
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scaling relations for the entire spectrum in mass-deformed
conformal gauge theories

Citation for published version:
Del Debbio, L & Zwicky, R 2011, 'Scaling relations for the entire spectrum in mass-deformed conformal
gauge theories', Physics Letters B, vol. 700, no. 3-4, pp. 217–220.
https://doi.org/10.1016/j.physletb.2011.04.059

Digital Object Identifier (DOI):
10.1016/j.physletb.2011.04.059

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Physics Letters B

Publisher Rights Statement:
arXiv version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 04. Jan. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28964224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.physletb.2011.04.059
https://doi.org/10.1016/j.physletb.2011.04.059
https://www.research.ed.ac.uk/portal/en/publications/scaling-relations-for-the-entire-spectrum-in-massdeformed-conformal-gauge-theories(0eb81b79-8623-46da-98bc-e4bfa7a9be47).html


ar
X

iv
:1

00
9.

28
94

v2
  [

he
p-

ph
] 

 7
 M

ay
 2

01
1

SHEP 28-10
CP3-Origins-2010-38

Scaling relations for the entire spectrum in
mass-deformed conformal gauge theories

Luigi Del Debbio
a1

& Roman Zwicky
b2

a School of Physics and Astronomy, University of Edinburgh, Edinburgh

EH9 3JZ, Scotland
b School of Physics & Astronomy, University of Southampton, Highfield,

Southampton SO17 1BJ, UK

Abstract

We consider mass-deformed conformal gauge theories (mCGT) and
investigate the scaling behaviour of hadronic observables as a function
of the fermion mass. Applying renormalization group arguments di-
rectly to matrix elements, we find mH ∼ m1/(1+γ∗) and F ∼ mηF (γ∗)

for given ηF (γ∗), for the hadronic masses and the decay constants
respectively, thereby generalizing our results from a previous paper
to the entire spectrum. Applying the Hellmann-Feynman theorem to
the trace anomaly we obtain the hadron mass scaling independent of
renormalization group arguments. From the trace anomaly we ob-
tain a relation reminiscent of the Gell-Mann Oakes Renner relation in
QCD. Using the new results we discuss the scaling of the S-parameter
inside the conformal window. Finally, we discuss how spectral repre-
sentations can be used to relate the mass and decay constant trajec-
tories.
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1 Introduction

The physics of quantum field theories with an infrared fixed point (IRFP) is
characterized by scale invariance at large distances, which implies a massless
spectrum, and unbroken chiral symmetry. Gauge theories coupled to massless
fermions that remain asymptotically free in the ultraviolet and have an IRFP
are said to lie in the conformal window. An example of fixed-point, in the
weak coupling regime, is due to Banks and Zaks [1]. For lower values of Nf

the critical coupling is expected to be larger. In supersymmetry, where the
nonperturbative dynamics can be studied by analytical methods - see e.g.
Ref. [2] for a review - there are examples of strong coupling fixed-points by
virtue of electric-magnetic duality.

Identifiying a conformal fixed point at strong coupling in a nonsupersym-
metric theory is an interesting theoretical challenge. Techniques have been
developed in recent years to understand the phase structure of gauge theo-
ries, see e.g. Refs. [3, 4] for recent results and references. In this work we
will consider gauge theories minimally coupled to Nf Dirac fermions in arbi-
trary representations of the gauge group. All fermions are degenerate, even
though different fermion masses can be easily accomodated. The fermionic
mass term is a relevant deformation that drives the theory away from confor-
mality. We refer to these theories as mass-deformed conformal gauge theories
(mCGT). Mass deformed theories develop a string tension and thus lead to
the formation of massive bound states which shall call hadrons. [5, 6] It is
the scaling of the hadronic spectrum and the decay constants as a function of
the fermion mass and its applications that we want to consider in this study.

Besides their theoretical interest, conformal theories deformed away from
the fixed point are interesting candidates technicolor [7, 8, 9] model building.
The important issue for phenomenology is the characterization of the fixed
point, through the computation of the relevant critical exponents. The latter
are relevant for technicolor searches at colliders [11, 12].

The lattice formulation of gauge theories provides a powerful tool to in-
vestigate the nonperturbative dynamics from first principles. Monte Carlo
simulations are necessarily performed at finite fermion mass, the signature
of an IRFP can be found by studying the scaling of physical quantities with
the fermion mass as proposed in Refs. [13]. The scaling laws are dictated by
the critical exponents of the fixed point, and have been studied intensively
in recent numerical investigations [6, 14, 15].

In this work we:
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• provide scaling laws for condensates, hadron masses, decay constants
for the entire spectrum.

• derive the scaling law for the hadron masses from the trace anomaly and
the Hellmann-Feynman theorem without using RG arguments. The
relation obtained from the trace anomaly is reminiscent of the GMOR
relation in QCD.

• reiterate on scaling laws for the S-parameter using our results.

• give the relation between the mass and decay constant trajectories

• suggest to probe the beta function via the trace anomaly and provide
a presentation of the beta function which resembles the NSVZ beta-
function [22].

In connection with the first item it is worthwhile to note out that in
a previous work [10], we have derived the scaling of the hadron masses and
decay constants, for the lowest-lying state in any channel with given quantum
numbers, using renormalization group (RG) arguments on correlators for
large Euclidian times.

2 Mass scaling from anomalous dimensions

Consider an operator O(x;µ) renormalized at the scale µ, with scaling di-
mension ∆O and quantum numbers such that the matrix element

Tϕ1Oϕ2(g, m̂, µ) ≡ 〈ϕ2|O(0)|ϕ1〉 , ∆O = dO + γO (1)

is non-vanishing. The symbols dO and γO denote the engineering and anoma-
lous dimension respectively. We have indicated the dependence on the two
renormalized parameters of the mCGT – the rescaled mass m̂µ = m, and
the gauge coupling g – as well as on the scale µ. The kets |ϕi〉, for i = 1, 2,
denote physical states with scaling dimensions ∆ϕi

= dϕi
.

We closely follow part of the argumentation in our previous paper [10],
where we applied renormalization group (RG) arguments to study the scaling
of field correlators; here we focus on matrix elements of the type introduced
in Eq. (1), adding to the discussion the observation that the physical states
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are free of anomalous dimensions (i.e. ∆ϕi
= dϕi

). Close to the fixed point
the RG transformation µ = bµ′ on the matrix element results in:

Tϕ1Oϕ2(g, m̂, µ) = b−γOTϕ1Oϕ2(g
′, m̂′, µ′) . (2)

Near a non-trivial fixed point the couplings display powerlike behaviour:

g′ = bygg , m̂′ = bymm̂ , (3)

with
ym = 1 + γ∗ , (4)

where γ∗ denotes the anomalous dimension of the mass at the fixed point.
Neglecting the irrelevant coupling g (yg < 0)3 and multiplying all mass units
by the factor b we obtain:

Tϕ1Oϕ2(m̂
′, µ′) = b−(dO+dϕ1+dϕ2 )Tϕ1Oϕ2(m̂

′, µ) , (5)

Choosing b such that m̂′ = 1, combining equations (2) and (5) yields:

Tϕ1Oϕ2(m̂, µ) ∼ (m̂)(∆O+dϕ1+dϕ2 )/ym . (6)

Note that in the approximation made there are no higher order corrections.
Such correction originate from taking into account corrections to the beta
function of the form β = Amηβ with ηβ > 0.

The result in Eq. (6) can also be derived starting from correlation func-
tions. For example for the matrix element the operator O between one
physical state and the vacuum we have:

(p21 −m2
ϕ1
)i

∫

d4xeip1·x〈0|TO(0)Φ1(x)|0〉 =

= (p21 −m2
ϕ1
)

(

〈0|O|ϕ1〉〈ϕ1|Φ1|0〉

p21 −m2
ϕ1

+ . . .

)

, (7)

where Φ1 denotes an interpolating operator for the state ϕ1. All other con-
tributions but the ϕ1-pole vanish for on-shell momenta. Generalization to
the case of two physical states is straightforward.

The scaling relations for the decay constants given in Table 1 of Ref. [10]
can be readily rederived from the considerations presented above, borrowing
the relation mH ∼ m1/(1+γ∗) from the next section. They apply trivially to
all one-particle stable states in the spectrum and not only to the lowest lying
state as in Ref. [10].

3 We remind the reader that the assumption is, to be verified by lattice simulations,
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O def 〈0|O|JP(C)(p)〉 JP(C) ∆O ηG[F ]

S q̄q GS 0++ 3− γ∗ (2− γ∗)/ym

Sa q̄λaq GSa 0+ 3− γ∗ (2− γ∗)/ym

P a q̄iγ5q GP a 0− 3− γ∗ (2− γ∗)/ym

V q̄γµq ǫµ(p)MV FV 1−− 3 1/ym

V a q̄γµλ
aq ǫµ(p)MV FV a 1− 3 1/ym

Aa q̄γµγ5λ
aq ǫµ(p)MAFAa 1+ 3 1/ym

ipµFP a 0− 3 1/ym

Table 1: Scaling laws, G[F ] ∼ mηG[F ] for decay constants. The symbol ym ≡ 1+γ∗
denotes the scaling dimension of the mass and ∆O = dO + γO. The symbol
a denotes the adjoint flavour index, and λa are the generators normalized as
tr[λaλb] = 2δab. No such simple expression exists for the axial singlet current
because of the chiral anomaly [10].

2.1 Scaling of hadron masses

The approach that we have introduced in the previous section, namely the
study of matrix elements of given operators between physical states, can also
be used to investigate the scaling of the hadron masses with the fermion
mass.

RG arguments applied to two-point functions in Refs. [10][6]4 led to the
scaling relation:

MH ∼ m1/ym , (8)

for the lowest state in any given channel. Here we shall generalize it to the
entire spectrum using the trace or scale anomaly of the energy momentum
tensor.

Let us first state two general facts. When considering its matrix elements
between on-shell (i.e. physical) states , the trace of the energy momentum

that we are studying the theory in a neighbourhood of a fixed point where the mass is the
only relevant coupling.

4 This relation was first proposed in Ref. [5] by looking at the pole mass around the
Banks-Zaks type fixed-point.
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tensor assumes the following form [17]5:

θ α
α |on−shell =

1

2g
βG2 +Nfm(1 + γm)q̄q , (9)

where β = ∂g
d lnµ

. On the other hand the matrix element of the energy mo-

mentum tensor between two physical states can be written as, e.g. [16],:

〈H(p)|θαδ|H(p)〉 = 2pαpδ , (10)

which is consistent with the relativistic normalization 〈H(~p)|H(~k)〉 = 2Epδ
(3)(~p−

~k). Note that all operators appearing in eq. (10) are intended to be renor-
malized at some scale µ.

Taking the trace of Eq. (10), equating with (9), neglecting the β function,
and adopting our notation γm = γ∗ yields

2M2
H = Nf (1 + γ∗)m〈H|q̄q|H〉 , (11)

a relation reminiscent of the Gell-Mann Oakes Renner relation in QCD. The
scaling of the hadron masses, for the entire spectrum, can be obtained in two
alternative ways.

1. From (6), with dH(p) = −1 and ∆mq̄q = 4, it follows that m〈H|q̄q|H〉 ∼
m2/ym and thus Eq. (11) implies (8). For the scaling corrections, the
same remarks apply as for the quantity in Eq. (6).

2. The Feynman-Hellmann theorem states that,

∂Eλ

∂λ
= 〈ψ(λ)|

∂Ĥ(λ)

∂λ
|ψ(λ)〉 ; (12)

the variation of the energy with respect to a parameter equals the
expectation value of the variation of the Hamiltonian. In our case, we
consider the derivative with respect to the massm. Taking into account
our chosen normalization of states, Eq. (12) yields

m
∂M2

H

∂m
= Nfm〈H|q̄q|H〉 . (13)

5When evaluated on states, in this notation, it is understood that only the connected
part is evaluated.
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Equating with Eq. (11) we get

m
∂MH

∂m
=

1

1 + γ∗
MH , (14)

which implies Eq. (8) with (4). It is worth emphasizing that this deriva-
tion does not depend on RG arguments.

Note that the same statement applies to the decay rates ΓA→BC.. ∼ m1/ym

since the latter transition Hamiltonian is free from anomalous scaling. Sim-
ilar arguments for the scaling of decay rates were already discussed in our
previous paper [10].

2.2 A remark on the β-function

Finally, Eqs. (9) and (10) imply a relation between the beta function and the
mass anomalous dimension:

β =
AH + γmBH

GH
, (15)

where

AH = 2M2
H −mNf 〈H|q̄q|H〉 ,

BH = mNf 〈H|q̄q|H〉 ,

GH = 〈H|G2|H〉 .

The detailed investigation of this relation is postponed to further studies [21].
The connection with the so-called NSVZ beta function [22] is obvious. This
relation could, for instance, be used to probe the β-function in mCGT. Note
that the combinations AH/GH and BH/GH are independent of the state H .

2.3 Remarks on S-parameter

The determination of the S-parameter for gauge theories is important for
technicolor model building, be it for walking-like or conformal behaviour.
In this section, we discuss the implications of our scaling relations for the
S-parameter. These analytical results for the scaling of the S-parameter lead
to new criteria that can help to distinguish a conformal phase from a walking
phase.
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Using the results valid for the entire spectrum rather than the lowest
lying state, we can put the remarks on the S parameter of mCGT that were
presented in the conclusions of Ref. [10] on more solid grounds.

Defining the dimensionless correlation function ΠV−A(q
2) from the corre-

lation function:

Π(q)µνab ≡ i

∫

d4xeiq·x〈0|T (V µ
a (x)V

ν
b (0)− (V ↔ A)) |0〉 (16)

= (−q2gµν + qµqν)δabΠV−A(q
2) + gµνm

2ΠA(q
2) .

Saturating the correlation function with hadronic states, one would expect

ΠV−A(q
2) =

f 2
V

m2
V − q2

−
f 2
A

m2
A − q2

−
f 2
P

m2
P − q2

+ ... . (17)

As discussed in Ref. [18], the scaling of the correlator with the fermion mass
depends on the order in which the limits q2 → 0 and m → 0 are taken.
When q2 → 0 at fixed m, the scaling laws for the hadronic masses and decay
constants imply that

ΠV−A(0) ∼ O(m0) ; (18)

our analysis only yields the scaling law, but no information on the prefactor.
The analysis presented in Refs. [18, 19, 20] actually aims at a lower bound for
the prefactor. We would like to add that we cannot exclude that the vector
and axial contributions conspire to cancel up some order in m. For the case
where we take the limit m→ 0 at fixed q2, we obtain:

ΠV−A(q
2)

−q2≫(ΛU )2

∼
m2/ym

q2
+O

(

m2

q2

)

, (19)

with the same caveat we highlighted for Eq. (18). The condition −q2 ≫
(ΛU)

2, where ΛU is the scale where asymptotic freedom sets in, as otherwise
the highest resonances M2

high > q2 and this would imply a behaviour as
in Eq. (18). Note that for −q2 ≫ (ΛU)

2 the correlator ΠV−A(q
2) does still

receive perturbative correction of the orderm2/q2 due to the explicit breaking
of chiral symmetry. These corrections can already be seen in a perturbative
computation near the Banks-Zaks fixed point, as was pointed out in Ref. [18].
As emphasized in Ref. [10] the behaviour (18) is distinct from the correlator
of a gauge theory with broken chiral symmetry has a pion pole and thus
behaves like Π(0) ∼ O(m−1). This limit is useful to identify a conformal
behaviour in a lattice simulation, where the limit m → 0 at fixed q2 can be
investigated [25, 23, 24].
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3 Relating the mass and decay constant tra-

jectory

We have established the scaling of hadronic masses and decay constants in
terms of the mass. The nature of the spectrum remains an open question,
but we we can say something about the relation between the masses and
the decay constants in the large-Nc limit. In the latter limit the width it
is believed to be Nc using the same Nc scaling arguments as in QCD. A
two-point function, of an operator O coupling to states |Hn〉, assumes the
following form:

∆(q2) ∼

∫

x

eix·q〈0|O(x)O(0)|0〉 =
∑

n

|gHn
|2

q2 +M2
Hn

, (20)

in Euclidean space. The symbol gHn
≡ 〈0|O|Hn〉 defines what we call decay

constant in this context.
On the other hand when the mass is sent to zero, the spectral representa-

tion for the two point function combined with scale invariance implies [27]:

∆(q2) =

∫ ∞

0

ds s1−γ∗

q2 + s
+ s.t ∼ (q2)1−γ∗ , (21)

where we have implicitly parametrized the scaling dimension of O as ∆O =
3 − γ∗. The symbol s.t. stands for ultraviolet subtraction terms which are
not relevant for our argument. Thus the masses and decay constants have
to behave in such a way as to reproduce (21). It is readily seen that this is
achieved as follows:

M2
Hn

∼ αnm
2

1+γ∗ , g2Hn
∼ α′

n(αn)
1−γ∗m

2(2−γ∗)
1+γ∗ (22)

The symbol αn denotes any monotonic increasing function and α′
n is the

derivative w.r.t. to n. The freedom of choosing αn corresponds to the freedom
of changing variables in the integral representation (21)67.

6Similar considerations can also be applied to large-Nc QCD. In the latter case a linear
αn ∼ n (Regge trajectory) spectrum is expected. In the case where O → q̄γµq and at large
momentum transfer ∆µν ∼ (q2gµν − qµqν) ln(q

2) which is easily verified by perturbation
theory justified by asymptotic freedom. This suggests γ∗|eff = 1 and gn ∼ O(n0). See e.g.
Ref. [26] where this type of model has been suggested. N.B. the role of the parameter m
is played by ΛQCD and the powers are simply the engineering dimensions of the mass and
decay constants.

7Our discussion formally resembles the deconstruction of a scale invariant spectrum in
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