ẏ0) ∈ R
6,(44)

(u(0), v(0)) = (u0, v0)(45)

satisfying

|∂sr0| = |∂su0 + (y0 − x0)| = 1 if |x0 − y0| < 1,(46)

u0 = 0 if |x0 − y0| ≥ 1.(47)

Let x, y be the solutions of the slack-spring model

d2tx = fmol(x) + â1(|y− x|)(y− x),

d2ty = fmol(y) + â1(|y− x|)(x− y),

with initial conditions (43) and (44). Then for almost all initial conditions

|(xh,yh)(t)− (x,y)(t)|R6 = O(h) for 0 ≤ t ≤ O(h−p), for some p > 0.

We aim to give a rigorous proof of this in future work. Here we argue from a qualitative

perspective that the assertion seems reasonable. Equating h = 0 in (41), we obtain an ordinary
differential equation,

∂s (a1(|∂sr|)∂sr) = 0,
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implying

a1(|∂sr|)∂sr = const ∈ R
3,

and

|∂sr| = const + 1,

with const = |const|. We obtain, by assuming |∂sr| �= 0, that

|∂sr| ≡ 1 for const = 0,(48)

u = 0 for const �= 0.(49)

The former is not possible when the satellites are separated by a distance greater than l = 1,
while the latter is not stable in the sense of Euler buckling when |y−x| < l [3]. To demonstrate
Euler buckling we imagine x and y are fixed along the first inertial axis in free space, i.e.,
f = 0, in the plane with x = (0, 0) and y = (1− d, 0), d < 1. We are left with

h2
(
∂2t r+ ∂4sr

)
= ∂s (a1(|∂sr|)∂sr) ,

r|s=0 = 0, r|s=1 = (1 − d, 0), and ∂2sr|s=0,1 = 0. Linearization about the compressed equilib-
rium r = ((1 − d)s, 0) gives

h2
(
∂2t r+ ∂4sr

)
= diag(1,−d/(1 − d))∂2s r.

Through the ansatz (r
(n)
1 , r

(n)
2 ), r

(n)
i = exp(i�

(n)
i t) sin(nπs), i = 1, 2, we obtain(

�
(n)
2

)2
= −d/(1− d)h−2(πn)2 + (πn)4.

Solving �
(n)
2 = 0 for h = h(d, n) gives a critical thickness,

hcrit =
1

πn

√
d

1− d
,

in the sense that h < hcrit implies that the nth eigenmode is unstable. Finally, notice that
hcrit → ∞ for d→ 1, for fixed n.

If |∂sr| ≡ 1, then the tether does not affect the motion of x and y. This follows from
the definition of a1 and by differentiating |∂sr| ≡ 1 twice and using the boundary conditions
∂2sr|s=0,1 = 0. On the other hand, when u = 0, or r = sy + (1 − s)x, the boundary terms,
entering the equations for x and y, equal the effect of a spring with stiffness 1 connecting the
two satellites.

The buckling result does not imply the nonexistence of compressed tether motion. Cer-
tainly, zero angular momentum solutions provide a counterexample. However, we believe that
the buckling result will imply that the set of initial conditions for which the result is not true
is small in some sense. This is the reason for the phrase for almost initial conditions. In the
construction of a rigorous proof this phrase and proper estimates on the convergence rate p
will have to be made precise.

We will now revisit the slack-spring model and introduce the billiard model as the limit
of an inextensible spring.
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5. The slack-spring model.

5.1. Linearization of the gravitational field. The slack-spring model with Hamiltonian
(19), repeated here for convenience,

HST(q, δq,p, δp) =
1

2ξ
|p|2 + 1

2
|δp|2 − 1

μx

μ

|q+ μxδq| −
1

μy

μ

|q− μyδq|
+ κ1|δq|−l (|δq| − l)2 ,(50)

is 12-dimensional. In section 2.2, restricting to planar dynamics and introducing appropriate
polar coordinates, we were able to reduce to 3 degrees of freedom; see (20). However, even 6
dimensions are too many to easily visualize the dynamics. To overcome this problem we may
make use of the fact that in practice l � r and in particular replace the gravitational term in
Hamilton’s equations with its linearized versions about δq = 0. We obtain

q̇ =
1

ξ
p,

ṗ = −1

ξ

μ

|q|3q,
˙δq = δp,

˙δp = − μ

|q|3
(
I − 3

qqT

|q|2
)
δq− 2κâl(|δq|)δq.

Within this approximation the center of mass is independent of the relative motion and moves
on a Keplerian orbit. The Keplerian motion conserves eccentricity e, and for 0 ≤ e < 1
the motion is bounded and periodic. We therefore replace the original Hamiltonian system
with a family of time-periodic Hamiltonians parametrized by e ∈ [0, 1). If we introduce
the true anomaly ν in Figure 2 as an independent variable and normalizations such that
ν̇ = (1 + e cos ν)2 and l = 1, then the Hamiltonian takes the form

HST(δq, δp, ν; e) =
1

2ν̇
|δp|2 − 1

2
(1 + e cos ν)〈δq,A(ν)δq〉+ κ

ν̇
1|δq|−l (|δq| − l)2 ,(51)

where

A(ν) = I− 3

⎛⎝ cos2 ν sin ν cos ν 0
sin ν cos ν sin2 ν 0

0 0 0

⎞⎠ .

Finally, by moving into a rotating frame,

δq = R(ν)δqrot,

δp = R(ν)δprot,

where R(ν) ∈ SO(3) for every ν,

R(ν) =

⎛⎝ cos ν − sin ν 0
sin ν cos ν 0
0 0 1

⎞⎠ ,
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we obtain a new Hamiltonian as the sum of the old one written in the new variables and the
coriolis term 〈δqrot,Ω ∧ δprot〉:

HST(δq
rot, δprot, ν; e) =

1

2ν̇
|δprot|2 + 〈δqrot,Ω ∧ δprot〉

+ (1 + e cos ν)

(
(δqrot1 )2 − 1

2
(δqrot2 )2 − 1

2
(δqrot3 )2

)
+
κ

ν̇
1|δqrot|−1(|δqrot| − 1)2,(52)

where δqrot = (δqrot1 , δqrot2 , δqrot3 )T , δp = (δprot1 , δprot2 , δprot3 )T , and Ω = (0, 0, 1).
The Hamiltonian HST(δq

rot, δprot, ν; 0), corresponding to a circular orbiting center of
mass, is independent of ν, and HST is conserved. The six dimensional phase space is therefore
foliated by five dimensional submanifolds, or three dimensional submanifolds if we restrict to
planar motion. In the latter case visualizations are possible with two dimensional Poincaré
maps.

In the dumbbell model the distance between the spacecraft is assumed constant and equal
to l = 1. Therefore, by replacing the Euclidean configuration space above with S2 for the
attitude of the dumbbell, we obtain the dumbbell model with linearized gravity; see, e.g., [10].
For e = 0 and restricting to planar motion we obtain a time-independent one degree of freedom
integrable Hamiltonian system. We shall return to this “underlying” integrable system when
we later identify the dumbbell dynamics within the billiard dynamics. We mention that for
the dumbbell model with small e most of the invariant curves of the planar dumbbell dynamics
will persist by considering the stroboscopic, symplectic map and using KAM theory.

5.2. The inextensible limit of the slack-spring model. Our aim in this subsection is to
study the inextensible limit of the slack-spring model. We will show that the impact of δq
with |δq| = 1 approximates a δ-distribution as κ → ∞, the effect of which is to reverse the
direction of the radial momentum, pδr �→ −pδr, leaving the remaining variables continuous in
time.

The slack-spring problem can be viewed as a hybrid system: an integrable Hamiltonian
flow within |δqrot| ≤ 1 and a different flow beyond where the spring affects the motion. Since
the flow within |δqrot| < 1 is not affected by the spring, or the value of κ, for the purpose of
our study it suffices to study the region |δqrot| ≥ 1. To do so we consider the related spring
system, i.e., replacing â1 (18) by a1 (10). We assume e = 0 and restrict to planar dynamics
for simplicity. The arguments can easily be extended for 0 < e < 1 and the nonplanar case.

We introduce the polar coordinates δqrot = δr(cos θ, sin θ). Upon replacing â1 by a1,
Hamilton’s equations, with Hamiltonian (52), become

δ̈r = δrθ̇2 + 3δr cos(θ)2 + 2κ(1 − δr) + 2δrθ̇,(53)

dt

(
δr2θ̇

)
= −3δr2 cos(θ) sin(θ)− 2δrδ̇r.

We introduce the slow time τ = ε−1t and set δr(τ) = 1 + εδr1(τ) with ε
2 = κ−1 to obtain

δr′′1 = −2δr1 +O(ε), ()′ = dτ ,

θ̈ = −3 cos(θ) sin(θ) +O(ε).
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Therefore, if δr1(0) = 0 with δ̇r1(0) = B, then after truncating terms of order ε,

δr1(t) = B sin(
√
2κt),

and it follows that the effect of moving beyond δr = 1 is approximated by the bounce map
δ̇r �→ −δ̇r, leaving the other variables, δr, θ, and θ̇, continuous. Together the bounce map and
the Keplerian flow between bounces define the billiard model.

The Kelvin–Voigt dissipation enters on the right-hand side of (53) via the term −2καδ̇r.
If we assume that the damping factor is small and in particular satisfy α = α̃ε for some
α̃ ∈ [0, 2), then the calculations made above can be repeated to show that the truncation
satisfies

δr′′1 = −2δr1 − 2α̃δr′1.

Therefore,

δr1 =
B√
2− α̃

exp
(−α̃√κt) sin(√2− α̃2

√
κt
)
,

so that in the limit of ε = 0

δ̇r �→ −δ̇r exp
(
− α̃π√

2− α̃

)
= −δ̇r

(
1− π√

2
α̃+O(α̃2)

)
.

The dissipation can therefore be accounted for within the billiard model via the restitution
factors exp(− α̃π√

2−α̃
). This is done in [30]. This reference considers a fixed circular orbiting

center of mass and shows numerically that, as might be expected for a nonlinear, almost
Hamiltonian system, transient chaos before the system converges to the stable equilibria.

In the following section the billiard model is studied further. The overall aim shall be to
identify the dumbbell dynamics within the dynamics of the billiard model.

6. The billiard model. Between collisions the flow is given by the Hamiltonian

Q((δqrot, ν), (δprot, E); e) = E +
1

2ν̇
|δprot|2 + 〈δqrot,Ω ∧ δprot〉

− (1 + e cos ν)

(
(δqrot1 )2 − 1

2
(δqrot2 )2 − 1

2
(δqrot3 )2

)
,(54)

with canonical symplectic structure ω = dδqrot ∧ δprot + dν ∧ dE . This is just (52) without
the slack-spring term and where we have introduced the negative energy E as the canonical
conjugate of ν. Recall that Ω = (0, 0, 1). This Hamiltonian is integrable as it is obtained
from the variations of the integrable Kepler problem. In fact, for 0 ≤ e < 1 there is a five
dimensional family of periodic solutions of the variational equations [14]. By linearity these
solutions can be scaled such that they never intersect |δqrot| = 1. This set of solutions is
an integrable periodic subset of the billiard dynamics. The sixth remaining solution of the
variational equations is a linear drift due to variations in energy [14]. We consider initial
conditions for the billiard map on |δqrot| = 1. If these initial conditions correspond to a
periodic solution of the variational equations, then the relative position vector certainly returns
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to |δqrot| = 1. Otherwise, by the linear drift, the relative position is radially expanding. It
therefore follows that every point on the section |δqrot| = 1 for which dt|δqrot| < 0 is mapped
through the flow of (54) to a point on |δqrot| = 1 with dt|δqrot| > 0. This defines a map Be,
parametrized by the eccentricity e, mapping wall-collisions to wall-collisions. Since pδr �→ −pδr
leaves Q invariant and Q, as a time-independent Hamiltonian, is conserved on the integral
curves between collisions, Be maps the level sets of Q, Q = ξ, into themselves. Therefore,

Be(z0, ξ) = (z1, ξ), z0, z1 = z1(z0, ξ) ∈ T ∗(S2 × S1).

Here S2 is for |δqrot| = 1 measuring the collision attitude, while S1 is for the true anomaly ν.
As is usual for Hamiltonian Poincaré maps, the mapping

Pe : z0 �→ z1(55)

is smooth and symplectic on T ∗(S2 × S1).
For e = 0 further reduction is possible. Indeed, in this case ν is cyclic in the Hamiltonian

(54), and E is therefore conserved, say, E = c. Hence

P0(z0, ν0, c) = (z1, ν0 +Δν(z0, c), c), z0, z1 = z1(z0, c) ∈ T ∗S2,(56)

and we define P c,red
0 : z0 �→ z1 with E = c. This is a family of four dimensional smooth

symplectic maps parametrized by c. The planar restriction defines a family of two dimensional
symplectic maps on the cylinder T ∗S1.

6.1. The dumbbell motion. The dumbbell motion is embedded within the billiard model
as trajectories grazing along the boundary. As already mentioned in the last paragraph of
section 5.1, this dumbbell motion is integrable when restricted to planar motion and e = 0.
The interesting question is when this specific dynamics persists for slack tethers or, in other
words, when is it obtainable as a limit within the billiard map. The existence of these regions
of persistence will provide subsets of phase space in which the dumbbell model will be a valid
approximation to the full dynamics.

For e = 0 the ν-independence of Q allows us to identify E with the associated energy
function. In polar coordinates we may then write E = −E as

E =
1

2
δ̇r

2
+

1

2
δr2θ̇2 − 3

2
δr2 cos2 θ.(57)

We say that a frequency ω satisfies the Diophantine condition if there exist τ ≥ 1 and C > 0
such that |nω −m| > Cn−τ , C > 0 for any n,m ∈ N. We then obtain the following theorem.

Theorem 2. Any invariant curve of the dumbbell model with e = 0, λ = θ̇2+2θ̇+3cos2 θ > 0,
and an induced frequency ω satisfying the Diophantine condition persists within the reduced
billiard map.

Proof. The proof is inspired by a proof of the existence of invariant curves in magnetic
billiards in [8]. It goes as follows.

1◦ Obtain an approximation to the billiard map using the escape velocity as a small
parameter.
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2◦ Derive an area-preserving, twist-mapping approximation using canonical transforma-
tions.

3◦ Use Moser’s twist theorem [24, Theorem 2.11] to conclude the existence of invariant
curves near the boundary.

1◦. In polar coordinates the Hamiltonian (54) with e = 0 reads

Q =
1

2
p2δr +

pθ
2

2δr2
− pθ +

1

2
δr2 − 3

2
δr2 cos2 θ,

equipped with ω = dδr ∧ dpδr + dθ ∧ dpθ. As we will be considering trajectories grazing along
the boundary δr = 1, we introduce ε and δr̃ so that δr = 1 + εδr̃. It is moreover appropriate
to introduce pδr = ε1/2p̃δr and t �→ ε−1/2t. Upon forgetting the tildes the Hamiltonian is
transformed into

Q =
1

2
εp2δr +

pθ
2

2(1 + εr)2
− pθ +

1

2
(1 + εδr)2 − 3

2
(1 + εδr)2 cos2 θ

=
1

2
εp2δr + h(θ, pθ)− ελ(θ, pθ)δr +O(ε2),

equipped with ω = εdδr ∧ dpδr + ε−1/2dθ ∧ dpθ. Here

h(θ, pθ) =
1

2
pθ

2 − pθ − 3

2
cos2 θ

is the Hamiltonian of the associated dumbbell model with e = 0, and

λ(θ, pθ) = pθ
2 − 1 + 3 cos2 θ,

which satisfies

−ε−1∂δrQ→ λ

as ε→ 0.
Remark 1. The quantity λ = θ̇2 +2θ̇+3cos2 θ+O(ε) is the acceleration of δr. Physically

(see, e.g., [4]), λ with ε = 0 is the tension in the associated dumbbell required to keep it
unit-speed parametrized. If λ is O(ε1/2), or even λ < 0, then the estimates below are not
valid. In particular, Hamilton’s equations for δr and pδr are

εδ̇r = εpδr,(58)

ε ˙pδr = ελ+O(ε2).(59)

Therefore, if a trajectory is initiated on the boundary with δr(0) = 0 and δ̇r(0) < 0, then,
within the truncation of these equations, δr will only return to 0 if λ > 0. See also Figure 4.
However, we may notice that λ ≤ 0 gives −1−√

1− 3 cos2 θ ≤ θ̇ ≤ √
1− 3 cos2 θ− 1 ≤ 0, and

therefore the negativity of λ is an issue only when the tethered system’s rotation opposes the
direction of rotation of the center of mass (retrograde orbits).
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(b) λ < 0

(a) λ > 0

Figure 4. If (a) λ > 0, then the trajectory remains close to the boundary provided the radial escape velocity
pδr is sufficiently small. This is in general not the case for (b) λ < 0.

We will assume for the moment that

λ ≥ δ > 0.(60)

We will return to this in 2◦. As the billiard map is symplectic on energy level sets, we will
reduce by energy. To return to the boundary pδr will obviously have to chance sign, so we
will eliminate δr rather than pδr via the conservation of energy

Q(δr, pδr , θ, pθ) = c.(61)

We have

∂δrQ = −ελ+O(ε2).

Therefore, for ε small enough, using the implicit function theorem and assumption (60), we
can solve (61) for δr. Notice that 0 > h−c = O(ε). Let us therefore set h−c = εh̃(θ, pθ, c) < 0.
Moreover, let

δr =Mε(pδr, θ, pθ, c) =M0(pδr, θ, pθ, c) + εM1(pδr, θ, pθ, c) +O(ε2).

By insertion we obtain

M0 =
h̃

λ
+
p2δr
2λ
.
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Next, we eliminate pδr which is conjugate to δr by replacing time with pδr. We have

dθ

dpδr
= −ε3/2 ∂pθQ

∂δrQ
,

dpθ
dpδr

= ε3/2
∂θQ

∂δrQ
.

But from (61) it follows upon using the chain rule that

∂θQ+ ∂δrQ∂θMε = 0,

∂pθQ+ ∂δrQ∂pθMε = 0,

and therefore

dθ

dpδr
= ∂pθ

(
ε3/2Mε

)
,

dpθ
dpδr

= −∂θ
(
ε3/2Mε

)
.

The reduced system is therefore Hamiltonian with Hamiltonian function ε3/2Mε and symplectic
form dθ ∧ dpθ. Here

ε3/2∂zM0 = ε1/2
∂zh

λ
− ε3/2

∂zλ

λ

(
p2δr + h̃

)
, z = θ or pθ.

Therefore,

dθ

dpδr
= ε1/2

∂pθh

λ
+ · · · ,

dpθ
dpδr

= −ε1/2∂θh
λ

+ · · · .

To approximate the billiard map the truncation of this system has to be integrated up until the
trajectory returns to the boundary corresponding to δr = 0. In the following we approximate
the required integration time. First we notice that from (61) it follows that on the boundary,

given by δr = 0, we have pδr = −1
2N0 +O(ε), N0 = 2

√
−2h̃. Hence by (58) and (59), or

δ̈r = λ+O(ε),

we obtain

δr =
λ

2
t2 − 1

2
N0t+O(ε).

The equation δr = 0 to be solved for the return time Δt > 0 therefore solves to

Δt =
N0

λ
+O(ε),
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which is positive for sufficiently small ε since by assumption (60) λ > 0. In terms of pδr the
return time becomes Δpδr = N0+O(ε). If τ = pδr

N0
is a new time, then the return time becomes

Δτ = 1 +O(ε),(62)

and the equations read

(63)

dθ

dτ
= ε1/2

∂pθh

N0λ
+ · · · ,

dpθ
dτ

= −ε1/2 ∂θh
N0λ

+ · · · .

2◦. The truncation of (63) is a time reparametrization of the dumbbell model with Hamil-
tonian h, and according to (62) its time-one map approximates the billiard map. Notice also
that the truncation preserves N0 since it conserves h. Therefore, in terms of the action-angle
variables (φ, J) of the dumbbell, the truncation of (63) reads

φ̇ =
ε1/2

N0λ
�(J),

J̇ = 0.

Now, introduce φ �→ ψ, where

ψ =

∫ φ
0 λ(τ, J)dτ

λ
, λ =

1

2π

∫ 2π

0
λ(τ, J)dτ,

and ε �→ ε̃ = εN2
0 . The new ε̃ is still small since N0 = O(1) and the truncation preserves it.

Then the equations are transformed into

ψ̇ = ε̃1/2�(J),

J̇ = 0.

Since the dumbbell model with e = 0 is just a pendulum equation, the time-one map of the
dumbbell obviously satisfies the twist condition ∂J�(J) �= 0 [24] away from the separatrices.
It is therefore only left to be shown that (60) holds in parts of the phase space. We may write

λ = 2η + 6cos2 θ + 2θ̇(θ, η)

= 2η + 6cos2 θ ± 2
√

2η + 3cos2 θ,

where 2η = θ̇2 − 3 cos2 θ is the energy function related to h and therefore conserved. At the
θ = 0, π equilibria, η = −3/2 and therefore λ = 3. Moreover, λ > 0 for sufficiently large η.

3◦. For λ > 0 we have an area-preserving approximation of the billiard map through the
time-one map of the truncation of the map (63). Moser’s twist map theorem then guarantees
the persistence of Diophantine tori.
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Figure 5. The two white, disjoint regions sketch the realm of possible motion for E < 0.

Remark 2. The arguments can also be repeated for a more general class of linear time-
independent Hamiltonian vector-fields describing the flow between collisions. Another example
could be the variational equations about the collinear Lagrange points in the circular restricted
three-body problem. Moreover, similar techniques have been used in magnetic billiards; see,
e.g., [8].

The tori which do not persist the perturbation, in particular tori with rational frequencies,
break up into island chains and chaos [2]. In the following section we show some diagrams of
numerical computations of the billiard map, particularly bringing attention to the dynamics
away from the KAM tori.

6.2. Numerical computations of the billiard map for e = 0. We focus our attention on
e = 0 and the family of two dimensional billiard maps describing the planar billiard dynamics.
Again we use θ and θ̇ as coordinates on the cylinder TS1; see, Figure 2 for the definition of θ.

The invariant sets defined by E = c (57) are disconnected for E < 0. For E < 0 the

dynamics are confined to two regions of configuration space: |δr cos θ| ≥
√

−3
2E; see Figure 5.

For E ≥ 0 any point of configuration space, δr ≤ 1, can be visited by the dynamics. In
particular, collisions between the satellites can occur if and only if E ≥ 0. The topology of
the sets E−1(c), with c ≥ −3

2 , obviously implies that the billiard mapping is defined only on
a proper subset of (−π, π] � θ.

Figure 6 shows four examples of the billiard map restricted to the level sets of E. In
Figure 6 (a), (b), (c), and (d) E is fixed at −0.7, 0.1, 1, and 5. On the boundary curves,
δ̇r = 0, i.e., the dumbbell limit. Due to reflectional symmetries about the lines θ = 0 and
θ = π/2 the sections with θ in only one of the regions (0, π/2), (π/2, π), (−π,−π/2), and
(−π/2, 0) uniquely define the billiard map.

There is an obvious difference in the dynamics of direct and retrograde orbits, i.e., θ̇ > 0
and θ̇ < 0, respectively. Similar differences can be observed in the circular restricted three-
body problem in rotating coordinates, or in magnetic billiards [8]. In general, retrograde
orbits have more energy as they need to be faster to reach the next collision.
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(a) E = −0.7
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(c) E = 1
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(d) E = 5

Figure 6. Visualization of the billiard map for E-values equal to −0.7, 0.1, 1, and 5. On the boundary
curves δ̇r = 0, i.e., the dumbbell limit. The periodic points pointed out by the arrows in (a), (c), and (d) are
visualized as projections of periodic orbits in Figure 7.

In (a), E = −0.7, there are two obvious dominating regular regions: invariant curves near
the boundary and an elliptic island. Between these regions we see both chaotic regions and
additional smaller regular islands. The large elliptic island surrounds a nonlinear normal mode
emerging from the stable fixed point. As E is increased, the qualitative picture in Figure 6
(a) persists until E = 0, where the two white regions in Figure 5 collide to enable transfer
between the two half discs. Immediately after E = 0, the dynamics is predominantly chaotic;
see Figure 6 (b). Increasing the energy to E = 1 regularizes the dynamics near the top
boundary, and resonance islands appear; see Figure 6 (c). Increasing the energy even further
to E = 5 (Figure 6 (d)) regularizes the dynamics near the lower boundary, again creating
resonance islands. The behavior of the invariant curves near the boundary is in agreement
with Theorem 2 and Remark 1.

Projections of the five periodic orbits identified with periodic and fixed points for the
billiard map (see Figure 6) are visualized in Figure 7. By the implicit function theorem,
periodic and fixed points can be continued onto neighboring energy surfaces provided 1 is not
an eigenvalue of the linearized map. In Figure 7 (a), the stable fixed point visible in Figure 6
(a) has been continued for E near −0.7.
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(a) Stable periodic orbit for E = 5
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(b) Unstable periodic orbit for E = 5
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(c) Stable periodic orbit for E = 1
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(d) Unstable periodic orbit for E = 1
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(e) Family of stable periodic orbits for E near −0.7

Figure 7. The periodic orbits corresponding to the periodic points of the billiard map indicated in Figure 6.
Unstable and stable periodic orbits are visualized. By the implicit function theorem, the periodic points can be
continued onto neighboring energy surfaces.

The invariant curves near the boundaries are codimension 1, and they therefore act as
absolute barriers to the motion. In particular, for these reasons, trajectories emanating from
δr = 0 cannot, regardless of their initial energy E, reach these curves and regions of phase
space without a control mechanism.
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7. Conclusion. In this paper several different tether models have been related mathemat-
ically, and it has been established in what limits they may provide useful models of tether
dynamics. First, the massive tether model was linked to the slack-spring model through a
conjecture on the limit of vanishing thickness. Then the slack-spring model was related to the
billiard model in the limit of an inextensible tether. Next, the motion of the dumbbell model
was identified within the dynamics of the billiard model through a theorem on the existence of
invariant curves. Finally, numerical computations provided some insights into the dynamics
of the billiard map for the case of an underlying circular orbiting center of mass.

The existence of the invariant curves within the planar billiard model with an underlying
circular orbiting center of mass implies that the tethered system cannot reach these practically
relevant, stable regions of phase space without control.
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