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1. Introduction

The theory of strong interactions, Quantum Chromodynamics (QCD), is a SU(3)

gauge theory with nf flavors of fermionic matter fields in the fundamental represen-

tation of the color group. For sufficiently small nf , QCD displays many interesting

non–perturbative phenomena, which are not captured by the conventional expansion

in powers of the coupling constant. However, if we consider a SU(N) gauge theory,

with a generic number of colors N , in the limit where N becomes large, the pertur-

bative expansion can be reorganized in powers of 1/N , and the contribution of each

diagram can be directly related to its topology [1, 2]. The leading contribution in

this expansion is given by planar diagrams, and a simple power counting argument

suggests that corrections are O(1/N2) in a pure gauge theory, while the fermionic

determinant yields corrections O(nf/N).

The large–N expansion is a powerful tool to explore the strongly interacting

regime of gauge theories, and recent developments in string theory have provided

beautiful insights in our understanding of the planar limit through the gauge-gravity

correspondence [3] (see [4] for an introductory review of recent developments). The

lattice formulation of gauge theories allows one to study the non-perturbative dy-

namics from first principles by numerical simulations, and can therefore be used to

investigate how the N = ∞ limit is approached. A number of studies in recent

years [5, 6, 7, 8, 9, 10, 11] have analyzed in detail several features of pure gauge

theories for N ≥ 2, including the spectrum of glueballs, the k-string tension, and
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topology, both at zero and finite temperature. A very precocious scaling has been

observed for all observables that have been considered so far, with 1/N2 corrections

being able to accommodate the values of the observables already for N = 3 and in

most of the cases also for N = 2.

The convergence to the large–N limit for theories with fermions could also be

addressed by dynamical simulations. The contributions of the fermionic determinant

should increase the size of the corrections, as pointed out above. An intermediate

step at a lesser computational cost is the study of properties of mesons and baryons

in theories with quenched fermions. Note that since the fermionic determinant is

suppressed in the large–N limit, simulations in the quenched approximation should

converge to the same limit as in the theory with dynamical fermions, but with cor-

rections O(1/N2).

This paper focuses on the low–lying states of the mesonic spectrum for SU(N)

theories in the quenched approximation and N = 2, 3, 4, 6. By generalizing the lattice

Dirac operator to handle spinors of arbitrary dimension in color space, we compute

two-point functions for Wilson fermions at one value of the lattice spacing and several

values of the bare quark mass. The mass dependence of the spectrum is studied, and

extrapolated to the large–N limit. Our results are consistent with a 1/N2 scaling,

and the results for N = ∞ can be used as an input for analytical approaches that

study the meson spectrum of strongly–interacting gauge theories. Some aspects of

the meson spectrum at large N (in particular, the dependence of the mass of the

pion from the quark mass) have also been investigated in [12].

We stress that this calculation is meant to be exploratory, trying to favor a

first overall physical picture over more formal and technical points. A more detailed

calculation is currently in progress and will be reported elsewhere.

The paper is organized as follows. Sect. 2 recalls the basic framework that is used

for extracting the mesonic spectrum from field correlators in quenched lattice gauge

theories and summarizes the choice of bare parameters for each value of N . The

numerical results and their analysis are presented in Sect. 3. Finally, we conclude

by discussing the large–N extrapolation in Sect. 4 and its relevance for AdS/QCD

studies (see [13] for a review) in Sect. 5.

As this work was being completed we noticed that similar problems have been

investigated in Ref. [14]. The preliminary results presented there are obtained on

slightly smaller lattices (in physical units) with a finer lattice spacing. The two

sets of data are complementary and in qualitative agreement. Future calculations

will hopefully achieve precise continuum results for the large–N limit of the mesonic

spectrum.

2. Lattice formulation

A Monte Carlo ensemble of gauge fields is generated using the Wilson formulation
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of pure SU(N) gauge theory on the lattice, defined by the plaquette action

S = −
β

2N

∑

x,µ>ν

Tr
[

U(x, µ)U(x + µ, ν)U †(x + ν, µ)U †(x, ν) + h.c.
]

, (2.1)

where U(x, µ) ∈ SU(N) are the link variables. The link variables are updated using

a Cabibbo–Marinari algorithm [15], where each SU(2) subgroup of SU(N) is updated

in turn. We have alternated microcanonical and heat–bath steps in a ratio 4:1. We

call sweep the sequence of four microcanonical and one heat–bath update.

The action of the massive Dirac operator on a generic spinor field φ(x) is:

Dmφ(x) = (D + m)φ(x)

= −
1

2

{

∑

µ

[

(1 − γµ) U(x, µ)φ(x + µ) + (1 + γµ) U(x − µ, µ)†φ(x − µ)
]

−

−(8 + 2m)φ(x)} . (2.2)

The bare mass is related to the hopping parameter used in the actual simulations by

1/(2κ) = 4 + m . (2.3)

The complete set of bare parameters used in our simulations is summarized in Tab. 1.

For this preliminary study we have run simulations for values of N ranging from 2

to 6 at one value of the lattice spacing only. The values of β have been chosen in

such a way that the lattice spacing is constant across the various N . More in detail,

at each N we chose the critical value of β for the deconfinement phase transition

at Nt = 5 [7]. To set the scale, another physical quantity (like e.g. the string

tension) can be used. Since different quantities have different large–N corrections,

a different choice for the scale will affect the size of the 1/N2 corrections, but not

the N = ∞ value. Using the value Tc = 270 MeV, for the lattice spacing a we get

a ≃ 0.145 fm. For our simulations, we used a N3
s × Nt lattice with the spatial size

Ns = 16 (which corresponds to about 2.3 fm) and the temporal size Nt = 32 (about

4.6 fm in physical units). For the quark masses used in this work, our calculation

should be free from noticeable finite size effects. For the fermion fields we used

periodic boundary conditions in the spatial directions and antiperiodic boundary

conditions in the temporal direction. For the gauge field we used periodic boundary

conditions in all directions.

We have performed a chiral extrapolation using data from meson correlators at

five values of κ for each N . The choice of values for κ relies on previous experience

with SU(3) simulations to yield pseudoscalar meson masses ≥ 450 MeV. The same

values of κ have been used for all values of N ≥ 3, while for SU(2) a different choice

turned out to be necessary, since all κ’s but the lowest one were higher than κc.

Because of the different additive renormalization, these values of κ yield different

values for the bare PCAC mass as N is varied.
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N β κ

2 2.3715 0.156, 0.155, 0.154, 0.153, 0.152

3 5.8000 0.161, 0.160, 0.159, 0.1575, 0.156

4 10.6370 0.161, 0.160, 0.159, 0.1575, 0.156

6 24.5140 0.161, 0.160, 0.159, 0.1575, 0.156

Table 1: Bare parameters used in our simulations.

The mesonic spectrum is extracted from the zero-momentum two-point correla-

tors of quark bilinears with the quantum numbers required to interpolate between

a meson state and the vacuum. Let Γ1 and Γ2 be two generic products of Dirac γ

matrices, a two-point correlator is defined as

CΓ1,Γ2
(t) =

∑

x

〈

(ūΓ1d)† (t,x) (ūΓ2d) (0)
〉

, (2.4)

where u and d are the fields corresponding to two different quark flavors, which

from now on we take to be mass degenerate. All possible choices for the non-singlet

quark bilinears and the quantum numbers of the corresponding physical states are

summarized in Tab. 2.

Particle a0 π ρ a1 b1

Bilinear ūd ūγ5d, ūγ0γ5d ūγid, ūγ0γid ūγ5γid ūγiγjd

JPC 0++ 0−+ 1−− 1++ 1+−

Table 2: Bilinear operators for the computation of non-singlet meson masses.

Performing the Wick contractions we can rewrite CΓ1,Γ2
(t) in terms of the quark

propagator G(x, y) = (Dm)−1(x, y) or, equivalently, of its hermitean version H(x, y) =

G(x, y)γ5:

CΓ1,Γ2
(t) = −

∑

x

〈

tr
[

γ0Γ
†
1γ0G(x, 0)Γ2γ5G(x, 0)†γ5

]〉

=

= −
∑

x

〈

tr
[

γ0Γ
†
1γ0H(x, 0)γ5Γ2H(x, 0)γ5

]〉

, (2.5)

(tr indicates the trace over spinor and color indices).

The propagator G(x, 0)AB is obtained by inverting the Dirac operator Dm over

point sources (capital roman letters A, B, . . . are used for collective indices over spin

and color):

G(x, 0)AB = (Dm)−1
AC(x, y)δCBδy,0 = (Dm)−1

AC(x, y)η
(B)
C (y) , (2.6)

where the second equality defines the 4N point sources η(B).
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The algorithm used for the inversion in Eq. (2.6), is a multishift QMR. This

enables us to compute all the quark propagators corresponding to different masses

simultaneously. We use a version of the QMR suitable for γ5-hermitean matrices

with even-odd preconditioning of the Dirac matrix [16]. In the rare cases when the

algorithm fails to converge, we continue the search for a solution using the MINRES

algorithm, which is guaranteed to converge, on the hermitean version of the Dirac

operator. For all the inversions we required a relative precision of 10−5. To this

accuracy, and for the parameters given above, the number of required applications

of the Dirac operator to compute the propagator G(x, 0)AB at fixed values for the

hopping parameters κ is found to become independent of N . We found that the

average number of applications of the Dirac matrix required is about 7500, 5000,

5000 for N = 3, 4, 6 respectively (for SU(2) we used different parameters).

From general large–N arguments, we expect the occurrence of exceptional con-

figurations to be suppressed as N increases. This is confirmed by preliminary results

reported in Ref. [14]. At the values of the parameters we have simulated, there is no

sign of the presence of exceptional configurations.

Simulations have been performed with a bespoke code, which has been tested

against published results for SU(3) (see [17] for a review of the literature). We have

collected 100 configurations for each value of N , separated by 50 Monte Carlo sweeps.

3. Numerical results

3.1 Extracting masses from correlators

Masses can be extracted from the large–t behavior of CΓ,Γ(t). Inserting the energy

eigenstates in the RHS of Eq. (2.4) yields

CΓ,Γ(t) =
∑

i

|ci|
2e−mit , (3.1)

where ci = (1/2mi) 〈0 |(ūΓd) (0)| i〉, Γ is one of the γ matrix products appearing in

the bilinears in Tab. 2, |i〉 is an eigenstate of the Hamiltonian with the same quantum

numbers as the fermion bilinear, and mi is the mass of the |i〉 eigenstate. In the limit

t → ∞, the previous equation becomes

CΓ,Γ(t) =
t→∞

|c0|
2e−m0t , (3.2)

i.e. at large time correlation functions decay in time as a single exponential with

a typical time given by the inverse mass of the lowest-lying state in the spectrum

with matching quantum numbers. The lowest mass in a given channel can then be

extracted as

m0 = − lim
t→∞

log CΓ,Γ(t)

t
. (3.3)

– 5 –
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t

1e-06

0.0001

0.01

1
C

Γ,
Γ(t

)

k=0.161
k=0.160
k=0.159
k=0.1575
k=0.156

Figure 1: Correlators for SU(4) and Γ = γ5 at the values of κ shown. The correlators

have been normalized in such a way that at t = 0 their value is 1. The lines joining the

data are only guides for the eyes.

Practically, one defines the effective mass m0(t) as

m0(t) = − log
CΓ,Γ(t)

CΓ,Γ(t − 1)
(3.4)

and obtains m0 by fitting m0(t) to a constant at large enough t.

On a finite lattice the exponential in the large–time behavior of the propagator

is replaced by a cosh and an effective mass can be defined as

m0(t) = acosh

(

CΓ,Γ(t + 1) + CΓ,Γ(t − 1)

2CΓ,Γ(t)

)

. (3.5)

Typical examples of correlation functions and effective masses as a function of the

separation between source and sink are shown respectively in Fig. 1 and Fig. 2.

We have estimated the errors on the correlators using a jack-knife method, and

checked that the bootstrap method gives similar results. With simple link operators,

we have been able to extract an unambiguous signal for the π and the ρ mesons (to

which we limit our analysis). Other correlators yielded a noisy signal, and we plan to

investigate the possibility of improving the signal-to-noise ratio by more sophisticated
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0 5 10 15 20 25 30
t

0
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0.6

0.8

1
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0(t

)

k=0.161
k=0.160
k=0.159
k=0.1575
k=0.156

Figure 2: Effective masses from the correlators in Fig. 1. The straight lines are fits to the

data at plateau.

measurements. Due to the small number of data points, often correlated fits proved to

be unreliable, as already observed (see e.g. Refs. [18, 19]). Hence, masses have been

extracted with uncorrelated fits and the error estimated with a jack-knife procedure.

We have checked that the uncorrelated fit results coincide with the correlated fit

results whenever the correlated fits give reasonable values for the parameters and

the χ2.

Our results for the various N for the PCAC mass mPCAC, the mass of the pion

mπ, and the mass of the ρ mρ are reported in Tabs. 3–6. The details of our analysis

are explained in the following two subsections.

In order to convert the results expressed in lattice units to masses in physical

units, we note that

am = (aTc)(m/Tc) = m/(5Tc) (3.6)

(the last equality uses the fact that the lattice spacing has been fixed in such a way

that the deconfinement phase transition corresponds to Nt = 5). As a reference scale,

we can use Tc for SU(3), which is approximately 270 MeV.

3.2 Meson masses at finite N

The pion is the would-be Goldstone boson of chiral symmetry breaking. Chiral
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κ amPCAC mPCAC (MeV) amπ mπ (MeV) amρ mρ (MeV)

0.152 0.0824(30) 111(4) 0.541(3) 730(4) 0.620(6) 837(8)

0.153 0.0669(28) 90(4) 0.492(4) 664(5) 0.584(7) 788(9)

0.154 0.0522(25) 70(3) 0.441(4) 595(5) 0.547(7) 738(9)

0.155 0.0396(24) 53(3) 0.389(4) 525(5) 0.510(10) 789(13)

0.156 0.0261(22) 35(3) 0.319(7) 430(9) 0.458(17) 618(23)

Table 3: Numerical results for SU(2). Masses in lattice units have been converted to

physical units by noting a = 1/(5Tc).

κ amPCAC mPCAC (MeV) amπ mπ (MeV) amρ mρ (MeV)

0.156 0.1047(24) 141(3) 0.625(2) 844(3) 0.720(3) 972(4)

0.1575 0.0797(21) 108(3) 0.553(2) 747(3) 0.667(4) 900(5)

0.159 0.0574(17) 77(2) 0.476(2) 643(3) 0.616(5) 832(7)

0.160 0.0431(16) 58(2) 0.420(2) 567(3) 0.582(6) 786(8)

0.161 0.0299(14) 40(2) 0.362(3) 489(4) 0.550(7) 743(9)

Table 4: Numerical results for SU(3). Masses in lattice units have been converted to

physical units by noting a = 1/(5Tc).

κ amPCAC mPCAC (MeV) amπ mπ (MeV) amρ mρ (MeV)

0.156 0.1506(35) 203(5) 0.733(1) 990(1) 0.817(2) 1103(3)

0.1575 0.1234(29) 167(4) 0.667(1) 900(1) 0.766(2) 1034(3)

0.159 0.0981(22) 132(3) 0.598(1) 807(1) 0.714(2) 964(3)

0.160 0.0817(19) 110(3) 0.549(2) 741(3) 0.680(2) 918(3)

0.161 0.0659(17) 89(2) 0.499(2) 674(3) 0.646(3) 872(4)

Table 5: Numerical results for SU(4). Masses in lattice units have been converted to

physical units by noting a = 1/(5Tc).

perturbation theory at leading order predicts

mπ = A

(

1

κ
−

1

κc

)1/2

. (3.7)

Hence the value of κ corresponding to the chiral limit, κc, can be obtained by fitting

the pion mass according to Eq. (3.7). Eq. (3.7) is modified for the quenched theory,

where quenched chiral logs appear. For quenched SU(N) gauge theory we expect

mπ = A

(

1

κ
−

1

κc

)1/[2(1+δ)]

, (3.8)

where δ is positive, O(10−1) for SU(3) and goes like 1/N [20].
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0(t
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SU(2)
SU(3)
SU(4)
SU(6)

Figure 3: Effective masses from Cγ5,γ5
at κ = 0.156.

κ amPCAC mPCAC (MeV) amπ mπ (MeV) amρ mρ (MeV)

0.156 0.1789(22) 241(3) 0.814(1) 1099(1) 0.889(2) 1214(3)

0.1575 0.1509(20) 203(3) 0.752(1) 1015(1) 0.838(2) 1131(3)

0.159 0.1248(18) 168(2) 0.687(1) 927(1) 0.786(2) 1061(3)

0.160 0.1078(17) 146(2) 0.6425(9) 867(1) 0.752(2) 1015(3)

0.161 0.0914(15) 123(2) 0.5952(9) 804(1) 0.718(2) 969(3)

Table 6: Numerical results for SU(6). Masses in lattice units have been converted to

physical units by noting a = 1/(5Tc).

The mass of the pion can be extracted by looking at correlators CΓ,Γ in which Γ

is either γ5 or γ0γ5. In the latter case, it was not possible to extract a signal for all

κ’s in SU(2). Hence, although in general mass plateau fits of γ0γ5 have a lower χ2,

we will mostly focus on numerical results obtained with Γ = γ5.

As N grows, so does mπ at fixed κ. A plot comparing numerical results for

the effective mass extracted from Cγ5,γ5
is shown in Fig. 3. A linear fit to the data

according to Eq. (3.7) enables us to extract the critical values of κ for the N at

which we have simulated. Results are shown in Tab. 7. The mass obtained from the
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N κc A

2 0.15827(12) 1.0583(99)

3 0.16359(28) 1.142(21)

4 0.16556(23) 1.201(14)

6 0.16716(12) 1.2422(69)

Table 7: Fitted values for κc and A at various N .

Cγ0γ5,γ0γ5
correlator yields compatible results. Higher statistics and a careful study

of the systematics are necessary for a more precise determination of the critical value

of κ.

Generally the reduced χ2 of the fits according to Eq. (3.7) varies between two and

four. One can check whether this relatively high value of χ2
r is due to the fact that we

are neglecting chiral logarithms. For N ≥ 2, fits according to (3.8) yield a value of χ2
r

that is below one, but δ is found to be negative. This agrees with the findings of [17],

where the negative value is interpreted as a consequence of simulating far from the

chiral limit. In fact, for N = 2, where we have the lightest pion mass, δ is found to

be compatible with zero. As one would have expected, for mπ ≥ 450 MeV there is no

sensitivity to the chiral logarithms [20]. Instead of relying on phenomenological fits

like in [17], we acknowledge the impossibility to determine δ and neglect the chiral

logarithms, using the chiral behavior (3.8) to get an estimate for the systematic error

associated with this approximation. For SU(2), the three-parameter fit gives a value

of κc that is higher than the fit with δ = 0 by about 1%. Considering that δ ∝ N−1,

a conservative but safe estimate for the systematic error associated with the chiral

logarithms is of the order of a few percent. This is in agreement with the literature

for SU(3) [17]. We will come back on issues associated with the chiral logarithms in

the next subsection.

The mass of the ρ has been extracted from Cγi,γi
, after taking the average over

the spatial direction i of the correlation functions. Fits in the Cγ0γi,γ0γi
channel also

yield compatible results.

At small quark mass, mρ depends linearly on the quark mass and goes to a finite

value in the chiral limit. Using Eq. (3.7), this can be rephrased into the following

relationship between mρ and mπ

mρ = mχ
ρ + Bm2

π , (3.9)

where mχ
ρ is the mass of the ρ meson at the chiral point. Note that the previous

equation is not modified by chiral logarithms [20]. Assuming that Eq. (3.9) holds in

our case1, we can fit mχ
ρ and B at the various values of N from our data. Our results

1More sophisticated dependencies (e.g. the addition of a linear term in mπ to Eq. (3.9), which

is motivated by phenomenology) are also supported by our data. In the absence of any evidence

against it, we chose to fit the parameters using the simple chiral functional behavior.
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N amχ
ρ B

2 0.3890(75) 0.797(31)

3 0.4683(25) 0.6455(84)

4 0.5018(36) 0.5905(88)

6 0.5238(40) 0.5533(77)

Table 8: Extrapolation of mρ to the chiral limit.

for those quantities are reported in Tab. 8. The reduced χ2 of the fits (which keep

into account both the error on mρ and the error on mπ) is always less than one.

3.3 PCAC

As noted in the previous subsection, Eq. (3.7) only holds for the full theory, while

it is modified at small masses, where quenched chiral logs become important. An

alternative way of defining κc, which is free from these ambiguities, makes use of

the partially conserved axial current (PCAC) relation. In the continuum, the PCAC

relation reads

∂µA
µ(x) = 2mPCACj(x) , (3.10)

with Aµ(x) = ū(x)γµγ5d(x) and j = ū(x)γ5d(x). The previous equation allows us to

determine mPCAC as

mPCAC =
1

2

〈
∫

d~x(∂0A
0(x))j†(y))〉

〈
∫

d~xj(x)j†(y)〉
, (3.11)

where y is an arbitrary point. On the lattice an effective mass mPCAC(t) can be

defined as

mPCAC(t) =
1

4

Cγ0γ5,γ5
(t + 1) − Cγ0γ5,γ5

(t − 1)

Cγ5,γ5
(t)

(3.12)

and once again fitted at plateau. Note that with our choice for the discretized

fermions PCAC holds on the lattice up to terms O(a). In practice, since mPCAC(t)

defined through Eq. (3.12) is antisymmetric around the point Nt/2, one averages

the absolute values at points t and Nt − t. An example of an effective mass plateau

obtained using Eq. (3.12) is given in Fig. 4.

Since mPCAC = Zm(1/κ − 1/κc), we can determine κc as the value for which

mPCAC = 0. A linear fit to the data enables us to extract κc. Results for N = 2, 3, 4, 6

are reported in Tab. 9. Comparing with the similar fits from mπ (Tab. 7), it is

immediate to see that using mPCAC we get values for κc that are systematically

lower2. Although this effect is below half a percent, it is by far larger than the

2This should be contrasted with fits that keep into account chiral logarithms, for which we find

values of κc systematically higher.
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Figure 4: mPCAC(t) as a function of t for κ = 0.156.

N κc A

2 0.15792(25) 0.331(15)

3 0.16306(10) 0.372(10)

4 0.16513(15) 0.422(12)

6 0.16657(15) 0.438(11)

Table 9: Extrapolation of κ to the chiral limit using mPCAC.

statistical errors. This discrepancy might be due to the different chiral behavior of

the two definitions of the quark mass for the quenched theory or be a consequence

of the underestimation of the errors due to the use of uncorrelated fits, as we have

discussed above. However, at our value of the lattice spacing discretization errors

also play a relevant part. In order to investigate these issues, we have analyzed mπ

as a function of mPCAC. Our results are reported in Fig. 5, where mπ is plotted as a

function of mPCAC.

The expected quadratic behavior

m2
π = CmPCAC (3.13)

is not obeyed by our data. To extrapolate to the chiral limit, we need to correct the
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Figure 5: m2
π as a function of mPCAC at the various N . The values of mπ at mPCAC = 0

have been obtained with a linear fit to the data, as discussed in the text.

above relationship by allowing for a non-zero value for mπ when mPCAC is zero:

m2
π = CmPCAC + B , (3.14)

where B and C depend on N . B (obtained from a fit according to the previous

equation keeping into account both the errors on mπ and on mPCAC) is roughly of

order 10−2 and independent of N . If the existence of a constant (as a function of N)

residual mπ as m → 0 were a sign of the failure of the quenched approximation, we

would have expected B to go to zero as N → ∞. This expectation is not supported

by our data. On the other hand, having fixed the lattice spacing across the gauge

groups, any discretization artifact would be constant in N . Hence, it is likely that

this residual mass is (mostly) due to the violation of PCAC on the lattice. If this is

correct, also the systematic discrepancy between the two sets of κc should be due to

lattice artifacts. In order to settle this issue, a systematic study at different lattice

spacings needs to be performed.

4. Extrapolation to SU(∞)

Using data at finite N , we can estimate the behavior of the lowest-lying meson masses
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at N = ∞. Following similar analysis performed in pure gauge [5, 6, 7, 8, 9, 10, 11],

we use predictions from the large–N expansion to see whether they hold in the non-

perturbative regime. In practice, we take the asymptotic expansion for an observable

O in the quenched case [1]

O(N) = O(∞) +
∑

i

αi

N2i
(4.1)

and we check whether a reasonable (as dictated by the number of data) truncation

of this series accommodates our numerical values. In the pure gauge case, a preco-

cious onset of the large–N behavior has been found for all the observables that have

been studied (which include glueball masses, deconfining temperature and topolog-

ical susceptibility): the O(1/N2) correction correctly describes the data down to at

least N = 3, often including also the case N = 2. From a qualitative point of view,

it is already clear from what we have seen so far that the quantities we have investi-

gated have a mild dependence on N . In this section, we want to study whether this

dependence is correctly described by a large–N -inspired expansion.

κc can be computed in lattice perturbation theory [21]. The result at one loop

is in agreement with the predictions of the large–N limit: this quantity receives a

correction O(1/N2). This motivates the fit

κc(N) = κc(∞) +
a

N2
. (4.2)

For κc obtained via Eq. (3.7), we get κc(∞) = 0.1682(1) and a = −0.0398(6), with

χ2
r = 0.6. The quality of the fit is good, and the coefficient of the 1/N2 correction

is small, as one would expect for a series expansion. Similarly to the pure gauge

case, we observe an early onset of the asymptotic behavior, which captures also the

SU(2) value. Our data and the large–N extrapolation are plotted in Fig. 6. The

same extrapolation for the critical value of κ obtained using the PCAC relation

yields κc(∞) = 0.1675(2), a = −0.039(1) and χ2
r = 1.3. The discrepancy between

the values of κc(∞) could be due to lattice discretization artifacts, as discussed in

Sect. 3.3. We take the difference between the two determinations should be seen as

an estimate of the systematic error. The fact that the angular coefficient a has the

same value seems to corroborate this hypothesis. A more precise determination of

κc is beyond the scope of this work.

The slope A in Eq. (3.7) can also be extrapolated to the N = ∞ limit, with

corrections that are O(1/N2):

A(N) = A(∞) + a/N2 . (4.3)

For the Cγ5,γ5
results, the fit gives A(∞) = 1.262(8) and a = −0.82(6) with χ2

r = 1.2.

This allows us to write the mass of the π as a function of κ at N = ∞ as

mπ = 1.262(8) (1/κ − 5.945(4))1/2 , (4.4)
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Figure 6: Extrapolation of κc to N = ∞.

where the values of κc obtained from fits to Cγ5,γ5
have been used (using the PCAC

value gives a slightly discrepant result, for the reasons discussed in Sect. 3.3). We plot

in Fig. 7 the data for the dependence of m2
π as a function of κ, with a fit according

to Eq. (3.7). We also plot in the same figure Eq. (4.4).

The parameters describing mρ as a function of mπ (Eq. (3.9)) are also expected

to follow the asymptotic expansion (4.1). A fit with only the leading 1/N2 correction

yields

mχ
ρ (N) = 0.539(3) − 0.62(3)/N2 , χ2

r = 0.008 ;

B(N) = 0.5224(8) + 1.10(1)/N2 , χ2
r = 0.7 .

(4.5)

The tiny χ2
r for B(∞) is particularly surprising, given the statistical independence of

the measured values of B(N). We see that once again the leading behavior describes

very well the parameters and that the coefficient of the 1/N2 correction is order one.

As a result of this analysis, at N = ∞ we can describe mρ as a function of mπ

as

mρ = 0.539(3) + 0.5224(8)m2
π . (4.6)

This relationship, together with the data and the fits at finite N , is plotted in Fig. 8.
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Figure 7: mπ as a function of 1/κ. The curves through the data are obtained from a fit

assuming the expected leading dependence from chiral perturbation theory. Also shown is

the extrapolation to N = ∞.

5. Discussion and conclusions

In this paper, we have used standard lattice QCD methods for computing correla-

tion functions to extract the masses of the ρ and π mesons in the large–N limit of

SU(N) gauge theories. The masses in the limiting theory have been obtained with an

extrapolation from the quenched data at N = 2, 3, 4, 6 using the large–N behavior

deduced from arguments inspired by a diagrammatic expansion. We find that the

extrapolation works well in its simplest form, i.e. using only the leading correction to

the large–N value. This allows us to determine the behavior at N = ∞ of the mass

of the pion as a function of the renormalized quark mass and of the mass of the ρ as a

function of the mass of the pion (chiral perturbation theory has also been used as an

input). The two central results of this paper are summarized by the parametrization

mπ(N) =

(

1.262(8) −
0.82(6)

N2

) (

1

κ
− 5.945(4) +

0.0398(6)

N2

)1/2

(5.1)

and

mρ(N) =

(

0.539(3) −
0.62(3)

N2

)

+

(

0.5224(8) +
1.10(1)

N2

)

m2
π(N) . (5.2)
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Figure 8: mρ vs. mπ. Lines through the data have been obtained with a plot inspired by

chiral perturbation theory. Also shown is the extrapolation to N = ∞.

One of the motivations to perform a calculation from first principles for the

large–N limit of SU(N) gauge theories is to compare with predictions obtained in

the AdS/CFT framework. To date, no AdS background has been found that can

be considered a good dual description of non-supersymmetric QCD extrapolated

at large–N . Hence, one could use our calculation to benchmark the proposed AdS

ansatz. From this point of view, we notice a striking agreement with a calculation [22,

13] using the Constable-Myers background [23], which (after normalizing the mass

of the ρ in the chiral limit to our data) finds for the coefficient of m2
π (see Eq. (3.9))

0.57. This number is in agreement with our calculations within 5%. However, before

we can draw any conclusion from the comparison with the lattice, an extrapolation

of the lattice data to the continuum limit is needed.

Beyond the specific numerical details, our calculation seems to indicate that (a)

the large–N theory is a well defined theory; (b) lattice calculations can be successfully

exploited to compute the parameters of this theory; (c) at least in the quenched

theory, to describe results at any finite N only the first term in the expected power

series in 1/N2 is required; (d) the coefficient of the correction is at most order one,

justifying the idea of a power expansion. All these indications are perfectly in line

with what we have already learned for the SU(N) theory without fermionic matter.
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Although this can be considered obvious, since our calculation is quenched, we stress

that the N = ∞ limit is also quenched. In other words, to describe the limiting

theory a quenched calculation suffices. The inclusion of the full fermion determinant

becomes mandatory if one is interested in the actual size of the finite N corrections.

In particular, one expects larger corrections (O(nf/N)) in the unquenched theory.

As we have stressed several times, one of the main limitations of this calculation

is that our chiral extrapolations are not sensitive to the expected chiral log behavior.

We have conservatively estimated that this approximation produces a 3% systematic

error. This error does not affect our conclusions. Moreover, we note that chiral

logarithms do not modify Eq. (5.2). In any case, in order to make more robust

estimates, better control on the chiral extrapolation should be achieved. This requires

simulating at smaller pion masses. It would also be nice to check that the chiral log

effects decrease as N increases.

Another source of systematic error in our calculation is the fact that simulations

have been performed at one single lattice spacing. For this reason we regard our

results as exploratory. As discussed in Sect. 3.3, lattice artifacts do seem to play a

role, although they are not big enough to spoil the features of the theory and the

way in which the large–N behavior is approached. Nevertheless, a study closer to

the continuum is necessary to clarify these issues. Work for the extrapolation to the

continuum limit is already in progress. For this extrapolation, the use of an improved

fermion action can mitigate the discretization artifacts, decreasing considerably the

required numerical effort. We shall explore this possibility in the future. As for finite

size effects, we have argued in Sect. 2 that with our choice of parameters they can

be neglected, but this also ought to be verified directly.

Aside from technicalities, other features of the large–N theory, like the spec-

trum in the flavor singlet channel and masses of heavier mesons, also deserve to be

investigated. While the latter problem can probably be dealt with using improved

techniques for computing correlation functions (e.g. with smeared links replacing

straight links and smeared sources replacing point sources), for the scalar mesons,

for which disconnected contributions are important, different strategies need to be

adopted. An adaptation of the techniques exposed in [24, 25] is in progress. Results

will be reported in a future publication.
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